Optical performance monitors

Information

  • Patent Grant
  • 6633371
  • Patent Number
    6,633,371
  • Date Filed
    Wednesday, June 26, 2002
    22 years ago
  • Date Issued
    Tuesday, October 14, 2003
    21 years ago
Abstract
Method and apparatus for wavelength control and measurement are disclosed. An optical signal to be measured is tapped off a portion thereof referring to as a source signal. Together with a reference signal, the source signal is coupled to a tunable filter. The frequency response or passing band of the tunable filter is so controlled that one wavelength λx from the source signal and one wavelength λrx from the reference signal transmit through. Relying on a band separation filter, the wavelength λrx is separated from the reference signal and coupled to a gas cell of a known spectrum, a filtered signal of the wavelength λrx is then coupled to a photo-detector for subsequent electrical measurement. In accordance with the known spectrum, the wavelength λx can be precisely derived.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is related to the area of optical instruments and, in particular, related to an optical performance monitor for precise wavelength, power and signal-to-noise ratio measurement.




2. Description of Related Art




The future communication networks demand ever increasing bandwidths and flexibility to different communication protocols. DWDM (Dense Wavelength Division Multiplexing) is one of the key technologies for such optical fiber communication networks. DWDM employs multiple wavelengths or channels in a single fiber to transmit in parallel different communication protocols and bit rates. Transmitting several channels in a single optical fiber at different wavelengths can multi-fold expand the transmission capacity of the existing optical transmission systems, and facilitating many functions in optical networking.




Optical telecommunications generally involves the use of light beams propagating through optical networks to transmit data from one end to another end. If there are any deficiency in the optical networks (e.g., fibers or switches), the quality or parameters of the light beams will be degraded. Thus monitoring the performance of optical networks is important in optical communications.




The performance of a DWDM optical communication network can be monitored by measuring the wavelengths, powers and signal-to-noise ratios of its channels in real-time. Diffraction grating and tunable filters are most commonly used techniques for DWDM network performance monitoring. Wavelength references are usually used to remove wavelength uncertainties associated with tunable filters. Fabry-Perot tunable filters with different wavelength reference techniques have been used in the past (e.g., see U.S. Pat. No.: 5,838,437). With tunable filters, it is potentially to obtain finer wavelength resolutions and to have tapped signals for Bit-Error-Rate Test (BERT).




Because of uncertainties of mechanical scanning, real-time wavelength calibrations are commonly used to ensure the wavelength accuracy. Usually, optical-mechanical switches are used to switch back and forth between the optical signal channels under monitoring and the optical wavelength reference channel for referencing. Wavelength reference techniques can be a series of Fiber Bragg Grating (FBG) filters or a slope filter. Gas cell wavelength references have also been used for DWDM applications. In those applications, gas cells covering the same wavelength as the communication signal channel wavelengths are often used (e.g., see Duwayne Anderson, et al, “Real-time wavelength calibration with picometer accuracy in swept-laser system,” Technical Proceedings, NFOEC 2001, Vol. 2, 1089-1100, 2001).




New techniques for simple and accurate determination of wavelength(s) in optical signals are still desirable in the field.




SUMMARY OF THE INVENTION




The present invention pertains to method and apparatus for wavelength control and measurement. In one aspect of the present invention, an optical signal to be measured is tapped off a portion referring to as a source signal. Together with a reference signal, the source signal is coupled to a tunable filter. The passing bands of the tunable filter is so controlled that one wavelength λ


x


from the source signal and one wavelength λ


rx


from the reference signal transmit through. Relying on a band separation filter, the wavelength λ


rx


is separated from the source signal and then coupled to a gas cell of a known spectrum, a filtered signal of the wavelength λ


rx


is then coupled to a photo-detector for subsequent electrical measurement.




Because the intensities of the source signal and the reference wavelength absorbed by the gas in the gas cell are sampled simultaneously, the wavelength λ


x


of the source signal can be calculated accordingly from mapping the sampled gas absorption spectrum at the same time interval. The relationship is a one-to-one mapping between two different Free Space Ranges (FSR) and can be uniquely defined by the properties of the tunable filter. As a result, wavelength, power, and signal-to-noise ratio in an optical system (e.g., a DWDM system) can be precisely determined.




One of the objects in the present invention is to provide a new technique for wavelength control and measurement with a tunable filter and a gas cell filter.











Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings




BRIEF DESCRIPTION OF THE DRAWINGS




These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:





FIG. 1

shows a functional block diagram of a measurement system according to one embodiment of the present invention;





FIG. 2

shows an illustration in which a tunable filter is being controlled by or through an adjustable control signal;





FIG. 3

shows three transmission peaks of a Fabry-Perot tunable filter of Micron Optics where C-band, L-band and reference spectrum are scanned simultaneously; and





FIG. 4

shows that output optical powers as a curve of an Optical signal passing a CH


4


gas cell versus wavelength, it also shows that a corresponding scanning voltage applied to a tunable filter, the actual wavelength range is from 1625 nm to 1665 nm approximately.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention pertains to method and apparatus for wavelength control and measurement. In one aspect of the present invention, an optical signal to be measured is tapped off a portion referring to as a source signal. Together with a reference signal, the source signal is coupled to a tunable filter. The pass-bands of the tunable filter is so controlled that one wavelength λ


x


from the source signal and one wavelength λ


rx


from the reference signal transmit through. Relying on a band separation filter, the wavelength λ


rx


is separated from the source signal and coupled to a gas cell of a known spectrum, a filtered signal of the wavelength λ


rx


is then coupled to a photo-detector for subsequent electrical measurement. Subsequently, in accordance with the known spectrum, the wavelength λ


x


can be precisely derived through a predetermined scheme. There are many benefits, advantages and features in the present invention. One of them is the precision a simple measurement system contemplated in the present invention can offer. Another one of them is the use of a tunable filter together with a gas cell, based on the characteristics thereof, a wavelength in the source signal can be precisely determined. Other benefits, advantages and features can be appreciated from the description herein.




The detailed description of the present invention is presented largely in terms of procedures, steps, logic blocks, processing, or other symbolic representations that directly or indirectly resemble the operations of optical devices or systems coupled to optical networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.




Referring now to the drawings, in which like numerals refer to like parts throughout the several views.

FIG. 1

illustrates a functional block diagram


100


of a measurement system according to one embodiment of the present invention. The optical source


102


is a port of an optical device from which a portion


104


of an optical signal can be sampled. According to one embodiment, the optical signal is a DWDM (Dense Wavelength Division Multiplexing) optical signal including multiplexed N channel signals having wavelengths at λ


1


, λ


2


, . . . , λ


N


. The sampled signal


104


is typically tapped out 1˜5% of the optical signal by a coupler (not shown) and referred hereinafter as a source signal.




A broadband source


106


produces a broadband reference signal


108


. Both the source signal


104


and the reference signal


108


are coupled to a coupler


110


that outputs a combined signal


112


. The combined signal


112


is then coupled to a tunable filter


114


. Depending on implementation, the tunable filter


114


may be a tunable Fiber Bragg Grating (FBG), a Fabry-Perot tunable filter, or an optical device with tunable wavelength selectivity. In any case, the tunable filter


114


is applied a control signal


116


to achieve the wavelength selectivity.




By virtue of the present invention, the tunable filter


114


is so controlled that the output thereof includes at least two wavelengths, one from the source signal


104


and the other one from the reference signal


108


.

FIG. 2

shows an illustration in which the tunable filter


200


is being controlled by an adjustable control signal


206


. The tunable filter


200


receives two multiplexed signals


202


and


204


and has a spectrum response in accordance with the control signal


206


such that the output of the tunable filter


200


has at least one wavelength λ


x


from the signal


204


and λ


rx


from the signal


202


.




According to one embodiment, the tunable filter


200


is a Fabry-Perot tunable filter. It is known that the transmittance of the filter is:








T


=1/(1+4


R


sin


2


(θ/2)/(1


−R


)


2


)






where θ=4πnl/λ, R is the reflectance of mirrors of the cavity in the Fabry-Perot tunable filter, n is the refractive index of the cavity, l is the cavity length. In operation, the filter's cavity length can be controlled by a voltage applied to a piezo transducer (PZT) or microelectromechanical systems (MEMS). When θ=2mπ, m is an integer, mλ=2nl, the transmittance reaches the maximum value. A number of transmission peaks at λ=2nl/m can exist simultaneously. The frequency range between any nearest coexisting transmission peaks is defined as Free Spectral Range (FSR)








FSR=c


/2nl






If the FSR of the tunable filter


200


is selected correctly, the light from the source signal


204


and the reference signal


202


at other wavelength range can pass through simultaneously without interference.




Returning to

FIG. 1

, the two wavelengths


118


are coupled to a band separation filter


120


that separates the two wavelengths


118


apart. Essentially, the filtered signal from the source goes directly to a power detector or a Bit-Error-Rate-Test (BERT) device, and the filtered signal (wavelength λ


rx


) is coupled to a gas cell


122


of a known spectrum response. A filtered output


124


from the gas cell


122


is then coupled to a detector


126


. Typically, being a photodetector, the detector


126


produces an electronic signal


128


of the filtered wavelength λ


rx


. The electronic signal


128


can now be measured. A computation can be conducted to derive the wavelength λ


rx


. Because the intensities of the DWDM signal and the reference wavelength absorbed by the gas in the gas cell


122


are sampled simultaneously, the wavelength λ


x


of the source


104


from the DWDM signal can be calculated accordingly from mapping the sampled gas absorption spectrum at the same time interval. The relationship is a one-to-one mapping between two different FSR's and can be uniquely defined by the properties of the tunable filter. As a result, the wavelength λ


x


can be precisely determined.




Results




In an exemplary implementation of the present invention, the source signal


102


has wavelengths from 1530 nm to 1562 nm and the reference signal


104


has wavelengths from 1625 nm to 1662 nm. The absorption spectrum of a Methane (CH


4


) gas cell at 1627 nm to 1695 nm wavelength range and 1312 nm to 1345 nm wavelength range are used and may be referred to in Kinpui Chan, Hiromasa Ito, and Humio Inaba, “Remote sensing system for near-infrared differential absorption of CH


4


gas using low-loss optical fiber link,” Applied Optics Vol. 23, 3415-3420 (1984), and “Absorption measurement of ν


2


+2ν


3


band of CH


4


at 1.33 μm using an InGaAsP light emitting diode,” Applied Optics Vol. 22, 3802-3804 (1983), both are hereby incorporated by reference. Thus both of the CH


4


absorption ranges are out of commonly used DWDM spectrum ranges while applicable to the reference source. However, the 1600 nm range has deeper absorption peaks and closer to DWDM C-band and L-band.




Referring to

FIG. 3

, it shows three transmission peaks of a Fabry-Perot tunable filter of Micron Optics (located at 1852 Century Place NE, Atlanta, Ga. 30345 USA), where C-band, L-band and reference spectrum are scanned simultaneously. At a particular cavity position, the transmitted peaks are 1542.18 nm of C-band, 1584.09 nm of L-band, and 1626.62 nm of CH


4


gas cell reference wavelength. Since the relationships among these peaks are uniquely determined by the FSR's of the tunable filter, the wavelengths in C- and L-band can be calculated by the wavelength measured in reference band with signal processing techniques.




Table below shows absorption peaks of CH


4


gas from 1625 nm to 1665 nm.
























λ (nm)




1627.67




1630.09




1632.49




1635.02




1637.26




1639.96




1642.50






λ (nm)




1645.15




1647.82




1650.54




1653.32




1656.12




1659.00




1661.91














The measurement data are taken from Burleigh's WA-7600 Wavemeter. The accuracy of the measurement is ±8 pm.





FIG. 4

shows output optical powers of a CH


4


gas cell obtained by tuning the Fabry-Perot filter. This gas cell is a product of Wavelength-References. Each dip corresponds to one of the absorption peaks. The straight line is the applied scanning voltage to the filter. The relationship between the wavelength and its scanning voltage is not linear in general. However, the nonlinearity can be corrected with calibrations and signal processing algorithms. Typically, the signal processing algorithms involve solving for polynomials or correlations, which is well known to those skilled in the art.




The present invention has been described in sufficient details with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.



Claims
  • 1. An optical measurement system comprising:a coupler receiving a source signal and a reference signal and producing a combined signal; a tunable filter receiving the combined signal, the tunable filter being so controlled that the tunable filter outputs one wavelength λx from the source signal and one wavelength λrx from the reference signal; a band separation filter coupled to the tunable filter to separate the wavelength λrx from the wavelength λx; and a gas cell of a known frequency response receiving the wavelength λrx and producing a filtered signal to be electrically measured so that the wavelength λx can be derived.
  • 2. The optical measurement system of claim 1, wherein the source signal is a small portion of an optical signal in an optical system.
  • 3. The optical measurement system of claim 2, wherein the source signal is tapped off from the optical signal by a tapping coupler.
  • 4. The optical measurement system of claim 1, wherein the tunable filter is an optical device with tunable wavelength selectivity.
  • 5. The optical measurement system of claim 1, wherein the tunable filter is a tunable filter whose cavity length is so controlled by a voltage applied to a piezo transducer (PZT) that a frequency range between any nearest coexisting transmission peaks permits that the wavelength λrx and the wavelength λx can pass through simultaneously without interference.
  • 6. The optical measurement system of claim 5, wherein the known spectrum of the gas cell has absorption ranges beyond spectrum ranges of the source signal.
  • 7. The optical measurement system of claim 6, wherein a relationship between peaks at the wavelength λrx and the wavelength λx after filtered by the tunable filter is uniquely determined by free space ranges (FSR) of the tunable filter.
  • 8. A method for an optical measurement system, the method comprising:receiving a source signal and a reference signal; combining the source signal and the reference signal to produce a combined signal; filtering the combined signal by a tunable filter, wherein the tunable filter is so controlled that the tunable filter outputs one wavelength λx from the source signal and one wavelength λrx from the reference signal; separating the wavelength λrx from the wavelength λx; coupling the wavelength λx to a gas cell of a known frequency response; and producing a filtered signal to be electrically measured so that the wavelength λx is to be calculated.
  • 9. The method of claim 8, wherein the source signal is a small portion of an optical signal in an optical system.
  • 10. The method of claim 8, wherein the source signal is tapped off from the optical signal by a tapping coupler.
  • 11. The method of claim 8, wherein the tunable filter is an optical device with tunable wavelength selectivity.
  • 12. The method of claim 8, wherein the tunable filter is a Fabry-Perot tunable filter whose cavity length is so controlled by a voltage applied to a piezo transducer (PZT) that a frequency range between any nearest coexisting transmission peaks permits that the wavelength λrx and the wavelength λx can pass through simultaneously without interference.
  • 13. The method of claim 12, wherein the known spectrum of the gas cell has absorption ranges beyond spectrum ranges of the source signal.
  • 14. The method of claim 13, wherein a relationship between peaks at the wavelength λrx and the wavelength λx after filtered by the tunable filter is uniquely determined by free space ranges (FSR) of the tunable filter.
  • 15. The method of claim 9, wherein the optical system is a DWDM (Dense Wavelength Division Multiplexing) optical network.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefits of U.S. provisional application No.: 60/327,909, and entitled “Optical performance monitor with tunable filter and simultaneous gas cell wavelength reference,” filed on Oct. 9, 2001, which is hereby incorporated by reference for all purposes.

US Referenced Citations (6)
Number Name Date Kind
5838437 Miller et al. Nov 1998 A
6097487 Kringlebotn et al. Aug 2000 A
6396051 Li et al. May 2002 B1
20020164125 Berger et al. Nov 2002 A1
20030035163 Althouse et al. Feb 2003 A1
20030113114 Blazo Jun 2003
Foreign Referenced Citations (1)
Number Date Country
WO 0013350 Mar 2000 WO
Provisional Applications (1)
Number Date Country
60/327909 Oct 2001 US