1. Technical Field
The present disclosure relates to an optical lens with an anti-reflection film and a lens module having the optical lens.
2. Description of Related Art
Lens modules may include at least one lens and a filter positioned at an image side of the lens. The filter may include a transparent substrate and an infrared filtering film formed on an object side of the transparent substrate. The filter is for reflecting infrared light rays while allowing the passage of visible light rays. However, about 5% or more of visible light rays are also reflected by the infrared filtering film. The reflected visible light rays form a glare in the image after multiple reflections in the lens module.
An anti-reflection film is formed on a surface of an optical lens of the lens module for reducing the glare in the lens module.
Therefore, it is desirable to provide an optical lens with an anti-reflection film and a lens module having the same, which can overcome the limitations described.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the views.
Embodiments of the disclosure will now be described in detail, with reference to the accompanying drawings.
The first anti-reflection film 14 is formed on the first surface 123 of the optically effective portion 121 and the first surface 125 of the peripheral portion 122, and covers the entire first surfaces 123 and 125. The second anti-reflection film 16 is formed on the second surface 123 of the optically effective portion 121 and the second surface 126 of the peripheral portion 122, and covers the entire second surfaces 124 and 126.
Each of the first and second anti-reflection films 14 and 16 includes a plurality of high refractive index layers and a plurality of low refractive index layers alternately stacked one on another. In this embodiment, each of the first and second anti-reflection film 14 and 16 includes four high refractive index layers and four low refractive index layers alternately stacked one on another. A material of the high refractive index layers is Titanium dioxide (TiO2) with a refractive index of 2.41, and a material of the low refractive index layers is silicon dioxide (SiO2) with a refractive index of 1.47. The material and thickness of each layer of each of the first and second anti-reflection films 14 and 16 are shown in Table 1.
In alternative embodiments, the high refractive index layers can also be selected the group consisting of hafnium oxide (HfO) with a refractive index of 1.85, tantalum oxide (Ta2O5) with a refractive index of 2.2, niobium oxide (Nb2O5) with a refractive index of 2.19, zinc sulfide (ZnS) with a refractive index of 2.27, silicon (Si) with a refractive index of 3.5, germanium (Ge) with a refractive index of 4.0, and lead tellurium (PbTe) with a refractive index of 5.0. In another alternative embodiment, one of the first and second anti-reflection films 14 and 16 can be omitted.
For the first and second surfaces 123 and 124 of the lens body 12 with a higher curvature, each of the first and second anti-reflection film 14 and 16 can anti-reflect light beams with wider frequency band, thereby the reflectivity of each of the first and second anti-reflection film 14 and 16 on the optically effective portion 121 and peripheral portion 122 to light rays having wavelengths in a range from about 420 nm to about 650 nm is lower than about 2%. Referring to Table 2, the material and thickness of each layer of each of the first and second anti-reflection films 14 and 16 according to a third exemplary embodiment are shown in Table 2.
Particular embodiments are shown and described by way of illustration only. The principles and the features of the present disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the disclosure as claimed. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
100132214 | Sep 2011 | TW | national |