The present invention relates to an optical multiplexing circuit and more specifically relates to, for example, a three-primary-color optical multiplexing circuit that multiplexes visible light beams having three primary colors, namely, R, G, and B light beams (R: red light, G: green light, B: blue light).
In recent years, an RGB coupler module using a silica-based planar lightwave circuit (PLC) has been drawing attention as a circuit element that multiplexes visible light beams of three primary colors for eyeglass-type devices and projectors (see Non Patent Literature 1, for example). In the PLC, optical waveguides are created in a planar substrate by patterning and etching processes in photolithography or the like and a plurality of basic optical circuits (e.g. directional couplers, Mach-Zehnder interferometers, etc.) are combined with each other to implement various functions.
There is a three-primary-color multiplexing circuit that utilizes, for example, directional couplers and/or Mach-Zehnder interferometers (see Non Patent Literature 1). In this description, the simplest case of using directional couplers will be described by taking
In one example where λ1<λ2<λ3, a blue light beam (wavelength λ1) is input to the first optical waveguide 1, a green light beam (wavelength λ2) is input to the second optical waveguide 2, and a red light beam (wavelength λ3) is input to the third optical waveguide 3, for example. The light beams of the three colors are multiplexed through the first directional coupler 4 and the second directional coupler 6 and output from the output waveguide 5. Unlike an optical multiplexing circuit for communication with a small bandwidth ratio, a three-primary-color optical multiplexing circuit deals with the wavelength of the blue light beam (wavelength band 400 nm) and the wavelength of the red light beam (wavelength band 700 nm), which greatly differ from each other. Accordingly, the wavelength dependency of the coupling length is significant. This makes it possible to make a configuration as above.
Also, as discussed in Non Patent Literature 2, light beams with different wavelengths can be multiplexed also by using a multi-mode interference (MMI) waveguide. However, since each of the number of input waveguides and the number of output waveguides is two, it is difficult to multiplex light beams with three or more wavelengths by using MMI.
A directional coupler will be briefly described below for the understanding of the embodiments of the present invention to be described later.
Let a z axis be set along the light travel direction. Then, in a case where a light beam with a light intensity of 1 is input to the waveguide 11, the light intensity of the light beams propagating through the waveguide 11 and the waveguide 12 is P1(z) and P2(z) at a position Z, respectively. q=κ2+δ2, F=1/(1+(δ/κ)2), and δ=(β2−β1)/2 are given, where κ is the mode coupling constant, and β1 and β2 are the propagation constants of the waveguide 11 and the waveguide 12, respectively. P1(z) and P2(z) are expressed by (equation 1) and (equation 2) below, respectively.
P1(z)=1−F sin2(qz) (Equation 1)
P2(z)=F sin2(qz) (Equation 2)
Here, the ratio of transfer of the light beam from the waveguide 11 to the waveguide 12 is greatest when z=π/2q·(2m+1), where m=0, 1, 2, . . . . The distance when m=0 is called the coupling length. Also, when δ=0, the light transfer ratio is 100%.
For a conventional optical multiplexing circuit as illustrated in
For example, in a case of only transferring the red light beam with the wavelength λ3 to the second optical waveguide 2 at the second directional coupler 6, the red light beam can be transferred with a short waveguide length by narrowing the inter-waveguide gap to a certain extent. With the inter-waveguide gap thus reduced, however, the blue light with the wavelength λ1 and the green light with the wavelength λ2 are not transmitted at the second directional coupler 6 but transferred to the third optical waveguide 3. This increases the optical loss.
To avoid the coupling of the blue light with the wavelength λ1 and the green light with the wavelength λ2 to the third optical waveguide 3 to prevent the increase in optical loss, the inter-waveguide gap needs to be large and the coupler length needs to be long. Doing so, however, leads to a problem that the waveguide length cannot be shortened and the optical multiplexing circuit cannot therefore be downsized.
Also, in a conventional optical multiplexing circuit as illustrated in
The present invention has been made in view of the above problems, and an object thereof is to make an optical multiplexing circuit that is small and multiplexes a plurality of light beams with a plurality of wavelengths with a low loss, and also to make an optical multiplexing circuit that can output a multiplexed light beam with higher intensity and a smaller spot diameter when multiplexing a plurality of light beams with a plurality of wavelengths using a planar lightwave circuit.
To solve the above problems, an optical multiplexing circuit according to an embodiment of the present invention including: a first optical waveguide inputting a first light beam with a first wavelength in a 0-th order mode; a second optical waveguide inputting second and third light beams with second and third wavelengths in the 0-th order mode, the second and third wavelengths being different from the first wavelength and different from each other; a multi-mode conversion waveguide provided between the first optical waveguide and the second optical waveguide; a first coupling part converting a waveguide mode of the first light beam propagating through the first optical waveguide into a higher order mode to couple the first light beam converted into the higher order mode to the multi-mode conversion waveguide; and a second coupling part converting a waveguide mode of the first light beam propagating through the multi-mode conversion waveguide into the 0-th order mode to couple the first light beam converted into the 0-th order mode to the second optical waveguide to transmit the second and third light beams, wherein the second optical waveguide multiplexes the first light beam converted into the 0-th order mode and coupled by the second coupling part and the second and third light beams transmitted by the second coupling part to output the first light beam and the second and third light beams as a multiplexed light beam, and waveguide widths of the first optical waveguide, the second optical waveguide, and the multi-mode conversion waveguide are set such that an effective refractive index of the first optical waveguide with the first light beam in the 0-th order mode is equal to an effective refractive index of the multi-mode conversion waveguide with the first light beam in the higher order mode and that effective refractive indexes of the multi-mode conversion waveguide with the second and third light beams in the higher order mode are not equal to effective refractive indexes of the second optical waveguide with the second and third light beams in the 0-th order mode.
Also, an optical multiplexing circuit according to another embodiment of the present invention is an optical multiplexing circuit that uses a planar lightwave circuit and outputs a multiplexed light beam, including: a first optical waveguide inputting a first light beam with a first wavelength in a 0-th order mode; a multiplexing optical waveguide inputting one or more other light beams with one or more wavelengths in the 0-th order mode, the one or more wavelengths being different from the first wavelength and different from each other; and a first multiplexing part converting a waveguide mode of the first light beam propagating through the first optical waveguide into a higher order mode to couple the converted first light beam to the multiplexing optical waveguide to thereby multiplex the coupled first light beam with the one or more other light beams propagating through the multiplexing optical waveguide, wherein the multiplexing optical waveguide includes a first portion arranged close to the first multiplexing part, and the waveguide widths of the first optical waveguide and the first portion are set such that an effective refractive index of the first optical waveguide with the first light beam in the 0-th order mode is equal to an effective refractive index of the first portion of the multiplexing optical waveguide with the first light beam in the higher order mode and that effective refractive indexes of the first portion of the multiplexing optical waveguide with the one or more other light beams in the higher order mode are not equal to effective refractive indexes of the first optical waveguide with the one or more other light beams in the 0-th order mode.
According to the present invention, even in the case of multiplexing a plurality of light beams with a plurality of wavelengths using a PLC, if conditions for coupling the light beams with desired wavelengths are satisfied, it is possible to suppress coupling of the light beams with the other wavelengths and couple and multiplex only the light beams with the desired wavelengths. Then, the gap at each directional coupler can be narrowed within the fabrication capability, and accordingly the coupling length can be shortened. It is therefore possible to make an efficient and small optical multiplexing circuit.
Moreover, according to the present invention, the intensity of existing light from an RGB multiplexing circuit using a planar lightwave circuit by be raised by using a space multiplexing technique.
An optical multiplexing circuit according to embodiment 1 of the present invention will be specifically described with reference to
The first and second optical waveguides 101 and 102 and the MM conversion waveguide 103 are formed of a lower cladding layer provided on a substrate, a core layer higher in refractive index than the lower cladding layer, and an upper cladding layer provided on the core layer. The upper cladding layer is provided so as to surround the core layer. The first and second optical waveguides 101 and 102 can be single-mode waveguides. As illustrated in
In this embodiment 1, the first and second optical waveguides 101 and 102 and the MM conversion waveguide 103 differ from each other in waveguide width. The first coupling part 104 is a directional coupler formed by arranging the first optical waveguide 101 and the MM conversion waveguide 103 close to each other. The second coupling part 105 is a directional coupler formed by arranging the second optical waveguide 102 and the MM conversion waveguide 103 close to each other.
In the optical multiplexing circuit according to this embodiment 1, the MM conversion waveguide 103 is provided between the first and second optical waveguides 101 and 102. Thus, the light beam with the wavelength λ3 having input to the first optical waveguide 101 undergoes waveguide mode conversion into a higher order mode (e.g. first order mode) and transfers to the MM conversion waveguide 103 at the first coupling part 104. The light beam with the wavelength λ3 having transferred to the MM conversion waveguide 103 further undergoes waveguide mode conversion into the fundamental mode (0-th order mode) and transfers to the second optical waveguide 102 at the second coupling part 105.
The two light beams with the wavelengths λ1 and λ2 in the 0-th order mode having input to the second optical waveguide 102 do not transfer to the MM conversion waveguide 103 at the second coupling part 105 but are transmitted by the second coupling part 105 since, as described later, the second coupling part 105 is designed not to satisfy conditions for coupling them to the MM conversion waveguide 103. As a result, the light beams with the wavelengths λ1 and λ2 transmitted by the second coupling part 105 and the light beam with the wavelength λ3 having transferred from the first optical waveguide 101 through the MM conversion waveguide 103 are multiplexed. The multiplexed light beam is output from the output waveguide 106.
The waveguide widths of the first and second optical waveguides 101 and 102 are 1.5 μm, and the waveguide width of the MM conversion waveguide 103 is 4.8 μm. In this case, as illustrated in
On the other hand, as illustrated in
Although the description has been given of the example in which three light beams are multiplexed in this embodiment, the optical multiplexing circuit according to this embodiment 1 is also applicable to cases of multiplexing four or more light beams with four or more wavelengths.
In this example, the waveguide widths of the third optical waveguide 107 and the second MM conversion waveguide 108 in each of the one or more optical circuits 120 are set such that the effective refractive index of the third optical waveguide 107 with an input light beam in the 0-th order mode is equal to the effective refractive index of the second MM conversion waveguide 108 with this input light beam in a higher order mode and that the effective refractive indexes of the second MM conversion waveguide 108 with the multiplexed light beam in the higher order mode inputting the fourth coupling part 110 are not equal to the effective refractive indexes of the second optical waveguide 102 with the multiplexed light beam in the 0-th order mode inputting the fourth coupling part 110.
Thus, in this example, at the above stages with the optical circuits 120, light beams with mutually different wavelengths in the 0-th order mode having input to the respective third optical waveguides 107 can be converted into multi-mode light beams and transfer to the respective second MM conversion waveguides 108 at the respective third coupling parts 109, and be further converted into the fundamental mode and transfer to the second optical waveguide 102 at the respective fourth coupling parts 110. Then, the light beams having transferred to the fourth coupling parts 110 are each multiplexed at the second optical waveguide 102. Hence, four or more light beams can be output from the output waveguide 106.
Note that the waveguide widths and refractive indexes of the first and second optical waveguides 101 and 102 and the MM conversion waveguide 103 are comparative. Thus, the waveguide widths of the first and second optical waveguides 101 and 102 may be adjusted such that the propagation constants of the light beams in the 0-th order mode with the waveguide widths of the first and second optical waveguides 101 and 102 are equal to the propagation constant of the light beam in the higher order mode with the waveguide width of the MM conversion waveguide 103.
An optical multiplexing circuit according to embodiment 2 of the present invention will be specifically described with reference to
The first to third optical waveguide 201 to 203 and the multiplexing optical waveguide 204 are formed of a lower cladding layer provided on a substrate, a core layer higher in refractive index than the lower cladding layer, and an upper cladding layer provided on the core layer. The upper cladding layer is provided so as to surround the core layer. The first to third optical waveguides 201 to 203 can be single-mode waveguides. The multiplexing optical waveguide 204 can be a multi-mode waveguide. In this embodiment 2, the first to third multiplexing parts 205 to 207 are directional couplers formed by arranging the first to third optical waveguides 201 to 203 and the multiplexing optical waveguide 204 close to each other, respectively.
Moreover, as illustrated in
In this embodiment 2, a method of multiplexing light beams with wavelengths λ1′, λ2′, and λ3′ in the second order mode in the multiplexing optical waveguide 204, through which light beams with wavelengths λ1, λ2, and λ3 in the 0-th order mode are propagating, will be specifically described using
In the optical multiplexing circuit according to this embodiment 2, the waveguide widths of the first optical waveguide 201 and the first portion 2041 are set such that the effective refractive index of the first optical waveguide 201 with the light beam with the wavelength λ1′ in the 0-th order mode is equal to the effective refractive index of the first portion 2041 of the multiplexing optical waveguide 204 with the light beam with the wavelength λ1′ in a higher order mode and that the effective refractive indexes of the first portion 2041 of the multiplexing optical waveguide 204 with the light beams with the wavelengths λ1, λ2, and λ3 in the higher order mode are not equal to the effective refractive indexes of the first optical waveguide 201 with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode.
Also, the waveguide widths of the second optical waveguide 202 and the second portion 2042 are set such that the effective refractive index of the second optical waveguide 202 with the light beam with the wavelength λ2′ in the 0-th order mode is equal to the effective refractive index of the second portion 2042 of the multiplexing optical waveguide 204 with the light beam with the wavelength λ2′ in the higher order mode and that the effective refractive indexes of the second portion 2042 of the multiplexing optical waveguide 204 with the light beams with the wavelengths λ1, λ2, and λ3 in the higher order mode are not equal to the effective refractive indexes of the second optical waveguide 202 with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode.
Further, the waveguide widths of the third optical waveguide 203 and the third portion 2043 are set such that the effective refractive index of the third optical waveguide 203 with the light beam with the wavelength λ3′ in the 0-th order mode is equal to the effective refractive index of the third portion 2042 of the multiplexing optical waveguide 204 with the light beam with the wavelength λ3′ in the higher order mode and that the effective refractive indexes of the third portion 2043 of the multiplexing optical waveguide 204 with the light beams with the wavelengths λ1, λ2, and λ3 in the higher order mode are not equal to the effective refractive indexes of the third optical waveguide 203 with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode.
As illustrated in
With this setting, the light beam with the wavelength λ1′ in the 0-th order mode propagating through the first optical waveguide 201 undergoes waveguide mode conversion into the second order mode and is coupled to the multiplexing optical waveguide 204 at the first multiplexing part 205. The coupled light beam with the wavelength λ1′ in the second order mode is multiplexed with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode propagating through the multiplexing optical waveguide 204. If the inter-waveguide gap is 2.2 μm, the coupling length is 3280 μm. Also, as illustrated in
Next, the light beam with the wavelength λ2′ in the 0-th order mode propagating through the second optical waveguide 202 undergoes waveguide mode conversion into the second order mode and is coupled to the multiplexing optical waveguide 204 at the second multiplexing part 206. Here, as illustrated in and understood from
Lastly, the light beam with the wavelength λ3′ in the 0-th order mode propagating through the third optical waveguide 203 undergoes waveguide mode conversion into the second order mode and is coupled to the multiplexing optical waveguide 204 at the third multiplexing part 207. Here, as illustrated in and understood from
As described above, the light beams with the wavelengths λ1′, λ2′, and λ3′ are converted into second order mode light beams and coupled to the multiplexing optical waveguide 204 to thereby be multiplexed with the light beams with the wavelengths λ1, λ2, and λ3 propagating through the multiplexing optical waveguide 204. As a result, the multiplexed light beam can be output from the output waveguide 208. Also, a multiplexed light beam with a desired spot diameter can be output as the multiplexed light beam by changing the waveguide width of the third portion 2043 of the multiplexing optical waveguide 204 to a desired waveguide width. In particular, a multiplexed light beam with a small spot diameter can be output by changing the waveguide width to a small waveguide width. In this case, the waveguide width should be changed so as to avoid cutoff of the higher order mode light beam. In this embodiment 2, the waveguide width of the output waveguide 208 needs to be not smaller than 5.8 μm, which is the minimum waveguide width allowing propagation of the light beam with the wavelength λ3′ in the second order mode.
The multiplexed beam profile can be rendered into a profile close to a Gaussian profile by adjusting the intensity of the light beam in each mode. As illustrated in and understood from
In this embodiment 2, the description has been given of the example where 0-th order mode light beams and second order mode light beams are multiplexed. However, according to this embodiment 2, multiplexing is possible regardless of the waveguide mode by adjusting the effective refractive index. By allocating different waveguide modes to the set of wavelengths λ1, λ2, and λ3, light beams with this set of wavelengths can be multiplexed as many as the number of waveguide modes to be used. For example, four sets of red, green, and blue light beams can be multiplexed and emitted by using light beams in the 0-th to third order waveguide modes.
Although λ1=450 nm (blue), λ2=520 nm (green), and λ3=650 nm (red) in this embodiment 2, the wavelengths are not limited to these. The light beams with the wavelength λ1, λ2, and λ3 can be light beams with wavelengths in blue (400 to 495 nm), green (495 to 570 nm), and red (620 to 750 nm) wavelength bands, respectively.
An optical multiplexing circuit according to embodiment 3 of the present invention will be specifically described with reference to
The first to fifth optical waveguides 301 to 305 and the first and second MM conversion waveguides 306 and 307 are formed of a lower cladding layer provided on a substrate, a core layer higher in refractive index than the lower cladding layer, and an upper cladding layer provided on the core layer. The upper cladding layer is provided so as to surround the core layer. The first optical waveguide 301 can be a multi-mode waveguide. The second to fifth optical waveguides 302 to 305 can be single-mode waveguides. As illustrated in
In this embodiment 3, the first to fifth optical waveguides 301 to 305 and the first and second MM conversion waveguides 306 and 307 differ from each other in waveguide width. The first to fourth coupling parts 308 to 311 are directional couplers formed by arranging the second optical waveguide 302 and the first MM conversion waveguide 306 close to each other, arranging the first optical waveguide 301 and the first MM conversion waveguide 306 close to each other, arranging the third optical waveguide 303 and the second MM conversion waveguide 307 to each other, and arranging the first optical waveguide 301 and the second MM conversion waveguide 307 to each other, respectively. The first and second multiplexing parts 312 and 313 are directional couplers formed by arranging the fourth optical waveguide 304 and the first optical waveguide 301 close to each other and arranging the fifth optical waveguide 305 and the first optical waveguide 301 close to each other, respectively.
As in embodiment 1, the waveguide widths of the first and second optical waveguides 301 and 302 and the waveguide width of the first MM conversion waveguide 306 are set such that the effective refractive index of the second optical waveguide 302 with the light beam with the wavelength λ2 in the 0-th order mode is equal to the effective refractive index of the first MM conversion waveguide 306 with the light beam with the wavelength λ2 in a higher order mode and that the effective refractive index of the first optical waveguide 301 with the light beam with the wavelength λ1 in the 0-th order mode is not equal to the effective refractive index of the first MM conversion waveguide 306 with each light beam with the wavelength λ1 in the higher order mode. Also, the waveguide widths of the first and third optical waveguides 301 and 303 and the waveguide width of the second MM conversion waveguide 307 are set such that the effective refractive index of the third optical waveguide 303 with the light beam with the wavelength λ3 in the 0-th order mode is equal to the effective refractive index of the second MM conversion waveguide 307 with the light beam with the wavelength λ3 in the higher order mode and that the effective refractive index of the first optical waveguide 301 with the light beam with the wavelength λ1 in the 0-th order mode is not equal to the effective refractive index of the second MM conversion waveguide 307 with each of the light beams with the wavelengths λ1 and λ2.
Further, as in this embodiment 2, the waveguide width of the first portion 3011 is set such that the effective refractive index of the fourth optical waveguide 304 with the light beam with the wavelength λ2′ in the 0-th order mode is equal to the effective refractive index of the first portion 3011 of the first optical waveguide 301 with the light beam with the wavelength λ2′ in a higher order mode and that the effective refractive indexes of the first portion 3011 of the first optical waveguide 301 with the light beams with the wavelengths λ1, λ2, and λ3 in the higher order mode are not equal to the effective refractive indexes of the fourth optical waveguide 304 with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode. Also, the waveguide width of the second portion 3012 is set such that the effective refractive index of the fifth optical waveguide 305 with the light beam with the wavelength λ3′ in the 0-th order mode is equal to the effective refractive index of the second portion 3012 of the first optical waveguide 301 with the light beam with the wavelength λ3′ in the higher order mode and that the effective refractive indexes of the second portion 3012 of the first optical waveguide 301 with the light beams with the wavelengths λ1, λ2, and λ3 in the higher order mode are not equal to the effective refractive indexes of the fifth optical waveguide 305 with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode.
This embodiment 3 assumes that the light beams with the wavelengths λ1, λ2, and λ3 are light beams with wavelengths in blue (400 to 495 nm), green (495 to 570 nm), and red (620 to 750 nm) wavelength bands, respectively, λ2′=(λ2+β) nm (green), λ3′=(λ3+γ) nm (red), and β and γ are small values larger than 0 and smaller than the linewidth. The linewidth is dependent on the light source of the incoming light beam but is assumed to be about 1 nm or smaller.
The operation of the optical multiplexing circuit according to embodiment 3 of the present invention will be described below. The light beam with the wavelength λ2 having input to the second optical waveguide 302 undergoes waveguide mode conversion into the first order mode and transfers to the first MM conversion waveguide 306 at the first coupling part 308, and further undergoes waveguide mode conversion into the 0-th order mode and transfers to the first optical waveguide 301 at the second coupling part 309. Similarly, the light beam with the wavelength λ3 having input to the third optical waveguide 303 undergoes waveguide mode conversion into the first order mode and transfers to the second MM conversion waveguide 307 at the third coupling part 310, and further undergoes waveguide mode conversion into the 0-th order mode and transfers to the first optical waveguide 301 at the fourth coupling part 311.
Also, as in embodiment 1, the second and fourth coupling parts 309 and 311 are designed so as not to satisfy conditions for coupling to the first and second MM conversion waveguides 306 and 307. Thus, the light beam with the wavelength λ1 in the 0-th order mode having input to the first optical waveguide 301 does not transfer to either of the first and second MM conversion waveguides 306 and 307 at the respective second and fourth coupling parts 309 and 311 but is transmitted by the second and fourth coupling parts 309 and 311. As a result, the light beam with the wavelength λ1 transmitted by the second and fourth coupling parts 309 and 311 and the light beams with the wavelengths λ2 and λ3 having transferred from the second and third optical waveguides 302 and 303 through the first and second MM conversion waveguides 306 and 307, respectively, are multiplexed and input into the first portion 3011 of the first optical waveguide 301. In this way, the optical multiplexing circuit according to embodiment 3 can implement the function of coupling and multiplexing only light beams with desired wavelengths as in embodiment 1.
On the other hand, the light beam with the wavelength λ2′ in the 0-th order mode propagating through the fourth optical waveguide 304 undergoes waveguide mode conversion into the second order mode and is coupled to the first portion 3011 of the first optical waveguide 301 at the first multiplexing part 312. The coupled light beam with the wavelength λ2′ in the second order mode is multiplexed with the light beams with the wavelengths λ1, λ2, and λ3 in the 0-th order mode propagating through the first portion 3011 of the first optical waveguide 301 and input into the second portion 3012 of the first optical waveguide 301. Further, the light beam with the wavelength λ3′ in the 0-th order mode propagating through the fifth optical waveguide 305 undergoes waveguide mode conversion into the second order mode and is coupled to the second portion 3012 of the first optical waveguide 301 at the second multiplexing part 313. The coupled light beam with the wavelength λ3′ in the second order mode is multiplexed with the multiplexed light beam propagating through the second portion 3012 of the first optical waveguide 301 and output from the output waveguide 314. In this way, the optical multiplexing circuit according to embodiment 3 can implement the function of multiplexing light beams with wavelengths in different waveguide modes to thereby output a multiplexed light beam with higher intensity as in embodiment 2.
Assume for example that, in the optical multiplexing circuit according to embodiment 3, λ1=450 nm, λ2=520 nm, λ3=650 nm, the waveguide thickness is 3.6 the relative refractive index difference Δ is 0.45%, the inter-waveguide gaps at the first to fourth coupling parts 308 to 311 and between the fourth optical waveguide 304 and the first portion 3011 and between the fifth optical waveguide 305 and the second portion 3012 are 2.5 μm, the coupling lengths at the first to fourth coupling parts 308 to 311 are 702 μm, the coupling length at the first multiplexing part 312 is 2380 μm, the coupling length at the second multiplexing part 313 900 μm, and the waveguide widths of the first to fifth optical waveguides 301 to 305 are 1.5 μm, as in embodiments 1 and 2. In this case, it is possible to make the optical multiplexing circuit according to embodiment 3 by setting the waveguide width of the first MM conversion waveguide 306 to 4.3 μm, the waveguide width of the second MM conversion waveguide 307 to 4.8 μm, the waveguide width of the first portion 3011 to 7.15 μm, and the waveguide width of the second portion 3012 to 8.00 μm based on
Here, in the above embodiments, the description has been given of the cases of using directional couplers as the coupling parts. It is, however, needless to say that, for example, a 2×1 MMI or different multiplexer may be used instead. Also, in the above embodiments, RGB coupler modules have been exemplarily described. It is, however, needless to say that the present invention is applicable to cases of multiplexing a plurality of light beams with a plurality of wavelengths in a single waveguide, regardless of the materials and the relative refractive index difference Δ. Further, the waveguide shape according to the present invention is not dependent on the material of the planar waveguide and the relative refractive index difference Δ and is therefore applicable to planar waveguides in general. Furthermore, in the above embodiments, optical multiplexing circuits for R, G, and B, which are three primary colors of visible light, have been exemplarily discussed. It is, however, obvious that the present invention is applicable as an optical multiplexing/demultiplexing circuit that multiplexes or demultiplexes a plurality of light beams with different wavelengths.
Number | Date | Country | Kind |
---|---|---|---|
2016-029361 | Feb 2016 | JP | national |
2016-029366 | Feb 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/005975 | 2/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/142076 | 8/24/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6360047 | Nekado | Mar 2002 | B1 |
7366364 | Singh | Apr 2008 | B2 |
7539373 | Logvin et al. | May 2009 | B1 |
8704447 | Ide et al. | Apr 2014 | B2 |
9184556 | Kitabayashi | Nov 2015 | B2 |
10408999 | Katsuyama | Sep 2019 | B2 |
20090185811 | Cho et al. | Jul 2009 | A1 |
20120039565 | Klein | Feb 2012 | A1 |
20120068609 | Ide et al. | Mar 2012 | A1 |
20130223791 | Okayama | Aug 2013 | A1 |
20130315537 | Murao et al. | Nov 2013 | A1 |
20140186040 | Fujiwara et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
101504472 | Aug 2009 | CN |
104749707 | Jul 2015 | CN |
104849803 | Aug 2015 | CN |
1344095 | Sep 2003 | EP |
2004093884 | Mar 2004 | JP |
2006323319 | Nov 2006 | JP |
2013174752 | Sep 2013 | JP |
2014119556 | Jun 2014 | JP |
2008108422 | Sep 2008 | WO |
2010137661 | Dec 2010 | WO |
2013046696 | Apr 2013 | WO |
Entry |
---|
International Search Report dated May 9, 2017, issued in PCT Application No. PCT/JP2017/005975 filed Feb. 17, 2017. |
International Preliminary Report on Patentability dated Aug. 30, 2018, issued in PCT Application No. PCT/JP2017/005975 filed Feb. 17, 2017. |
Akira Nakao et al., Integrated Wageguide-Type Red-Green-Blue Beam Combiners for Compact Projection-Type Displays, Optics Communications, vol. 330, 2014, pp. 45-48. |
Apollo Inc., AAPS Apollo Application Note on Multi-Mode Interference (MMI) Devices, [on line], Feb. 3, 2015, <URL:http://www.apollophoton.com/apollo/APNT/APN-APSS-MMI.pdf>., 26 pgs. |
Office Action dated Aug. 23, 2019 in corresponding Chinese Patent Application No. 201780011275.7. |
Extended European Search Report dated Oct. 21, 2019 in corresponding European Patent Application No. 17753330.4. |
Number | Date | Country | |
---|---|---|---|
20190056552 A1 | Feb 2019 | US |