This application claims priority to European Patent Convention application having the patent application number 06023768.2, filed Nov. 15, 2006, the entirety of which is incorporated herewithin.
The present invention relates to a recording medium, in particular to an optical recording medium including a substrate and a signal recording layer provided on the substrate.
As one of the conventional recording media for audio, video and/or other information, optical discs such as CDs and DVDs, from which recorded information is read using a light beam or to which information is written using a light beam, are widely used. Since such an optical disc is formed from a single plate-like substrate, it can easily be handled and has a larger storage capacity than other recording media such as magnetic tapes, etc. Therefore, the optical discs are widely used as media for recording audio and video information, computer-processed data, etc. Recording media for audio, video and/or other information, such as CDs and DVDs are e.g. known from U.S. Pat. No. 5,541,910, U.S. Pat. No. 5,864,534, U.S. Pat. No. 6,002,663, U.S. Pat. No. 6,252,842 and US 2004/00434154 A1.
Information processing units, such as computers, CD/DVD players, digital cameras and video cameras, have been designed more and more compact with an increasingly smaller internal space of installation for a recording and/or reproducing apparatus using an optical recording medium such as an optical disc or the like. Accordingly, optical discs are also known in the prior art, e.g. from US 2004/0228263 A1, which only have a diameter of 65 mm or less.
US 2004/0228263 A1 discloses an optical disc having a thickness of only 0.4 mm to 0.7 mm, i.e. significantly thinner than conventional optical discs which have a thickness of about 1.2 mm. Such optical discs are also called light weight optical discs (LODs) or thin video discs (TVDs). With this measure it is achieved to reduce the amount of material which is necessary for manufacturing an optical disc and thus to significantly reduce the manufacturing costs. However, in the area around the axis of the optical disc described in US 2004/0228263 A1—the so called clamping area—, the substrate has a thickness of 1.2 mm, because this distance is prescribed for conventional recording and/or reproducing devices (e.g. drives for computers or CD/DVD players).
At present, a disc must meet the requirements of the “standard physical product” as defined in the Red Book standard, particularly in terms of deflection of the beam incident to the surface of the reflective plan and thus consistency of performance of the disc for the end user. The optical disc disclosed in US 2004/0228263 A1 has the drawback that in many cases the shape of the recording area is not within the prescribed tolerances. As a result, this optical disc is not a reliable recording medium for all types of disc cartridges e.g. for computers, CD/DVD players, digital cameras and video cameras, in particular because the disc cartridges of the various manufacturers are not completely standardized.
It is an object of the present invention to provide a novel light weight optical recording medium which has an increased reliability. Problems relating to playability should be reduced or avoided.
This object is achieved by an optical recording medium as defined in claims 1, 2, 8, 9, 13 and 14. The dependent claims depict advantageous embodiments of the invention.
The present invention is directed to an optical recording medium comprising a substrate and at least one recording layer for storing data, wherein the structure of the recording layer is formed such that the data can be read using a light having a wavelength of 650 nm±50 nm. Such a wavelength is used for reading DVDs, whereas CDs can only be read with a wavelength of 780 nm. From a structural point of view, the structure of the recording layer has pits and lands with a height difference of 650 nm/4±10%. Due to the reflection at the pits and lands, there is a phase difference of λ/2 which results in interference effects so that the photo detectors of the reading device can read the optical recording medium.
The present invention can be defined in various ways wherein all definitions are linked by the same inventive concept:
According to one aspect of the present invention, the recording layer is at least partially or entirely positioned at a distance T7 of less than 0.4 mm with respect to the second surface. In particular, the recording layer may be positioned at a distance T7 of less than 0.3 mm with respect to the second surface. The (upper) second surface is usually covered by a printing layer so that the optical recording medium is designed to be read with a laser which is positioned on the side of the (lower) first surface of the optical recording medium. With that, the optical recording medium of the present invention is a DVD has the layer structure like a known CD as will be explained in more detail in context with
Providing a DVD having a layer structure of a CD is not yet known in the prior art. In particular, many DVD drives are only designed to read DVDs having a recording layer in the middle of the disc. However, the inventive recording medium can be read with a drive which is suitable for reading DVDs and CDs, because such drives have a height adjustable reading means. As a result, the layer structure of the inventive optical recording medium is a key feature of reducing the thickness of the disc in an area of the recording layer. In particular, a thickness T1 of only 0.4 to 0.7 mm is possible (see
According to a second aspect of the present invention, the recording layer is at least partially positioned at a distance T5 of more than 0.9 mm from a plane defined by a surface of a clamping area of the optical recording medium. The clamping area preferably defines the maximum thickness T2 of the optical recording medium, wherein there is a height difference between lowest surface of the clamping area and the (lower) first surface of the optical recording medium. Therefore, the mentioned plane is a virtual plane below the first surface which is perpendicular to the axis A of the optical recording medium, and which is further defined by the lowest point(s) or lowest surface of the clamping area of the optical recording medium. As a result, the recording layer is arranged at a higher position (namely more than 0.9 mm with respect to the lowest surface of the clamping area) when the optical recording medium is clamped in a drive, whereas the recording layer of a known DVD is arranged at a position of about 0.6 mm with respect to the lowest surface of the clamping area.
According to a third aspect of the present invention, the optical recording medium has a clamping area with a thickness T2 which is greater than the distance T1 between the first surface and the second surface, wherein the recording layer is at least partially or entirely positioned at a distance T8 of more than 0.4 mm from the first surface. Preferably, the increased thickness of the clamping area results in that the position of the recording layer is at a height of more than 0.9 mm with respect to the lowest surface of the clamping area.
a and 8b show a cross-sectional view of the optical recording medium according to a second embodiment of the present invention in its unclamped and its clamped state;
a and 9b show a cross-sectional view of the optical recording medium according to a third embodiment of the present invention in its unclamped and its clamped state;
a and 10b show a cross-sectional view of the optical recording medium according to a fourth embodiment of the present invention in its unclamped and its clamped state;
a shows a partial cross-sectional view of a known CD with a laser beam focused on the recording layer;
b shows a partial cross-sectional view of a known DVD with a laser beam focused on the recording layer;
c shows a partial cross-sectional view of an optical recording medium according to the first embodiment of the present invention with a laser beam focused on the recording layer;
For a full understanding of the invention, the physical formats of DVDs and CDs according to the state of the art are discussed in the following.
Finally,
In this context, it has to be noted that a laser for reading a DVD has a wavelength of about 650 nm, and a laser for reading a CD has a wavelength of about 780 nm. Therefore, a combinational drive which is suitable for DVDs and CDs needs to have two lasers for providing these two wavelengths. The reason why different wavelengths are necessary is that the height difference between pits and lands of the recording layer are different for DVDs and for CDs. This height difference must be about λ/4, i.e. 650 nm/4 (+/−4%) for a DVD, and 780 nm/4 (+/−4%) for a CD. In addition, the pit and land structure of a DVD is significantly smaller compared to a CD, as can be seen in
When the inventive optical recording is clamped in a drive, the recording layer has a different height compared to recording layers of known DVDs. As stated before, the recording layer(s) of a DVD according to the state of the art is/are arranged in its center (see also
Besides the layer structure of the inventive optical recording medium, it is further advantageous for all embodiments of the present invention to provide the inventive optical recording medium with the following mechanical aspects:
Referring again to
Trials in the prior art with optical recording discs having a reduced thickness in the area of the recording layer compared to common DVDs or CDs (having a thickness of about 1.2 mm) were not successful, because of the reduced stiffness and/or reduced shape stability of the discs. Therefore, the reliability of such disc was not satisfying (i.e. the discs could not be played on all types of players available on the market). However, with the optical recording medium according to the present invention, this drawback is significantly reduced or even completely avoided, because the stiffness is increased in the clamped state of the optical recording medium due to the deformation of or the tension in the medium. Thus, the inventive optical recording medium compensates the reduced stiffness of the thin recording medium by means of the deformation/tension. In the same manner, a thin sheet of paper which has a very low shape stability per se, may gain a significant stability if a tension is applied or if a deformation is applied (e.g. in the hand of a lecturer).
a and 8b show a cross-sectional view of the optical recording medium according to a second embodiment of the present invention in its unclamped and its clamped state. According to this embodiment of the invention, the optical recording medium is a disk having the general shape of a cone or of an umbrella 16 when the optical recording medium is in an unclamped state, with an small angle α between a surface of the optical recording medium and a plane which is perpendicular to the axis A of the optical recording medium. The angle α is preferably greater than 0.5°, in particular in the range between 0.8° and 3°, when the disc is in an unclamped state (i.e., the schematic drawings in
With this preferred embodiment of the invention, the deformation of or tension in the optical recording medium preferably results in that the optical recording medium adopts a generally flat shape, in particular if the optical recording medium is clamped in the clamping area by a force of 0.3 to 5 N, in particular by a force of 0.5 to 2.5 N.
From a structural point of view, the above effects can be achieved—as shown in
In order to limit the maximum deformation/tension in the disc, it is preferred to provide a second ring 18 on the first side of the optical recording medium which extends at least in the inner section of the clamping area 14 of the optical recording medium. Alternatively, the optical recording medium comprises one or more second protrusions on the first side of the optical recording medium located in the inner section of the clamping area 14 of the optical recording medium.
The first ring 17 has a thickness T3 which is slightly greater than the thickness T4 of the second ring 18. When both rings are pressed down to a flat surface of a clamping means, the (outer) first ring touches the surface first, and then—by increasing the clamping force—the (inner) second ring also touches the surface so that the inner edge of the optical recording medium is deformed downwardly with respect to the area at the (outer) first ring 17. This situation is shown in
a and 9b show a cross-sectional view of the optical recording medium according to a third embodiment of the present invention in its unclamped and its clamped state. The optical recording medium according to this embodiment has a third ring 19 on a second side of the optical recording medium which extends at least in the inner section of the clamping area 14 of the optical recording medium, as well as a fourth ring 20 on the second side of the optical recording medium which extends at least in the outer section of the clamping area 14 of the optical recording medium. Again, instead of the third ring and the fourth ring, third and fourth protrusions may be provided for achieving the same effect.
a and 10b show a cross-sectional view of the optical recording medium according to a fourth embodiment of the present invention in its unclamped and its clamped state. In this embodiment, the jacking/bearing effect is achieved with a clamping area 14 having a conically shaped surface 21 on a first side of the optical recording medium such that the total thickness of the optical recording medium reduces from the outer section of the clamping area 14 to the inner section of the clamping area 14.
Number | Date | Country | Kind |
---|---|---|---|
06 023 768.2 | Nov 2006 | EP | regional |