The present invention relates to an optical lens device having an etched polarization miniature structure and method thereof. Particularly, the present invention relates to the optical lens device having an etched polarization microstructure and method thereof. More particularly, the present invention relates to the optical lens device having an etched polarization miniature pattern structure or microstructure and operation or manufacturing method thereof.
PCT (Patent Cooperation Treaty) Publication No. WO-2007/0131271, entitled “Microlithography projection optical system, method for manufacturing a device and method to design an optical surface,” discloses a microlithography projection optical system, a manufacturing method thereof and a design method for an optical surface on a substrate.
An etched-surface substrate device includes a substrate surface and an etched nano-structure, with the etched nano-structure of the etched-surface substrate device selectively being processed by the above-mentioned microlithography projection optical system and the above-mentioned manufacturing method thereof on the substrate surface.
Further, U.S. Patent Application Publication No. US-20150049319, entitled “Microlithography projection optical system, tool and method of production,” also discloses a microlithography projection optical system, a tool thereof and a method of production.
Also, an etched-surface substrate device includes a substrate surface and an etched nano-structure, with the etched nano-structure of the etched-surface substrate device selectively being processed by the above-mentioned microlithography projection optical system and the above-mentioned manufacturing method thereof on the substrate surface.
However, each above-mentioned etched nano-structure of the etched-surface substrate device is not an optical grating structure for polarization such that it cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Publication No. TW-556286, entitled “Manufacturing method of micro lens,” discloses a manufacturing method of producing micro lens for an optical device comprises: coating a thermoplastic organic material layer on a flat substrate or adhering the thermoplastic organic material layer to the flat substrate.
The manufacturing method of producing micro lens for an optical device further comprises: in a laser etching operation, using a laser beam to directly remove some unwanted portions from the thermoplastic organic material layer by vaporization and to thereby remain a desire pellet-like pattern formed thereon.
The manufacturing method of micro lens for producing an optical device further comprises: in softening operation, heat-treating the remained pellet-like pattern of the thermoplastic organic material layer formed on the flat substrate, thereby forming a spherical surface or a cambered surface on a surface of the thermoplastic organic material layer.
The manufacturing method of producing micro lens for an optical device further comprises: in plating operation, plating a conductive metal thin layer on the surface of the thermoplastic organic material layer which is further provided to form an injection mold mechanism, with cooperating with an injection molding machine, in an injection operation, to produce a substrate panel which is formed with a micro lens.
However, the above-mentioned injection mold mechanism and the manufacturing method thereof or the above substrate panel with the micro lens produced thereby cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Application Publication No. TW-201041712, entitled “Mold core, mold apparatus and method for press-molding micro concave lens array,” discloses a mold core for a press-molding micro concave lens array. The mold core has an end surface on which a plurality of spacers is formed.
Each of spacers has a top surface which is formed in an identical level with the end surface of the mold core. Each of spacers further defines a mold cavity therein and can be utilized to form a micro concave lens in press-molding operation.
A convex surface is formed in an inner space of the mold cavity for press-molding operation and is also protruded upward from a bottom surface of the mold cavity. The convex surface also has a highest point which is lower than a top surface of the mold cavity.
However, the above-mentioned mold core, mold apparatus thereof and manufacturing method thereof for the press-molding micro concave lens array cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Publication No. TW-1709761, entitled “Optical lens having a laser-induced periodical microstructure,” discloses an optical lens having a laser-induced periodical microstructure. The optical lens having the laser-induced periodical microstructure is formed from an optical lens device.
The optical lens is selected from a single-piece member, with the optical lens having a flat surface and a curved surface provided on opposite surfaces thereof. The curved surface of the optical lens is induced by a laser to form a laser-induced periodical surface microstructure.
The laser-induced periodical surface microstructure has a microstructure arrangement and a microstructure size, with the microstructure arrangement formed from a plurality of structure members which are in a periodical arrangement, with the microstructure size formed from a spaced width ranging between 50 nm and 1000 nm, with the microstructure size formed from a height ranging between 50 nm and 500 nm.
However, the above-mentioned laser-induced periodical surface microstructure of the optical lens is not an optical grating structure for polarization such that it cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Publication No. TW-I611217, entitled “Lens having microstructures,” discloses a lens device having microstructures. The lens device having microstructures has a first surface and a second surface, with the first surface having a central portion thereof.
Provided at the central portion of the first surface is an optical portion which has an optical mechanism portion. Defined around the optical portion is the optical mechanism portion. At least one part of optical mechanism portion is formed with at least one recessed microstructure which has a bottom surface. The bottom surface is a rough surface formed by laser processing.
However, the above-mentioned recessed microstructure of the lens is not an optical grating structure for polarization such that it cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Publication No. TW-M519748, entitled “E,” discloses a lens device having microstructures. The lens device having microstructures has a first surface and a second surface, with the first surface having a central portion thereof.
Provided at the central portion of the first surface is an optical portion which has an optical mechanism portion. Defined around the optical portion is the optical mechanism portion. At least one part of optical mechanism portion is formed with at least one recessed microstructure which has a bottom surface. The bottom surface is a rough surface formed by laser processing.
The lens device having microstructures defines a longitudinal axis which passes through a center of the lens device. The microstructures is selected from a plurality of annular grooves, a plurality of grooves or a spiral groove. The plurality of annular grooves surround the longitudinal axis and extend along the longitudinal axis. The plurality of annular grooves are concentric annular grooves which are spaced apart among them. The plurality of grooves also surround the longitudinal axis and also extend along the longitudinal axis. The spiral groove also extends along the longitudinal axis to form a spiral structure.
However, the above-mentioned recessed microstructure of the lens is not an optical grating structure for polarization such that it cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
Further, Taiwanese Patent Application Publication No. TW-201719241, entitled “Eyeglasses having a microstructure of an optical structure,” discloses an eyeglasses having a microstructure of an optical structure which comprises a basic lens and a corrective lens.
The basic lens and the corrective lens are combined to form a single piece member which is formed as a single-piece shape lens. The basic lens has a microstructure which includes a plurality of predetermined notches or a concave and convex curved surface. The plurality of predetermined notches are concentric notches and the microstructure of the concave and convex curved surface has various angles.
However, the above-mentioned microstructure of the eyeglasses is not an optical grating structure for polarization such that it cannot be possibly performed as an optical polarization mechanism of lens devices or further successfully modified to provide an optical polarization mechanism of lens devices.
However, there is a need of improving the conventional lens devices for providing an optical grating structure performed as an optical polarization mechanism of lens device. The above-mentioned patents and patent application publications are incorporated herein by reference for purposes including, but not limited to, indicating the background of the present invention and illustrating the situation of the art.
The primary objective of this invention is to provide an optical lens device having an etched polarization miniature structure and method thereof. A first surface and a second surface are provided on an optical substrate (layer), with chemically etching to form at least one etched miniature surface structure on the first surface or the second surface of the optical substrate to form an etched miniature-structure polarization layer, with a light ray or a light beam passing through the etched miniature surface structure of the optical substrate to generate an optical polarization effect. Advantageously, the optical lens device of the present invention is successful in providing an optical grating structure for polarization, reducing a total thickness of lens device, and further increasing eye comfortability and eye protection.
The optical lens device in accordance with an aspect of the present invention includes:
an optical substrate having a first surface and a second surface, with rays or a beam of light capable of penetrating through the first and second surfaces of the optical substrate;
at least one etched miniature-structure polarization layer provided on the first surface or the second surface of the optical substrate, with the ray or the beam of light capable of penetrating through the etched miniature-structure polarization layer; and
at least one etched miniature surface structure formed on the etched miniature-structure polarization layer to form an etched miniature-structure polarization grating which provides an optical polarization characteristic;
wherein a polarization effect of the ray or the beam of light is generated while penetrating through the etched miniature-structure polarization grating.
The method of an optical lens device having an etched polarization miniature structure in accordance with an aspect of the present invention includes:
providing a first surface and a second surface on an optical substrate through which rays or a beam of light to penetrate;
providing at least one etched miniature-structure polarization layer on the first surface or the second surface of the optical substrate, with the ray or the beam of light capable of penetrating through the etched miniature-structure polarization layer;
operating an etching system to etch at least one etched miniature surface structure on the etched miniature-structure polarization layer to form an etched miniature-structure polarization grating which provides an optical polarization characteristic; and
generating a polarization effect of the ray or the beam of light while penetrating through the etched miniature-structure polarization grating.
In a separate aspect of the present invention, the optical substrate is selected from a single-layer optical substrate or a multiple-complex-layer optical substrate.
In a further separate aspect of the present invention, the etched miniature surface structure is selected from a sawtooth-shaped miniature structure, a wavy-shaped miniature structure, a groove-shaped miniature structure, a concave-shaped miniature structure, a prism-shaped miniature structure, a convex-shaped miniature structure and combinations thereof.
In yet a further separate aspect of the present invention, the etched miniature surface structure is formed from a predetermined pattern.
In yet a further separate aspect of the present invention, the predetermined pattern is selected from a plurality of concentric rings, a plurality of railings, a plurality of letters and combinations thereof.
In yet a further separate aspect of the present invention, the optical substrate and the etched miniature-structure polarization layer are combined to form as a single-layer optical substrate.
In yet a further separate aspect of the present invention, the etched miniature surface structure is selected from a regular-distributed miniature surface structure or an irregular-distributed miniature surface structure.
In yet a further separate aspect of the present invention, the etched miniature surface structure is protruded from the first surface or the second surface of the optical substrate.
In yet a further separate aspect of the present invention, the etched miniature surface structure is recessed in the first surface or the second surface of the optical substrate.
Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
It is noted that an optical lens device having an optical lens device having an etched polarization miniature structure and operation or manufacturing method thereof in accordance with the preferred embodiment of the present invention can be applicable to various glasses (including rimless glasses), various sunglasses, various smart glasses, various sport glasses (including motorcycle-riding glasses), various goggles, various 3D glasses devices, various VR wearable glasses devices, various AR wearable glasses devices or other optical devices such as sensor lens devices, camera lens devices, computer display glasses or TV screen glasses, which are not limitative of the present invention.
With continued reference to
Still referring to
Still referring to
Still referring to
With continued reference to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Still referring to
Referring back to
Although the invention has been described in detail with reference to its presently preferred embodiment, it will be understood by one of ordinary skills in the art that various modifications can be made without departing from the spirit and the scope of the invention, as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
110120289 | Jun 2021 | TW | national |