In the manner which is described above, in optical disc drives, it has been developed one in which a special optical pickup unit is mounted in order to enable to record/reproduce data in/from not only the DVD and the CD but also a high definition DVD (HD-DVD). The special optical pickup unit of the type is for carrying out recording or reproducing by selectively using three kinds of laser beams, namely, a laser beam having a middle wavelength (a wavelength band of 650 nm) for the DVD, a laser beam having a long wavelength (a wavelength band of 780 nm) for the CD, and a laser beam having a short wavelength (a wavelength band of 410 nm) for the HD-DVD. The special optical pickup unit is called a three-wavelength handling optical pickup unit.
The one-chip type laser diode 11 comprises, as one part (one chip), a first laser diode (not shown) and a second laser diode (not shown). The first laser diode (a first emission point) and the second laser diode (a second emission point) are apart from each other by a predetermined distance of, for example, 100 μm. The first laser diode is a laser diode for emitting or irradiating a first laser beam having, as a first wavelength, a wavelength of about 780 nm for the CD. The first laser diode is called a “CD-LD” for short. The second laser diode is a laser diode for emitting or irradiating a second laser beam having, as a second wavelength, a wavelength of about 650 nm for the DVD. The second laser diode is called a “DVD-LD” for short. The blue laser diode 12 is called a third laser diode which is a laser diode for emitting or irradiating a third laser beam having, as a third wavelength, a wavelength of about 410 nm for the HD-DVD (HD). The third laser diode is called a “HD-LD” for short.
The three-wavelength handling optical pickup unit 10 comprises an optical system for guiding any one of the first through the third laser beams to an optical disc (not shown) and for guiding its reflected beam to a photodetector 35 (which will later be described). In addition, the optical system includes an objective lens 31 disposed so as to face the optical disc. The laser beam sources 11, 12 and the photodetector 35 are mounted on an outer side wall of an optical base (which will later be described) while the optical system except for the objective lens 31 is mounted in the optical base.
On the other hand, the objective lens 31 is mounted in an objective lens driving device (an optical pickup actuator) which will later be described. In the manner which will later be described, the objective lens driving device elastically supports an objective lens holder holding the objective lens 31 by a plurality of suspension wires with respect to a damper base.
The illustrated three-wavelength handling optical pickup unit 10 comprises, as the optical system, first and second diffraction gratings 16 and 17, a first beam splitter 21, a second beam splitter 23, a front monitor 25, a rising mirror (a total reflection mirror) 27, a collimator lens 29, the above-mentioned objective lens 31, and a sensor lens (detection lens) 33.
A combination of the first diffraction grating 16, the first beam splitter 21, the second beam splitter 23, the rising mirror 27, the collimator lens 29, the objective lens 31, and the sensor lens 33 serves as first or second optical systems for guiding the first or the second laser beams irradiated from the first or the second laser diodes to the optical disc (the CD or the DVD) and for transmitting first or second return beams reflected from the optical disc to guide the photodetector 35. Likewise, a combination of the second diffraction grating 17, the first beam splitter 21, the second beam splitter 23, the rising mirror 27, the collimator lens 29, the objective lens 31, and the sensor lens 33 serves as a third optical system for guiding the third laser beam irradiated from the blue laser diode (the third laser diode) 12 to the optical disc (the HD-DVD) and for transmitting a third return beam reflected from the optical disc to guide the photodetector 35.
The blue laser diode (the third laser diode) 12 is disposed in a center of an optical axis and the second laser diode in the one-chip type laser diode 11 is disposed in the center of the optical axis. Accordingly, the first laser diode in the one-chip type laser diode 11 is disposed at a state shifted from the optical axis. Therefore, the illustrated photodetector 35 is composed so as to receive the first return beam from the CD with it shifted from the optical axis.
Now, description will be made as regards operation of the three-wavelength handling optical pickup unit 10 illustrated in
First, description will be made as regards operation in a case where the CD is used as the optical disc. In this event, only the first laser diode (CD-LD) in the one-chip type laser diode 11 is put into an active state while the second laser diode (DVD-LD) in the one-chip type laser diode 11 and the blue laser diode (the third laser diode) 12 (HD-LD) are put into an inactive state.
The first laser beam irradiated from the first laser diode (CD-LD) passes through the first diffraction grating 16 at which the first laser beam is separated to three laser beams in order to carry out a tracking control, a focusing control, and a tilting control. Thereafter, the three laser beams pass through the first beam splitter 21 and enter the second beam splitter 23 as incoming beams. In the incoming beams, a part passes through the second beam splitter 23 and its through-beam is received by the front monitor 25. At any rate, the front monitor 25 monitors a light-emitting amount of the first laser beam which passes through the second beam splitter 23. On the other hand, in the incoming beams, a reflected beam, which is reflected by the second beam splitter 23, is reflected by the rising mirror 27 upward. When the laser beam reflected by the rising mirror 27 passes through the collimator lens 29, the laser beam, which is a diverged beam, is collimated into a collimated beam. The collimated beam enters the objective lens 30. Passed through the objective lens 30, the laser beam is converged and irradiated on a signal recording surface of the optical disc (the CD).
Reflected by the signal recording surface of the optical disc (the CD), a reflected beam (the first return beam) passes through the objective lens 31 and becomes a converged beam after passing through the collimator lens 29. After reflected by the rising mirror 27, the converged beam passes through the second beam splitter 23. After passing through the sensor lens 33, the converted beam is detected by the first receiving portion 35-1 (
Secondly, description will be made as regards operation in a case where the DVD is used as the optical disc. In this event, only the second laser diode (DVD-LD) in the one-chip type laser diode 11 is put into an active state while the first laser diode (CD-LD) in the one-chip type laser diode 11 and the blue laser diode (the third laser diode) 12 (HD-LD) are put into an inactive state.
The second laser beam irradiated from the second laser diode (DVD-LD) passes through the first diffraction grating 16. Thereafter, the second laser beam passes through the first beam splitter 21 and enters the second beam splitter 23 as an incoming beam. In the incoming beam, a part passes through the second beam splitter 23 and its through-beam is received by the front monitor 25. At any rate, the front monitor 25 monitors a light-emitting amount of the second laser beam which passes through the second beam splitter 23. On the other hand, in the incoming beam, a reflected beam, which is reflected by the second beam splitter 23, is reflected by the rising mirror 27 upward. When the laser beam reflected by the rising mirror 27 passes through the collimator lens 29, the laser beam, which is a diverged beam, is collimated into a collimated beam. The collimated beam enters the objective lens 30. Passed through the objective lens 30, the laser beam is converged and irradiated on a signal recording surface of the optical disc (the DVD).
Reflected by the signal recording surface of the optical disc (the DVD), a reflected beam (the first second beam) passes through the objective lens 31 and becomes a converged beam after passing through the collimator lens 29. After reflected by the rising mirror 27, the converged beam passes through the second beam splitter 23. After passing through the sensor lens 33, the converted beam is detected by the second receiving portion 35-2 (
Lastly, description will be made as regards operation in a case where the HD-DVD is used as the optical disc. In this event, only the blue laser diode (the third laser diode) 12 (HD-LD) is put into an active state while the first laser diode (CD-LD) and the second laser diode (DVD-LD) in the one-chip type laser diode 11 are put into an inactive state.
The third laser beam irradiated from the blue laser diode (the third laser diode) 12 (HD-LD) passes through the second diffraction grating 17 at which the third laser beam is separated to three laser beams in order to carry out the tracking control, the focusing control, and the tilting control. Thereafter, the three laser beams are reflected by the first beam splitter 21 and enter the second beam splitter 23 as incoming beams. In the incoming beams, a part passes through the second beam splitter 23 and its through-beam is received by the front monitor 25. At any rate, the front monitor 25 monitors a light-emitting amount of the third laser beam which passes through the second beam splitter 23. On the other hand, in the incoming beams, a reflected beam, which is reflected by the second beam splitter 23, is reflected by the rising mirror 27 upward. When the laser beam reflected by the rising mirror 27 passes through the collimator lens 29, the laser beam, which is a diverged beam, is collimated into a collimated beam. The collimated beam enters the objective lens 31. Passed through the objective lens 31, the laser beam is converged and irradiated on a signal recording surface of the optical disc (the HD-DVD).
Reflected by the signal recording surface of the optical disc (the HD-DVD), a reflected beam (the third return beam) passes through the objective lens 31 and becomes a converged beam after passing through the collimator lens 29. After reflected by the rising mirror 27, the converged beam passes through the second beam splitter 23. After passing through the sensor lens 33, the converted beam is detected by the second receiving portion 35-2 (
Referring to
The optical pickup unit 10 comprises an optical base 40. On the optical base 40, an objective lens driving device 50 is mounted through an OPU circuit board 71. The optical base 40 is movably mounted to guide bars (not shown) in a radial direction (a tracking direction Tr) of the optical disc loaded in an optical disc drive. In other words, the optical pickup unit 10 is sled-moved in a predetermined disc's radial direction (the tracking direction Tr) by a pickup driving portion (not shown). The pickup driving portion comprises, as the guide bars, a main shaft (not shown) and a subsidiary shaft (not shown) which sled-movably support the optical pickup unit 10 at both ends thereof in the predetermined disc's radial direction (the tracking direction Tr). Both of the main shaft and the subsidiary shaft are disposed so as to substantially extend in parallel with the predetermined disc's radial direction (the tracking direction Tr).
The optical pickup unit 10 comprises an engaging portion (an engaging hole) 61 engaged with the main shaft and a U-shaped sliding contact portion 62 in cross section that is slidably supported by the subsidiary shaft. In the example being illustrated, the sliding contact portion 62 has an upper sliding contact part into which a cap 63 is fitted. Between the cap 62 and a lower sliding contact part of the sliding contact portion 62, the subsidiary shaft is sandwiched.
The objective lens driving device 50 comprises an objective lens holder 51 having a shape of substantially rectangular parallelepiped. The objective lens holder 51 has a lens fitting portion for fitting the objective lens 31 at a center thereof. The illustrated objective lens driving device 50 is a symmetry type where coils (not shown) and a magnetic circuit (not shown) including magnets are symmetrically disposed with respect to the objective lens 31 as a center. The objective lens driving device 50 of the symmetry type comprises the objective lens holder 51 for holding the objective lens 31, a focusing coil (not shown) wound around the objective lens holder 51, tracking coils (not shown) affixed to the objective lens holder 51 at outer sides in a tangential direction Tg of the optical disc, and tilting coils (not shown) affixed to the objective lens holder 51 at both sides in a radial direction of the optical disc. These coils are partly located in gaps of the magnetic circuit. With this structure, the objective lens driving device 50 of the symmetry type is capable of finely controlling a position and an inclination of the objective lens 31 by controlling currents flowing through the respective coils.
More specifically, the objective lens driving device 50 elastically supports the objective lens holder 51 for holding the objective lens 31 at a damper base 53 via six suspension wires 52. In other words, the objective lens holder 51 is supported at the damper base 53 by the six suspension wires 52 which extend in the tangential direction Tg. The six suspension wires 52 are used also as wires for electrically connecting the above-mentioned various coils with an external circuit, namely, a driving circuit (not shown) for the objective lens driving device 50. In the objective lens holder 51, the tilting coils, the focusing coil, and the tracking coils are wound in the manner which is described above. By suitably controlling currents flowing through these coils, the objective lens holder 51 tilts in the tracking direction Tr (rotates around an axis in parallel to the tangential direction Tg), shifts in the tracking direction Tr, or shifts in the focusing direction F on the basis of relationships between the currents and magnetic fields produced by the magnetic circuit consisting of a yoke and the magnets.
On an upper surface of the optical base 40, the OPU circuit board 71 is mounted. On the OPU circuit board 71, the objective lens driving device 50 is fixed on the optical base 40 at four corners thereof by using a UV adhesive with a space left therebetween.
Referring to
As shown in
Referring to
The PD holder 75 comprises a substantially rectangular plate-shaped base 751 extending in parallel with a plane defined by the tracking direction Tr (an X-axis direction) and the focusing direction F (a Y-axis direction). The plate-shaped base 751 has a circular hole 75a through which the return beam reflected from the optical disc passes at a center portion thereof. The plate-shaped base 751 has a concave detector mounting surface 751a for mounting the photodetector 35 thereon at a front side thereof. The plate-shaped base 751 has a holder mounting surface 751b on which the PD holder 75 is mounted to the optical base 40 at a rear surface thereof.
The PD holder 75 comprises a pair of protrusion portions 752 extending forwards in the tangential direction Tg at both sides in the tracking direction Tr (the X-axis direction) of the plate-shaped base 751. The pair of protrusion portions 752 are disposed at locations separated to each other by a distance which is longer than a width (or a length) of the PD circuit board 73 in the tracking direction Tr (the X-axis direction). The pair of protrusion portions 752 have a pair of engaging slots 752a at which the PD holder 75 is sandwiched between a pair of adjustment pins (not shown) at both ends of the PD holder 75 on carrying out the above-mentioned XY adjustment for the PD holder 75. The pair of protrusion portions 752 have a pair of concave portions 752b which are formed in a rear surface of the PD holder 75 (the pair of protrusion portions 752) at both ends of the PD holder 75 and at which the UV adhesive 91 is applied.
In the PD holder 75 having such a structure, on the concave detector mounting surface 751a, the photodetector 35 mounted on the PD circuit board 73 is mounted. In this state, the XY adjustment for the PD holder 75 is carried out and the PD holder 75 is fixed on the optical base 40.
Now, the description will proceed to a method of fixing the PD holder 75 on the outer side wall of the optical base 40 in further detail.
First, by inserting the pair of adjustment pins (not shown) in the pair of engaging slots 752a, the above-mentioned XY adjustment is carried out with the PD holder 75 mounting the photodetector 35 thereon sandwiched between the pair of adjustment pins at both ends thereof in the manner which is described above. On carrying out the XY adjustment, the holder mounting surface 751b of the PD holder 75 slides on the outer side wall of the optical base 40 by a manufacturing person. After the XY adjustment is completed, the UV adhesive 91 is applied to the pair of concave portions 752b from a lateral direction (a side direction) of the PD holder 75 to fix the PD holder 75 on the outer side wall of the optical base 40.
Inasmuch as the UV adhesive 91 is applied from the lateral direction of the PD holder 75 in the manner which is described above, it is possible to easily fix the PD holder 75 on the outer side wall of the optical base 40 without being obstructed by the pair of adjustment pins. In addition, it is possible to easily remove the UV adhesive 91 from the PD holder 75 although minor adjustments are required caused by mistakes in the XY adjustment. As a result, it is possible to easily fix the PD holder 75 on the optical base 40.
In addition, as shown in
While this invention has thus far been described in conjunction with a preferred embodiment thereof, it will now be readily possible for those skilled in the art to put this invention into various other manners without departing from the scope of this invention. For example, although description is exemplified in a case where the HD-DVD is used as the optical disc for the blue laser beam, a Blu-ray disc may be used in lieu of the HD-DVD. Needless to say, this invention is not restricted to the three-wavelength handling optical pickup units, this invention may be applicable to various types of optical pickup units.
Number | Date | Country | Kind |
---|---|---|---|
2006-266599 | Sep 2006 | JP | national |