This invention relates to the noninvasive measurement of parameters such as blood pressure, heart and respiratory rate and oxygen saturation in man and animals, and more particularly to the optical noninvasive measurement of blood parameters.
A number of noninvasive methods of measuring blood parameters are known. For example, blood pressure has been measured by the auscultatory method which uses a cuff and a stethoscope or microphone, and by the oscillometric method which only requires a cuff applied to a body member. The conventional oscillometric method relies on the small-amplitude pulsatile pressure oscillations communicated to the cuff by the underlying artery in the body member during cuff deflation from above systolic pressure to zero pressure. Such arterial pressure oscillations cause corresponding oscillations in cuff pressure which can be amplified and used to identify systolic, mean and diastolic pressure. For example, it has been established by Posey et al. that the cuff pressure for maximal amplitude oscillations corresponds to mean arterial pressure. See Posey et al., “The Meaning of the Point of Maximum Oscillations in Cuff Pressure in the Direct Measurement of Blood Pressure,” Part 1, Cardiovascular Res. Ctr. Bull. 8(1):15–25, 1969. See also Ramsey, “Noninvasive Automatic Determination of Mean Arterial Pressure,” Med. Biol. Eng. Comput. 17:17–18, 1979; and Geddes et al., “Characterization of the Oscillometric Method for Measuring Indirect Blood Pressure,” Annals of Biomedical Engineering, Vol. 10, pp. 271–280, 1982. All such references are incorporated herein by reference.
Commercially available oscillometric devices are useful for some applications but are not particularly suited for use on a subject's forehead, for example. A need exists for improvements in vital sign monitors to enable reliable monitoring with noninvasive sensor units which can be quickly applied to a subject during and after cardiopulmonary resuscitation (CPR), during transport, or during surgery or other procedures in conscious and anesthetized subjects.
The present invention meets the above need and others and provides significant advantages with an optical noninvasive vital sign monitor comprising a reflectance-type optical sensor within a pressurizable capsule retained by a band or other restraint, the capsule having an optically transparent or translucent inner wall adapted for placement against a subject's skin. The optical sensor is mounted on the inside surface of the pressurizable capsule's inner wall, that is, the wall which contacts the subject's skin during use, and includes a light source and a photodetector aimed toward the inside surface of the inner capsule wall. Such internal mounting of the sensor provides a smooth contact with the skin surface and facilitates an even pressure distribution by the capsule.
According to one aspect of the present invention, the vital sign monitor includes optical oscillometric circuit means responsive to an output signal from the optical sensor for determining systolic pressure, mean pressure and diastolic pressure during a transition in capsule pressure between a pressure greater than normal systolic pressure and a pressure less than normal diastolic pressure, i.e., a transition through a range exceeding the range that spans the systolic and diastolic pressures that would be considered normal in a subject for which the monitor is designed to be used
The objects and advantages of the present invention will be more apparent upon reading the following detailed description in conjunction with the accompanying drawings.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one of ordinary skill in the art to which the invention relates.
An optical sensor in accordance with the present invention is useful in certain applications on various body sites, such as the chest, leg or arm, e.g., the wrist, but one preferred embodiment is a forehead-mounted unit.
Capsule 18 or at least its inner wall 28 is made of a smooth optically transparent material. The transmittance of the material is preferably greater than 50% at the wavelength(s) of light emitted by the LEDs. The capsule may have a wall thickness of approximately 0.010 inches. PVC or silicone is presently preferred, although latex and polyurethane or other materials are also suitable to varying degrees. The headband may have elongated inner and outer layers 30 and 32, respectively, or may have multiple layers only where desired for the pocket, which may have a circular or rectangular hole or window 34 through its inner layer 30 as shown in
Preferably, the LED(s) and photodetector(s) directly contact the inside surface of wall 28 and are affixed thereto with an optically clear adhesive, e.g., Superglue or other adhesive suitable for the particular material used for the capsule. The LEDs and photodetector may be affixed to wall 28 before the capsule is completely formed or sealed, and the capsule may then be sealed so as to enclose pneumatically the LEDs and photodetector. The LEDs and photodetector may be affixed to the capsule wall individually, or as a sub-assembly in which they are held together in desired relative positions by a flexible carrier or substrate, which is preferably spaced from the device surfaces which contact the capsule wall so as to facilitate flush mounting of those surfaces to the capsule wall. Mounting of the LED(s) and photodetector(s) inside the sealed pressurizable capsule facilitates the use of the device on wet or diaphoretic subjects because the transducers are protected from water and moisture.
Headband 12, not drawn to scale in
Blood pressure, including systolic, mean and diastolic pressures, can be obtained with optical sensor unit 10 from the amplitude spectrum of the pulses obtained during deflation of capsule 18 from a suprasystolic pressure to zero pressure, as described below. Monochromatic LEDs are suitable for monitoring blood pressure. For example, the transducer may employ infrared LEDs such as PDI-E801 or PDI-E804, 880 nm LEDs available from Photonic Detectors, Inc. The LEDs and photodetector are preferably matched to operate at the same desired wavelength. One example of a suitable photodetector is a Fairchild Semiconductor QSD723 phototransistor, with a peak sensitivity at 880 nm. Another suitable operating wavelength for the LEDs and photodetector is 805 nm, at which wavelength the blood pressure pickup has no oxygen-saturation error, as will be appreciated from the discussion of oximetry below. An advantage of either of the example wavelengths is that there are virtually no environmental light sources in this infrared region.
Referring to
The microprocessor is suitably programmed to identify, based on the digitized output signal of the photodetector, the points in the capsule pressure signal which correspond to systolic, mean and diastolic pressure, and displays the corresponding values on a display 65 which may comprise separate indicators as shown in
Blood pressure is measured during a transition in capsule pressure between a selected suprasystolic pressure and zero pressure. The transition may be an upward or downward transition but is described below in terms of a gradual downward transition such as shown in
The peak-to-peak amplitudes of the optical pulse waveform at the points coinciding with the occurrence of systolic and diastolic pressure are designated respectively as As and Ad in
Systolic pressure may alternatively be calculated as a function of both Am and Pm, the mean capsule pressure, rather than on the basis of a fixed percentage of Am. That is, the microprocessor may calculate As, the optical pulse amplitude corresponding in time with systolic pressure, according to an algorithm which includes mean capsule pressure as a factor. The following equation represents one form of such an algorithm:
As=Am(a−b Pm)
where a and b are experimentally determined constants.
Heart rate can be obtained by counting the optical pulses when the capsule is not pressurized. Respiratory rate can also be obtained when the capsule is not pressurized, from the rhythmic changes in the amplitude of the optical pulses, as described in co-pending patent application Ser. No. 10/176,186, entitled Body-Member-Illuminating Pressure Cuff For Use In Optical Noninvasive Measurement Of Blood Parameters, filed Jun. 20, 2002, which patent application is hereby incorporated by reference.
Referring again to
The red LEDs are switched on while the infrared LEDs are switched off, and vice versa, and the photodetector output signal is supplied to the microprocessor for processing as described above. The photodetector may be a broadband detector, such as that identified above, that detects reflected light from the red-emitting LED when that LED is energized and then detects reflected infrared radiation from the infrared LED when that LED is energized. The red and infrared LEDs are preferably energized alternately in rapid succession, e.g., at a rate of 200 pulses per second or more. This technique permits the use of high-intensity short-duration pulses. Synchronous detection is used to achieve the highest signal-to-noise ratio. Two benefits result: 1) a low average power and minimum heating, and 2) the system is less sensitive to stray ambient illumination. The red and infrared signals are sampled and processed to obtain SaO2, which may then be displayed on display 65 of the monitor shown in
A baseline for measurement may be established by first inflating the capsule to a high pressure sufficient to squeeze all of the blood out of the blood vessels under the capsule and thus out of the optical path. For example, the capsule pressure may be held at a maximum pressure for a desired time to obtain the bloodless transmission reading, which can be assigned a value of 100% transmission. When the capsule pressure is released, blood enters the optical path and the red and infrared transmissions are measured. The optical density is computed for each of the transmitted signals, and the ratio of red to infrared optical density is calculated and scaled to provide an output value corresponding to the percentage of oxygen saturation.
Beer's law relates the optical density (D) to the concentration of a dissolved substance. Optical density (D) is equal to ln 1/T, where T is the transmittance. Therefore the oxygen saturation (SaO2) is given by:
where A and B are constants. This equation predicts a linear relationship based on Beer's law. However, Beer's law applies to solutions in which the absorbing substance is dissolved. Blood is a suspension, and, consequently, the relationship between SaO2 and the ratio of the optical density for red and infrared radiation is nonlinear, as shown in
Calibration of the oximeter also involves balancing the outputs for the red and infrared channels to obtain the same optical sensitivity for both, and ensuring that both channels have a linear response to the red and infrared radiation. Optical filters can be used as calibration standards.
In another embodiment, an optical sensor within a pressurizable capsule as described above is placed on the subject's chest and restrained by a band, preferably a relatively inflexible band, around the subject's torso at chest height. For example, the optical sensor may be positioned over the manubrium (top of the sternum), or along the sternum to the xiphoid (bottom end of the sternum), where a substantially flat bone underlies the tissue bed and reflects incident radiation from the light source. The pressurizable capsule may be contained within a pocket in the band such as described above with respect to
The restraint may be a band extending completely around the body member, or for certain applications the pressurizable capsule may be restrained by an adhesive strip or pad adapted to adhere to the skin adjacent to the desired sensor location; the restraint is designed to hold the capsule against the skin sufficiently to allow the capsule, when inflated, to apply pressure to the skin and compress the arterial blood supply in the tissue bed. While not preferred, it may be suitable in certain applications to restrain the capsule by other means, such as by placing it under the weight of a subject, e.g., in contact with the back of a patient in a supine position. As noted above, an optical sensor in accordance with the present invention is useful in certain applications on various body sites, such as the chest, leg or arm.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/581,584 filed Jun. 21, 2004, which application is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3858574 | Page | Jan 1975 | A |
3978849 | Geneen | Sep 1976 | A |
4202347 | Sacks | May 1980 | A |
4469107 | Asmar et al. | Sep 1984 | A |
4539997 | Wesseling et al. | Sep 1985 | A |
4543962 | Medero et al. | Oct 1985 | A |
4638810 | Ramsey et al. | Jan 1987 | A |
4685464 | Goldberger et al. | Aug 1987 | A |
4726382 | Boehmer et al. | Feb 1988 | A |
4754406 | Miyawaki et al. | Jun 1988 | A |
4830014 | Goodman et al. | May 1989 | A |
4860759 | Kahn et al. | Aug 1989 | A |
4867170 | Takahashi | Sep 1989 | A |
4869261 | Pe{hacek over (n)}áz | Sep 1989 | A |
5052397 | Ramsey et al. | Oct 1991 | A |
5111817 | Clark et al. | May 1992 | A |
5170795 | Ramsey et al. | Dec 1992 | A |
5237997 | Greubel et al. | Aug 1993 | A |
5261414 | Aung et al. | Nov 1993 | A |
5273036 | Kronberg et al. | Dec 1993 | A |
5368039 | Moses | Nov 1994 | A |
5431170 | Mathews | Jul 1995 | A |
5485838 | Ukawa et al. | Jan 1996 | A |
5505207 | Abbs et al. | Apr 1996 | A |
5529755 | Higashio et al. | Jun 1996 | A |
5606977 | Ramsey et al. | Mar 1997 | A |
5676139 | Goldberger et al. | Oct 1997 | A |
5776071 | Inukai et al. | Jul 1998 | A |
5827181 | Dias et al. | Oct 1998 | A |
5830137 | Scharf | Nov 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5891021 | Dillon et al. | Apr 1999 | A |
6080110 | Thorgersen | Jun 2000 | A |
6106478 | Tochikubo et al. | Aug 2000 | A |
6149588 | Noda et al. | Nov 2000 | A |
6178342 | Borgos et al. | Jan 2001 | B1 |
6213952 | Finarov et al. | Apr 2001 | B1 |
6340349 | Archibald et al. | Jan 2002 | B1 |
6440082 | Joo et al. | Aug 2002 | B1 |
6572636 | Hagen et al. | Jun 2003 | B1 |
6801798 | Geddes et al. | Oct 2004 | B1 |
20020165595 | Dupelle et al. | Nov 2002 | A1 |
20020188210 | Aizawa | Dec 2002 | A1 |
20030060723 | Joo et al. | Mar 2003 | A1 |
20040116969 | Owen et al. | Jun 2004 | A1 |
20050043763 | Marcovecchio et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
0276344 | Aug 1988 | EP |
WO2004073787 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050283082 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60581584 | Jun 2004 | US |