The invention pertains generally to connectors for use in telecommunication networks such as voice, data, or video networks. More particularly, the invention pertains to connector interfaces on the Optical Network Terminals in Passive Optical Networks.
It is sometimes the case that enterprise organizations, such as governments, hospitals, businesses, schools, operate multiple distinct communication networks for which it is necessary or desirable to restrict access to a subset of personnel, functions or applications (e.g., (1) a university with different networks for students, faculty, and administrators, respectively, (2) a government with different networks for government employees with different levels of security clearance, (3) a cable television company with different levels of cable television service), (4) a hospital with a nurse station network, IP television network, badge reader network, and paging network.
In certain enterprise environments, it is known to use an optical network terminal or ONT as an access point to a network. Typically, an ONT is a small box (e.g., 6″×6″×2″) that has an input terminal for accepting an optical cable connector through which it may be coupled to a network and a plurality of output terminals through which a plurality of computers or other devices may be coupled to the network. In a typical office environment, the input terminal of the ONT may be coupled to the network via an optical cable that may run to a wall outlet or a home run. A plurality of devices in the same room or a multi-room area in the vicinity of the ONT are coupled to the various output terminals through individual cables. The cables connecting the computer to the ONT may by optical cables or electrical cables depending on the type of ONT. Presently, most computers connect to ONTs via electrical cables, but that may change rapidly. The signals for a plurality of different networks may be carried on a single optical fiber in the network infrastructure. The ONT typically demultiplexes the different network signals received at the input terminal and may be programmed to supply the signals of one of the networks to its multiple output terminals or may be programmed to supply the signals of different ones of the networks to different ones of the output terminals. The output terminals and mating cables normally all have the same form of connector, e.g., RJ-45 connectors for electrical connections or LC optical connectors for optical connections.
The terms input and output as used herein are not intended to be directionally limiting, but are merely exemplary. Specifically, some optical networks permit two-way communication through a single cable between the various nodes of the network such that the terms input and output are somewhat arbitrary. Herein, those terms generally are used to refer to data travelling from a server side to a user terminal side through the network as the output direction and data travelling from a user terminal side to server side through the network as the input direction. However, the terms are merely exemplary.
In the absence of suitable security features, anyone with a computer (or other electronic device with network interface capabilities) and a standard cable with conventional connectors on each end can connect a computer to any output terminal of the ONT to gain access to any of the networks that the ONT is programmed to supply at any of its output terminals. This is an undesirable condition in any of the aforementioned environments in which it is desired to restrict access to certain of the networks to certain personnel.
Some restrictions may be achieved using software approaches, such as passwords. However, passwords can be compromised through carelessness, electronic theft, and other means.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
The invention comprises methods and apparatus for incorporating a physical barrier to unauthorized network access through Optical Network Terminals. More specifically, the output terminals of an ONT may be provided with connectors (e.g., receptacles) having special physical features unique to the networks to which they correspond so that only persons having a cable with a matching connector (e.g., plug) having a complementary special physical feature can connect a computer (or other electronic device) to the ONT output terminal corresponding to that network. Other cables having different plug connectors with different special physical features corresponding to other networks cannot be connected to that output terminal, but only to an output terminal having a receptacle that has a special physical feature complementary to that plug connector. The pairs of mating connectors may be color-coded, i.e., the two connectors of a pair of mating connectors have the same color, which color is different from every other pair of mating connectors.
To this end, the present invention facilitates discriminating mating among similar, but different, plugs and receptacles by using a system of geometrically matched connector components that allows certain combinations of plugs and receptacles—i.e., mating pairs—to mate, while preventing other combinations from mating.
Thus, different personnel with rights to access different networks are provided cables with different end connectors corresponding to the network to which they are allowed access. One end of the cable may be provided with a conventional connector for coupling to the computer and the other end, for coupling to the ONT, bears a connector having a special physical feature that is complementary to a physical feature of the output connector of the ONT to which that person is permitted access and which prevents that connector from being coupled to any other of the output connectors on the ONT corresponding to different networks (and thus having different, i.e., non-matching and non-complementary, special physical features).
Further, the input terminal of an ONT also may be equipped with a connector that has a special physical feature that distinguishes it from other connectors so that it may be connected to a wall outlet, for instance, only via a cable having a connector at one end having a special physical feature that is complementary to the physical feature of the input terminal of the ONT. Even further, the connector on the opposite end of the cable for coupling the ONT to the wall and the corresponding connector in the wall may similarly use special physical features.
In one embodiment, the network comprises: (a) a set of plugs having a housing having a front and a back orientation and having a front face defining an opening, the housing defining a first keying element on the front face around the opening, the keying element for each plug of the set of plugs being different; and (b) a set of receptacles, each receptacle having an opening to receive the plug, the opening defining a second keying element to cooperate with the first keying element, the second keying element for each receptacle of the set of optical receptacles being different and being adapted to cooperate with one and only one of the first keying elements, wherein plugs and receptacles having keying elements that cooperate are mating pairs.
a)-6(c) show top perspective, front and rear views, respectively, of an MT-RJ connector plug having security features of the present invention.
a) and 7(b) show top perspective and front views, respectively, of an MT-RJ connector receptacle.
ONT's are often used in enterprise communication networks (e.g., schools, governments, businesses) as access points to passive optical networks (PONs) and other networks. A passive optical network is a point-to-multipoint, fiber to the ONT network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve multiple nodes. A PON consists of an optical line terminal (OLT) at the server side and a number of ONTs near end users. A PON configuration reduces the amount of fiber and server side equipment required compared to point to point architectures.
Downstream signals are broadcast to all end user nodes on a single fiber, which are demultiplexed by the ONTs and delivered to the individual computers, etc. coupled to the ONT's output terminals. Encryption or encoding is used to prevent eavesdropping. Upstream signals from the computers are combined onto the single fiber by the ONTs using a multiple access protocol, usually time division multiple access (TDMA).
An enterprise may use a PON to support a multiplicity of distinct networks, different subsets of which networks may be intended to be accessible to different subsets of the enterprise's personnel. For instance, in government, different networks may be accessible to different personnel with different levels of security clearance. As another example, a large business may have different networks dedicated to different aspects of its business (and therefore intended to be accessed only by the corresponding personnel working within those aspects). For instance, a business may support one secured network for accounting communications, data, and tasks, another, secured network for research and development communications, data, and tasks, and a third, relatively unsecured network for general business communications, data, and tasks.
An ONT typically is coupled to such an access point via a fiber optic cable. The input cable may be a standardized optical cable having standardized connectors at each end, such as LC plugs, while the wall outlet and the ONT input terminal bear LC receptacles. The ONT demultiplexer the data from the different networks and outputs the data from the different networks to different ones of its output terminals, to which individual computers may be coupled via cables. In the opposite direction, the ONT converts the signals from the individual computers from electrical signals to optical signals and multiplexes the signals onto the single fiber of the network infrastructure.
Most computer/ONT interfaces presently use electrical interfaces, as opposed to optical. Thus, the ONT may also convert the optical signals to electrical signals. In such cases, the computers couple to the ONT's via standard electrical cables bearing standardized electrical connectors, such as RJ-45 receptacle connectors at the output terminals of the ONT and input terminals of the computers and mating RJ-45 plugs at the ends of the cables.
In some cases, a given ONT may output the signals on a single network to all of its output terminals. For instance, an ONT that services only the accounting department would have no need to process the signals of any of the networks other than the accounting network. Therefore, that ONT may be designed or programmed to discard all of the data from all other networks besides the accounting network. In other cases, an ONT may be programmed to provide connectivity to a different one of the networks on the network cable to each of its output terminals. Alternately, it may provide connectivity to one network at two of its output terminals, connectivity to another network at a third output terminal, and discard the signals of all other networks. In yet another example, the ONT may be designed to permit or deny connectivity to different sets of networks at different ones of its output terminals. For example, a first output terminal may permit access to networks A, B, and C, while a second output terminal permits access only to networks A and C, and a third output terminal permits access only to network A. The possible permutations are essentially unlimited and will depend on various factors, such as the particular personnel that connect to the enterprise's network(s) via that particular ONT, the networks available from the network access point to which the ONT is coupled, and security considerations.
For enterprises with multiple networks, at least one of which requires restricted access, various security measures may be implemented to limit access to only authorized personnel (rather than anyone who has physical access to a network interface point, such as a wall outlet, output terminal of an ONT, a network switch, or any of the equipment in an network equipment rack or network equipment closet. One such measure is to require entry of a password to access the network.
Another measure is the use of a physical barrier to network access, such as cables with connectors having special physical features (e.g., keys) that permit mating of the cables only to network access points that bear a complementary special physical feature that complementarily matches that special physical feature and that prevent mating to network access points having different, non-matching complementary special physical features. Such a measure is most effective if the measure is employed end-to-end within the network or at least end-to-end in the portion of the network that may be physically accessible to personnel who do not have authority to access to all of the networks.
For instance, the use of a connector having one of the special physical features in a wall outlet so that only a cable with a complementary special physical feature that complementarily matches it can couple to it will be a less effective security measure if the opposite end of that cable is terminated with a standard connector, rather than another keyed connector. Specifically, let us consider a very simple example in which an enterprise operates two secured networks, the Green network and the Red network, and the wall outlets have receptacle connectors that are keyed so that some wall outlets have a receptacle connector with a first special physical feature corresponding to the Green network (a Green wall outlet) and some wall outlets have a receptacle connector with a second special physical feature corresponding to the Red network (a Red wall outlet). Furthermore, the enterprise has Green ONTS that are programmed to provide connectivity only to the Green network and are intended to be coupled to the network cable only through Green wall outlets and Red ONTs that are programmed to provide connectivity only to the Red network and are intended to be coupled to the network cable only through Red wall outlets. However, the input terminals of the ONTs comprise unkeyed receptacle connectors so that they can be mated to standard plug connectors. In such a case, an ONT capable of accessing only the Green network may be properly coupled to the wall outlet via a wall-to-ONT cable that has a Green connector on the wall side and a standard plug connector on the ONT side (e.g., a Green wall-to-ONT cable).
If an employee who had authority to access only the Green network illicitly obtained possession of a Red ONT, that employee could uncouple his or her Green ONT from the Green wall-to-ONT cable and couple the Red ONT to the ONT end of the Green wall-to-ONT cable and possibly gain unauthorized access to the Red network. However, if this enterprise also incorporated the special physical feature technology into the ONT side of the wall-to-ONT cables, then one could not simply plug a Red ONT into the ONT side of the Green wall-to-ONT cable because the connector at the ONT side of the Green wall-to-ONT cable would not mate with the input terminal of the Red ONT. In such a case, one would have to illicitly possess, not only the Red ONT, but also a cable having a Green plug at one end and a Red plug at the other end. However, the combination of special physical features deployed within the network for wall-to-ONT cables can be prearranged so that such a cable does not even exist. Such an arrangement could be as simple as designing the input terminals of the Green ONTs to have the same receptacle connector as the Green wall outlets so that Green ONTs couple to Green wall outlets through cables having two of the same keyed plug connectors (e.g., two Green plug connectors) at both ends and designing the input terminals of the Red ONTs to have the same receptacle connector as the Red wall outlets so that Red ONTs couple to Red wall outlets through cables having two of the same keyed plug connectors (e.g., Red connectors) at both ends. Thus, there would be no need for a cable with a Green connector at one end and a Red connector at the other end to even exist, thus making it substantially more difficult to gain illicit access to a network.
Yet further, the use of similar special physical feature technology at the output terminals of the ONT provides even greater security. For example, let us assume an enterprise uses ONTs that are programmed to interface with both the Red network and the Green network, e.g., it has four output terminals, two providing connectivity to the Green network and two providing connectivity to the Red network. If the output terminals are unkeyed, one could plug any standard cable into an empty one of the multiple unkeyed outlets of the ONT. In such a case, anyone with a computer and a standard cable can couple the computer to an unused output terminal of the ONT to gain access to either the Green or the Red network as long as he or she had access to that particular ONT. Thus, it is further advantageous to also incorporate the special physical feature technology into the output terminals of the ONTs (and the ONT-to-computer cables that couple to them).
In theory, even greater security can be achieved by incorporating the special physical feature technology into the computer side of the ONT-to-computer cables, but this would require incorporating the special connectors into the computers themselves, which may not be reasonably practical insofar as incorporating custom connectors into a computer may be prohibitively expensive and might substantially diminish the usability of the computer (e.g., a computer lacking a standard network connector could not couple onto a conventional network).
Another option to even further enhance security at the computer or other device interface is to use a cable with a keyed connector in accordance with the present invention at the ONT side and a locking connector at the computer side. For instance, TE Connectivity sells a locking connector that fits into a conventional connector, but can be locked into the conventional connector (using a key) so that it can only be removed from a conventional receptacle by someone who has the physical key to unlock the mated connectors. In this manner, an unauthorized person would not be even be able to release the conventional connector at the end of the cable that is coupled to the computer from the computer.
In accordance with the present invention, connectors with special physical features may be incorporated into the output terminals of the ONTs (and, consequently, complementary special physical features are incorporated into connectors at the ONT sides of the ONT-to-computer cables). There would be a first set of connectors for incorporation into the ONT output terminals, each with a different special physical feature, and a second set of complementary connectors for use on the ONT sides of the ONT-to-computer cables, each having a different complementary special physical feature. The first set of special physical features of the first set of connectors (e.g., the ONT output receptacle connectors) and the second set of complementary special physical features of the complementary connectors (e.g., the ONT-to-computer cable plug connectors) are selected such that each one of the special physical features of the first set permits coupling only to an opposing, complementary connector of the second set that bears the one particular complementary special physical feature that complementarily matches it. All other pairs of one of the special physical features of the first set and one of the complementary special physical features of the second set physically interfere so as to prevent coupling thereof. Thus, one cannot connect a cable to an output terminal of an ONT containing a special physical feature unless that cable has a connector with a special physical feature complementary to the special physical feature of the ONT output terminal.
For additional security, the special physical feature technology also may be implemented at the input terminals of the ONTs (and, consequently, also in the connectors at the ONT sides of the wall-to-ONT cables). That is, each different type of ONT (i.e., provides connectivity to a different subset of networks) has a different one of a set of input connectors, each of which can be coupled to only one of a set of complementary connectors (which are used on the ONT sides of the wall-to-ONT cables). If the special physical feature technology is also incorporated into the wall outlets (and, consequently, also in the connectors on the wall sides of the wall-to-ONT cables), it would even further enhance security because, theoretically, a cable would not even exist that could couple a Red ONT to a Green wall outlet, as discussed above.
To provide even greater security, the two sets of connectors used at the output terminals of the ONTs (e.g., the ONT output receptacle connectors and their complementary ONT-to-computer cable plug connectors) are a different set of connectors than are the two sets of connectors used at the input terminals of the ONTs and/or the wall outlets (e.g., the ONT input receptacle connectors and their complementary wall-to-ONT cable plug connectors). This would circumvent the possibility of bypassing the ONT entirely and directly connecting a computer programmed to execute the ONT's functions directly to the wall outlet.
In ONT's that output electrical signals at their output terminals, this will inherently be the case since the base form factor of the electrical connectors at the output terminals of the ONTs will be inherently incompatible with the base form factor of the optical connectors at the input terminals of the ONTs, regardless of the sets of special physical features incorporated into the various connectors. This also would be true of optical-to-optical ONTs if they used different base form factor connectors at their input and output terminals respectively, e.g. LC connectors at the input terminals and SC connectors at the output terminals. However, if the optical-to-optical ONTs use the same base form factor connectors at both their input terminals and output terminals, then, preferably, the sets of special physical features and complementary special physical features used at the output terminals of the ONTs and mating ONT-to-computer cables, respectively, should be different from the sets of special physical features and complementary special physical features that are used at the input terminals of the ONTs and/or wall outlets and mating wall-to-ONT cables, respectively.
Of course, it also may be advisable to additionally include the use of software security measures, such as passwords, for additional security in all cases.
The various connectors of the system of connectors as described hereinabove may be substantially identical and substantially in accordance with a conventional standardized connector form factor, such as the RJ-45 form factor electrical connectors commonly used in electrical cable network connectivity or the LC form factor optical connectors commonly used in optical cable network connectivity, but with the addition of the special physical feature technology discussed here.
The two sets of special physical features and complementary special physical features should be designed so as to also prevent connection between any of the connectors bearing any of the special features and an opposing connector lacking any special physical feature, e.g., a standard RJ-45 connector.
Turning now to the details of the actual connectors and the special physical features,
The plug typically contains a conductive or optical element, such as a fiber or wire, which mates with a similar element in the receptacle. In fiber optic applications, it is common for the optical element to be contained in a ferrule, which in turn is housed by the plug. In a preferred embodiment, the ferrule is an MT-type ferrule.
The outer surface of the plug 101 and the inner surface of the tub 102 have first and second complementary geometries, respectively, which cooperate to allow only certain pairs of plugs and receptacles to mate (herein “mating pairs,” “mating plug and jack,” or “keyed pair”), and which physically interfere for all other combinations of plugs and jacks (herein “non-mating pairs,” “non-mating plugs and jacks” or “non-keyed pairs”), thereby preventing non-mating plugs and jacks from effecting an optical or electrical coupling.
The first and second geometries may embody any known keying mechanism which discriminates between connector components. Such keying mechanisms include, for example, a key and slot relationship between the plug and jack, a receptacle dimensioned to receive only certain sized or shaped plugs, and even a magnetic signature for either attracting (for mating pairs) and repulsing (non-mating pairs). Preferably, the keying mechanism involves just a slight modification to the plug and jack such that essentially the same molds can be used to manufacture connectors of different keyed pairs. Although molding is preferred, it is should be understood that other techniques for producing the first and second geometries can be used including, for example, over molding and machining.
In one embodiment, the invention uses a key and slot mechanism. For simplicity, the term “keying elements” refers collectively to the key and the slot. Specifically, the slot can be embodied in the first or second geometry and the key can be embodied in the other geometry. In the particular embodiment shown in
This configuration is preferred since the key may cooperate with other “ribs” on the connector for pre-alignment purposes. More specifically, with particular reference to
In a preferred embodiment, the mating end of the key 104 contains a flat portion shown as 105 and the mating end of the plug 101 has chamfers 106 on the corners of the edges of the slot 103, while the remainder of the mating end of the plug comprises a flat portion 107. The radius corners on the key 106 and the chamfers on the plug 107 work as a guiding device and provide for the necessary alignment between the key and the slot when the plug is inserted into the tub of the jack. On the other hand, as shown in
The position of the key 104 on the tub 102 and the slot 103 on the plug 101 can be varied in such a manner so that a plurality of mutually-exclusive slot and key positions are formed. In one embodiment, the series of key and slot locations are mutually exclusive so that there is a one-to-one correspondence between jacks and plugs. In another embodiment, certain plugs may be configured to mate with a variety of different jacks. For example, it may be worthwhile to give network administrators or people with high security clearance certain “master” plugs which are capable of mating with a number of jacks having different slot positions. Referring to the figures,
The number of possible mutually exclusive mating pairs for a given plug and receptacle is a function of the physical parameters of the plug and the receptacle. More specifically, with reference to
X1−C/2+(D−A)+Δ<=F/2 (1)
X2+B/2<A/2−W (2)
X1a+Clear1+Z=X1b (3)
These relationships must be satisfied for the mating pairs to mate and for the non-mating pairs to definitely not mate. Specifically, for a mating pair, Relationship (1) requires that half the ferrule width must be no less than X1 less one half of C added to the difference between the width of the tub opening D less the width of the plug added to the difference between the centerline of the ferrule within the plug and the centerline of the plug. This ensures that the key is not positioned outside of the area on which at least a portion of the ferrule will reside. By adhering to this parameter, the key will have some overlap with the ferrule, and thus will provide for pre-alignment of the ferrule in the same manner as do the ribs on the three sides of the ferrule without the key.
Relationship (2) requires that X2 added to one-half of dimension B is less than one-half of dimension A less W. This assures that the slot resides on the plug within the confines of the plug walls.
Finally, according to Relationship (3), for each mutually exclusive position, the distance X1 for the first connector in the system (X1a) added to Clear1 added to a predefined interference interval Z would correspond to the distance X1 for the next slot/key position (X1b). Z is the minimum distance required to ensure that the flat portion of the key does not contact the flat portion of the plug 107 when a user attempts to mate the two portions of a connector which is intended to mate.
By way of example, four mutually exclusive locations for locating the slot on the plug housing and the key on the tub are defined below for an MT-RJ connector. The MT-RJ connector has the following dimensions:
Based on these MT-RJ dimensions, it has been found that the following X1 key positions satisfy the relationships above:
Although the data above indicates four mutually exclusive positions, it should be understood that additional positions are possible within the parameters of the MT-RJ connector. Additionally, it should be understood that the combinations of various key positions can be used to increase the number of permutations of mating pairs. For example, in addition to the four mating pairs listed above, additional mating pair configurations may obtained from the following combinations of key positions:
In one embodiment, the key and slot components are combined with the industry standard MT-RJ connector.
a)-(c) show the plug 602 of the MT-RJ connector combined with the slot 601 of the present invention.
To provide to the user a simple and readily apparent indication of which plugs mate with which receptacles, it is preferable to mark mating pairs with indicia or color to indicate their compatibility. In a preferred embodiment, the components of a mating pair (e.g., the plug and receptacle) are the same color, which color is different than all others used in the connector system.
Referring to
Although the LC connector system described above is a single-fiber ferrule rather than a multifiber ferrule, the general keying features are essentially the same as those described above with respect to the MT-RJ connector. Further, the keying features of the plug 800 and receptacle 900 of the present invention may be implemented in any well known optical connector including, for example, other single-fiber ferrule connectors such as MU, SC, ST, or FC connectors. For illustrative purposes, the security features are described with respect to the LC connector system, which includes the LC plug (plug 800) and LC adapter (receptacle 900). Aside from the security features described herein, these connector components are the same as those specified in the LC Standard available on-line or from OFS (Japan), and the common features between them will not be addressed herein.
Like the MT-RJ embodiment described above, the keying features of the LC connector are contained on the front face of the plug. This is important for a number of reasons. First, these features can be molded with a relatively small change to the mold dies. Specifically, the opening around the ferrule is typically defined in the molding process by a core pin which is inserted into the outer mold. Changing core pin configurations is a relatively inexpensive and easy step compared to altering the configuration of the outer molds. Therefore, as mentioned above, the connector system of the present invention provides for a variety of different plug configurations with only slight modifications to the molding process.
Having the security features on the front face of the plug also provides for an early indication of non-mateability. Specifically, since the features are located on essentially the leading edge of the plug, they are positioned optimally to “stub” as soon as possible when a plug is inserted into a non-mating receptacle. Interference between connector components which are non-mating should be made as soon as possible to minimize the possibility of coupling light between connectors. That is, if close enough, optical connectors are able to couple, albeit with high loss, even if the connectors are not mechanically engaged. This condition can be meliorated by preventing the light carrying elements from getting too close—hence the desire to stub early. Stubbing early also provides an early signal to the user that the plug is non-mating and avoids the tendency of trying to force a plug into a non-mating receptacle.
Additionally, by locating the keying feature on the leading surface of the plug, the corresponding keying feature on the receptacle may be located internally and still provide an early indication of non-mateability. This is beneficial since it is desirable to locate the keying feature of the receptacle internally to minimize the ability of the keying feature to be tampered with or otherwise overridden. As discussed below, this is of particular importance in the configuration of the MT-RJ and LC connectors in which the plug defines the slot and the receptacle defines the key. If the key is removed, the security feature is breached. Having the key located within the receptacle reduces this risk.
Yet another benefit of having the keying features located on the front face of the plug is the visual indication the plug provides with respect to its keying features. That is, one can readily determine the keying configuration of the plug by visual inspection of its front face.
There is no need to look into an opening to inspect the internal geometry of the plug to determine its keying configuration.
Another aspect of the present invention is an economical process for producing the plugs by altering their geometry at their front end though a simple mold modification. In a preferred embodiment, the process comprises: (a) molding a first housing for a first plug of a set of plugs using a core pin to define an opening having a first keying element in a first position; and (b) molding a second housing for a second plug of the set of plugs by adjusting only the core pin to define the opening having a first keying element in a second position different than the first position.
The keying elements that may be used in the LC connector are the same as those described above with respect to the MT-RJ embodiment. In a preferred embodiment, the keying elements comprise a slot and a key. The slot can be embodied in the first or second geometry and the key can be embodied in the other geometry. In a first configuration, the slot is embodied in the first geometry and the key is embodied in the second geometry, while in a second configuration, the key is embodied in the first geometry and the slot is embodied in the second geometry.
The LC connector shown in
Furthermore, since the physical “barrier”—i.e., the key—is located on the receptacle in the first configuration, it will serve to facilitate discriminatory mating among, not only plugs employing security features, but also existing plugs which have no security features of the present invention. Specifically, if a slot in the plug is necessary to accommodate the key of the receptacle, then plugs without slots will not mate with receptacles having the key. Therefore, ordinary, non-secure type plugs which do not have the slot in the proper position will not mate with the receptacle. In contrast, a non-secure receptacle will mate with a secure plug of the first configuration. Specifically, since the physical barrier is absent from the receptacle, any ordinary or secure plug can mate with it. As discussed below, the situation with the second configuration is opposite from that of the first, meaning that a secure plug cannot mate with a non-secure receptacle, but a secure receptacle can mate with a non-secure plug. To provide for discrimination between secure and non-secure connectors components, a secondary key is added to the system as discussed below.
A connector system having the second configuration offers certain benefits, but also presents certain challenges. One benefit is that the space consuming security feature—i.e., the slot—resides in the receptacle which is typically larger than the plug and better suited for accommodating this feature. That is, since a slot is defined by the material around it, a slot requires more room than a key. The receptacle does not have the same space constraints as a plug (which is designed to be inserted in the receptacle) and may be more capable of accommodating the slot than the plug. Additionally, it may be preferable to have one “master” plug which plugs into all receptacles having security features. This is easily accomplished with a connector system of the second configuration. Specifically, the master plug would simply be one having no key to interfere with the first geometry of the receptacle. The simplicity in offering a master plug in the connector system of the second configuration also gives rise to a challenge facing the system—the ability of non-secure plugs to mate with secure receptacles (discussed below).
Referring to
The number of slots in the combination of first keying elements depends upon the number of possible positions of the slots. Specifically, the number of possible permeations of different mating pairs is given by the following equation:
wherein:
Below is a table providing data on the theoretical number of mating pairs, .sub.nC.sub.r, for different n and r values.
From this data, it is clear that the maximum number of permutations (i.e., nCr) is reached when the number of positions occupied equals n divided by 2. Therefore, in the preferred embodiment, either n/2 slots (if n is an even integer) or (n.+−.1)/2 slots (if n is an odd integer) of spatially discrete positions are occupied by either a slot with respect to the plug or a key with respect to the receptacle. (For purposes of simplicity, hereinafter, n will be presumed to be an even number.) Therefore, using the equation above, the embodiment shown in
Referring to
In a preferred embodiment, the connector system of the present invention may contain one or more master plugs of varying levels. That is, there may be lower-level master plugs, which can mate with receptacles of two different networks, or higher-level master plugs, which can mate with receptacles of three or more networks. The difference in the level of the mater plug is a function of the r number of slots occupying n possible positions—the more slots there are, the higher the plug's level. Specifically, the master plug comprises a first keying element having a third combination of greater than n/2 slots, in which the slots occupy the positions of at least two different first combinations as described above. Higher level master plugs have slots which occupy the positions of three or more different first combinations.
Aside from showing the different combinations of keying elements,
To effect the different combinations of positions, the core pin is preferably adjusted by rotating it in θ increments, in which θ is equal to 360°/m, wherein m is an integer. Preferably m is an integer from 2-18, more preferably from 2-5, and even more preferably from 3-4. In the embodiment shown in
Once the housings are prepared, a ferrule is disposed in the opening of each housing to form a subassembly. A fiber may be terminated in the ferrule either before or after the preparation of the subassembly. For field-terminatable connectors, it may be preferable to dispose just a fiber stub in the ferrule. This configuration facilitates field installation of a fiber as discussed, for example, in WO2005004285. Regardless of whether a stub or a fiber is terminated in the ferrule, the preferred keying arrangement of the present invention in which slots radiate outwardly from the opening 802 allows the subassembly of the LC connector to be polished, inspected, and tested using standard polishing equipment as mentioned above.
An advantage of the connector system of the present invention is that different receptacles may be combined to form “hybrid” adapters. More specifically, aside from the second keying element extending outward from the ferrule receiving portion, the receptacles are the same as those used for standard connectors. This allows different receptacles to be combined back to back to form hybrid adapters. For example, referring to
To discriminate between secure and non-secure connector systems, the present invention provides for a secondary key & slot configuration, which is either non-existent or in a different position for all plugs and receptacles which are outside of the given connector system 800. For example, referring to
It is worthwhile to note that the use of the secondary key/slot adds another security feature to the connector system—essentially another keying mechanism. This additional keying feature increases the number of permutations within a given connector system. That is, rather than maintaining the same secondary key and slot location for all connectors within a system, it can be moved to form different classes within the same family
Preferably, the keying elements (primary and secondary) are positioned such that not mating pairs “stub” at about the same axial position relative to one another regardless of whether the connectors are interfering because they are different types of secure connectors or whether they are interfering because they are secure/non-secure connectors. This way, the user becomes accustomed to the point at which non-mating connector components interfere, thereby reducing the risk of the user forcing non-mating components together.
To provide a simple and readily apparent indication to the user of which plugs mate with which receptacles, it is preferable to mark mating pairs with indicia or color to indicate their compatibility. In a preferred embodiment, the components of a mating pair are a similar color different from all others used in the connector system.
The system described allows for a series of mutually-exclusive connectors to be used in a manner which provides physical security to a network system. In light of the often highly sensitive data stored on many of the networks in use today, this is a highly desirable feature. The present invention is an effective way to segregate separate networks and assure that the proper users are connecting to the desired network. Additionally, the present invention may be employed in the manufacture of devices in which fibers or wires need to be connected in particular arrangements. More specifically, the discriminating connectors of the present invention can be engineered into a system such that, during manufacturing, the correct connection of the fibers/wires is ensured by the mating pairs and their ability to prevent all other “incorrect” connections. Applications requiring particular routing of fibers or wires include, for example, routers, backplane assemblies, and even component devices such as multiplexers/demultiplexers.
The other end of that cable couples to the network access point, such as a wall outlet, and may bear a standard connector without a special physical feature for mating with a standard connector in the wall outlet. However, preferably, the other end of that cable bears another connector having a special physical feature so that it may be coupled only to a wall outlet having a connector bearing the matching complementary special physical feature.
The ONT 1301 also has four output terminals comprising receptacle connectors 1311a-1311d for coupling four separate computers to four different subsets of networks available through the ONT and the network access point to which the ONT is coupled. In this exemplary embodiment, the ONT 1301 is programmed to provide connectivity through each of its output terminals 1311a, 1311b, 1311c, and 1311d to a different one of four different networks. Each of the output receptacle connectors 1311a, 1311b, 1311c, and 1311d has a special physical feature that is different and unique from each other and which prevents any plug connector from mating to it other than a plug connector having the complementarily matching special physical feature. The first set of different special physical features available for incorporation into the ONT output connectors is selected so that each different special physical feature allows the output connector to be coupled only to one of a second set of complementary connectors (e.g., a plug connector) having a second set of complementarily matching special physical features and to physically prevent it from being coupled to any other of the second set of complementary connectors having any one of the second set of complementary special physical features or to a complementary connector having a universal physical feature.
For added security, it is preferable that the set of special physical features used for providing keyed connectivity to the output terminals 1311 is mutually exclusive of the special physical feature (or set of special physical features) used in connection with the network access points and/or ONT input terminals 1309.
Preferably, each of the output receptacle connectors 1311a-1311d is a different color corresponding to each different special physical feature in order to render them more easily visually distinguishable from each other. Further, the complementary plug connectors adapted to mate to each of the different receptacle connectors 1311a-1311d also preferably are color coded with the same color as the receptacle connector 1311a-1311d to which it is may be coupled.
Having thus described particular embodiments of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not limiting. The invention is limited only as defined in the following claims and equivalents thereto.