This application claims priority from European Patent Application No. 14190708.9 filed Oct. 28, 2014, the entire disclosure of which is incorporated herein by reference.
The invention relates to the field of movement or position detection of a timepiece crown stem. More specifically, the present invention relates to a method of optically detecting a movement of a timepiece setting stem. The invention also relates to a corresponding sensor arrangement.
Generally, incremental or absolute encoding schemes can be used to measure the angular position of a rotating device, such as a volume-control knob or the crown of an electronic watch. In many applications, such rotating control elements are also axially displaceable in order to trigger or activate various functions of a device. Therefore, it may also be necessary to measure the axial position of the same knob or crown. In watch applications, the axial position of setting stem, which is usually terminated by a crown at its distal end, is used to change the modes of the watch, such as current time display, date setting, and time setting, for example. If the crown is pulled out one discrete axial position to enter the date setting mode, angular rotation of the crown is then used to move from one day to the next. If the crown is pulled out two discrete axial steps, angular rotation of the crown will then be used to set the time.
For determining or measuring axial and/or angular movements and/or positions of a rotational device, a sensor arrangement is generally needed to detect a coding pattern on the rotational device. It is desirable that such a sensor arrangement provide a high resolution angular and/or translational movement or position detection and that the wear in the sensor arrangement be minimised. Furthermore, it would be desirable to obtain a position or relative movement detection arrangement that is simple to assemble and takes up little space.
It is an object of the present invention to provide a position or relative movement detection arrangement of a timepiece setting stem that fulfils the above criteria.
According to a first aspect of the invention, there is provided a method of detecting a movement of a timepiece setting stem as recited in claim 1.
The proposed new solution has the advantage that relative movements can be detected very precisely. For instance, a relative angular position detection resolution of about 9600 positions per full rotation of the crown may be achieved with the present solution, which is by far more than what can be currently achieved with other kinds of stems. Since at least some of the movements are detected optically, the wear in the system is also minimised, and hence the lifetime of the setting stem consequently improved. Furthermore, the proposed arrangement takes up little space, which is very advantageous in watches, where the available space is limited.
According to a second aspect of the invention, there is provided a sensor arrangement as recited in claim 14.
According to a third aspect of the invention, there is provided a timepiece comprising the sensor arrangement.
Other aspects of the invention are recited in the dependent claims attached hereto.
Other features and advantages of the invention will become apparent from the following description of a non-limiting exemplary embodiment, with reference to the appended drawings, in which:
An embodiment of the present invention will now be described in detail, with reference to the attached figures. Identical or corresponding functional and structural elements which appear in the different drawings are assigned the same reference numerals.
The light source 5, when illuminated, constantly emits the interrogating signal. Instead of emitting light continuously, it is also preferably arranged to emit intermittently, for instance once every millisecond, in order to save energy. The sensor arrangement described above is arranged to extract pixel patterns from the reflected signal, i.e. the light beam 9 at given time intervals, corresponding to a frequency comprised between 100 and 10000 times per second. The signal processor 13 is arranged to compare two consecutive pixel patterns that have been formed. For the sake of simplifying the sampling process, the sampling frequency used by the signal processor 13 may be aligned to the frequency of the flashes of a LED used as light source 5, and the signal processor also controls this LED for synchronisation purposes. As a result, the sampling occurs each time the LED is turned on. In order to save processing power, it may be beneficial in every pixel pattern to concentrate on a subset of the pixels only, for instance on some of the dark pixels. By comparing these pixels from the two consecutive pixel patterns created from two consecutive reflected light beams 9, it is possible to determine the angular movement or relative angular position of the shaft 10 and also the sense of rotation of the shaft 1. In fact the optical position determination follows the same principles as the ones employed for traditional optical mice.
An incremental movement counter 14 may be implemented in the signal processor or it may be connected to the signal processor 13. A value of 1 is added to that counter every time when it is detected that the latest pixel pattern is shifted for example by one pixel in a first direction with respect to the previous pixel pattern. On the other hand a value of 1 is subtracted from the counter, if the latest pixel pattern is detected to be shifted by one pixel in a second direction, whereby the first direction is opposite to the second direction. Thus, the counter value at any given time instant represents indirectly how much the shaft has been rotated with respect to the original position of the shaft 10, when the first pixel pattern was created. A mapping can be made between the counter value and the angle of rotation of the shaft 10. The angular position detection resolution can be defined to be up to about 9600 angular positions per one full rotation (360 degrees) of the shaft 10, which is at least an order of magnitude 100 times more than the usual maximal resolution for regular setting stems arranged within current electronic watches, usually set below 100 possible discrete angular positions. Thus, the relative angular position detection arrangement operates as an incremental position detector. It is however to be noted that, instead of incrementing and/or decrementing the counter by one every time when the second pattern is shifted by one pixel, it is possible to define the increment and/or decrement to take place only when the amount of shift is any other given number.
The optical detection arrangement described above, that is intended to perform relative movement measurements only sporadically, can typically be most of the time in a sleep mode to save as much energy as possible. It can be woken up for instance by an activation signal to perform the measurements when an axial movement of the crown is detected. The axial movement can be detected by the axial movement detection arrangement as described below. Alternatively there may be a specific movement detector to detect the axial and/or angular movement of the crown 11, in charge of triggering the activation of the movement measurements. It is also possible to put the optical detection arrangement into sleep mode at a given time instant. This could be done for instance when, after a movement of the crown 11, it has detected to be immobile for a given time period.
In
Indeed, according to this example illustrated by
In the example illustrated in
In
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive, the invention being not limited to the disclosed embodiment. Other embodiments and variants are understood, and can be achieved by those skilled in the art when carrying out the claimed invention, based on a study of the drawings, the disclosure and the appended claims. For instance, it would also be possible to use the optical position detection arrangement to determine also the axial position of the shaft 10. In this case the galvanic detection arrangement as illustrated on
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. The mere fact that different features are recited in mutually different dependent claims does not indicate that a combination of these features cannot be advantageously used. Any reference signs in the claims should not be construed as limiting the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
14190708 | Oct 2014 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4031341 | Wuthrich | Jun 1977 | A |
4459031 | Perucchi | Jul 1984 | A |
4511259 | Horiuchi | Apr 1985 | A |
6017127 | Kurple | Jan 2000 | A |
8934321 | Fung | Jan 2015 | B2 |
20150168178 | Hoover et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2 884 239 | Jun 2015 | EP |
WO 0122038 | Mar 2001 | WO |
WO 2014200766 | Dec 2014 | WO |
Entry |
---|
European Search Report dated Jul. 2, 2015 in European Application 14190708, filed on Oct. 28, 2014. |
Number | Date | Country | |
---|---|---|---|
20160116306 A1 | Apr 2016 | US |