Claims
- 1. An optical limiting material for wavelengths of pulsed electromagnetic radiation from a source thereof, which comprises an acceptor composition having a ground-state absorption cross section, .sigma..sub.0, and an excited-state absorption cross section, .sigma..sub.1, such that .sigma..sub.1 /.sigma..sub.0 .gtoreq.1 within a first wavelength interval, and a conjugated polymeric composition in which the acceptor composition is soluble such that said acceptor composition is not covalently bonded to said conjugated polymeric composition, said conjugated polymeric composition having an absorption within a second wavelength interval of pulsed electromagnetic radiation which includes the wavelengths of pulsed radiation, the relaxation time of said acceptor composition being long compared with the optical pulse width of the source of radiation, whereby said conjugated polymeric composition absorbs the wavelengths of pulsed radiation and transfer the energy thereof to said acceptor composition in the wavelength region where said acceptor composition does not absorb the pulsed radiation, and enhance the nonlinear absorption of the pulsed radiation where the first wavelength interval is included within the wavelengths of pulsed radiation such that said optical absorbing material limits the wavelengths of pulsed radiation directed therethrough.
- 2. The optical limiting material as described in claim 1, wherein the energy transfer occurs by an electron transfer mechanism.
- 3. The optical limiting material as described in claim 1, wherein said acceptor composition is selected from the group consisting of fullerenes, methanofullerenes, fulleroids, and mixtures thereof.
- 4. The optical limiting material as described in claim 3, wherein said methanofullerenes are selected from the group consisting of (6,6) PCBM, (6,6) PCBCR, and mixtures thereof.
- 5. The optical limiting material as described in claim 3, wherein said fulleroids are selected from the group consisting of (5,6) PCBM, (5,6) PCBCR, and mixtures thereof.
- 6. The optical limiting material as described in claim 1, wherein said acceptor compositions are selected from the group consisting of 1-tetracyano-p-quinodimethane, 2,11,11,12,12-tetracyanoanthraquinodimethane, 3,13,13,14,14-tetracyano-5,12naphtacenequinodimethane, 4,8,9-dimethoxy-13,13,14,14-tetracyano-5,12naphtacenequinodimethane, 5,15,15,16,16-tetracyano-5,14-pentacenequinodimethane, 6,15,15,16,16-tetracyano-6,13-pentacenequinodimethane, and mixtures thereof.
- 7. The optical limiting material as described in claim 1, wherein said polymeric composition is selected from the group consisting of poly-3-octylthiophene, polyacetylene, polypyrrole, polythiophene, poly-3-methylthiophene, polyisothianaphene, poly-3-alkylthiophene, poly-3-alkylsulphonate, polyanaline, polvparaphenylene, polyparaphenylene sulphide, polyparaphenylene vinylene, polycarbazole, poly(1,6-heptadiyne), polyquinoline, and mixtures thereof.
Government Interests
The invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy to the Regents of the University of California and under AFOSR-93-1-0191DEF between the Department of Defense and the Regents of the University of California. The government has certain rights in the invention.
US Referenced Citations (4)
Non-Patent Literature Citations (1)
Entry |
Cha et al., Chemical Abstract 124:70848K, Abstract of Appl. Phys. Lett., (1995), 67(26), pp. 3850-3852. |