The present invention relates generally to an Optical Positioning Device (OPD), and to methods of sensing movement using same.
Pointing devices, such as computer mice or trackballs, are utilized for inputting data into and interfacing with personal computers and workstations. Such devices allow rapid relocation of a cursor on a monitor, and are useful in many text, database and graphical programs. A user controls the cursor, for example, by moving the mouse over a surface to move the cursor in a direction and over distance proportional to the movement of the mouse. Alternatively, movement of the hand over a stationary device may be used for the same purpose.
Computer mice come in both optical and mechanical versions. Mechanical mice typically use a rotating ball to detect motion, and a pair of shaft encoders in contact with the ball to produce a digital signal used by the computer to move the cursor. One problem with mechanical mice is that they are prone to inaccuracy and malfunction after sustained use due to dirt accumulation, and such. In addition, the movement and resultant wear of the mechanical elements, particularly the shaft encoders, necessarily limit the useful life of the device.
One solution to the above-discussed with mechanical mice problems has been the development of optical mice. Optical mice have become very popular because they are more robust and may provide a better pointing accuracy.
The dominant conventional technology used for optical mice relies on a light emitting diode (LED) illuminating a surface at grazing incidence, a two-dimensional CMOS (complementary metal-oxide-semiconductor) detector which captures the resultant images, and software that correlates successive images to determine the direction, distance and speed the mouse has been moved. This technology typically provides good accuracy but suffers from low optical efficiency and relatively high image processing requirements.
Another approach uses one-dimensional arrays of photo-sensors or detectors, such as photodiodes. Successive images of the surface are captured by imaging optics, translated onto the photodiodes, and compared to detect movement of the mouse. The photodiodes may be directly wired in groups to facilitate motion detection. This reduces the photodiode requirements, and enables rapid analog processing. An example of one such a mouse is disclosed in U.S. Pat. No. 5,907,152 to Dandliker et al.
The mouse disclosed in Dandliker et al. differs from the standard technology also in that it uses a coherent light source, such as a laser. Light from a coherent source scattered off of a rough surface generates a random intensity distribution of light known as speckle. The use of a speckle-based pattern has several advantages, including efficient laser-based light generation and high contrast images even under illumination at normal incidence. This allows for a more efficient system and conserves current consumption, which is advantageous in wireless applications so as to extend battery life.
Although a significant improvement over the conventional LED-based optical mice, these speckle-based devices have not been wholly satisfactory for a number of reasons. In particular, mice using laser speckle have not demonstrated the accuracy typically demanded in state-of-the-art mice today, which generally are desired to have a path error of less than 0.5% or thereabout.
The present disclosure discusses and provides solutions to certain problems with prior optical mice and other similar optical pointing devices.
One embodiment relates to an optical displacement sensor for sensing movement of a data input device across a surface by determining displacement of optical features in a succession of frames. The sensor includes at least an illuminator, telecentric imaging optics, and an array of photosensitive elements. The illuminator is configured to illuminate a portion of the surface. The telecentric imaging optics is configured to image the optical features emanating from the illuminated portion of the surface, and the array of photosensitive elements is configured to detect intensity data relating to the optical features imaged by the telecentric imaging optics.
Another embodiment relates to a method of sensing movement of a data input device across a surface. A portion of the surface is illuminated and images of the illuminated portion of the surface are focused to an array of photosensitive elements using telecentric imaging optics. Displacement of optical features emanating from the illuminated portion of the surface are determined in a succession of frames to sense movement of the data input device across the surface in at least one dimension.
Another embodiment relates to an optical positioning device which includes at least a laser configured to illuminate a portion of a surface, an array of photosensitive elements; telecentric imaging optics, and a signal processor. The telecentric imaging optics is configured to map a speckle pattern generated by the illuminated portion of the surface along with finite aperture imaging optics to the array of photosensitive elements, and the signal processor is configured to determine displacement of the speckle pattern in a succession of frames.
Other embodiments are also disclosed.
These and various other features and advantages of the present disclosure are understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the appended claims to the specific embodiments shown, but are for explanation and understanding only, where:
Speckle “Boiling” Problem
One problem with prior speckle-based OPDs relates to the changing of the speckle pattern, or speckle “boiling”. In general, the speckle pattern from a surface moves as the surface is moved, and in the same direction with the same velocity. However, in many optical systems there will be additional changes in the phase front coming off of the surface. For example, if the set of rays that participate in the speckle pattern formation at the detector changes as the system is moved relative to the surface, then the detected speckle pattern will change (or “boil”) in a somewhat random manner instead of simply shift. This degrades the signal used to detect the surface motion (from the shift), leading to decreases in the accuracy and sensitivity of the system.
As discussed in detail below, one aspect of the present invention provides an OPD with negligible or reduced speckle boiling.
OPD Embodiments Disclosed Herein
The present disclosure relates generally to a sensor for an Optical Positioning Device (OPD), and to methods for sensing relative movement between the sensor and a surface based on displacement of a random intensity distribution pattern of light, known as speckle, reflected from the surface. OPDs include, but are not limited to, optical mice or trackballs for inputting data to a personal computer.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
Generally, the sensor for an OPD includes an illuminator having a light source and illumination optics to illuminate a portion of the surface, a detector having a number of photosensitive elements and imaging optics, and signal processing or mixed-signal electronics for combining signals from each of the photosensitive elements to produce an output signal from the detector.
In one embodiment, the detector and mixed-signal electronics are fabricated using standard CMOS processes and equipment. Preferably, the sensor and method of the present invention provide an optically-efficient detection architecture by use of structured illumination that produces uniform phase-front and telecentric speckle-imaging as well as a simplified signal processing configuration using a combination of analog and digital electronics. This architecture reduces the amount of electrical power dedicated to signal processing and displacement-estimation in the sensor. It has been found that a sensor using the speckle-detection technique, and appropriately configured in accordance with the present invention can meet or exceed all performance criteria typically expected of OPDs, including maximum displacement speed, accuracy, and % path error rates.
Introduction to Speckle-Based Displacement Sensors
This section discusses operating principles of speckle-based displacement sensors as understood and believed by the applicants. While these operating principles are useful for purposes of understanding, it is not intended that embodiments of the present disclosure be unnecessarily limited by these principles.
Referring to
In contrast, referring to
Speckle is expected to come in all sizes up to the spatial frequency set by the effective aperture of the optics, conventionally defined in term of its numerical aperture NA=sin θ as shown
It is interesting to note that the spatial frequency spectral density of the speckle intensity, which by Wiener-Khintchine theorem, is simply the Fourier transform of the intensity auto-correlation. The finest possible speckle, amin=λ/2NA, is set by the unlikely case where the main contribution comes from the extreme rays 118 of
Note that the numerical aperture may be different for spatial frequencies in the image along one dimension (say “x”) than along the orthogonal dimension (“y”). This may be caused, for instance, by an optical aperture which is longer in one dimension than another (for example, an ellipse instead of a circle), or by anamorphic lenses. In these cases, the speckle pattern 116 will also be anisotropic, and the average speckle size will be different in the two dimensions.
One advantage of a laser speckle-based displacement sensor is that it can operate with illumination light that arrives at near-normal incidence angles. Sensors that employ imaging optics and incoherent light arriving at grazing incident angles to a rough surface also can be employed for transverse displacement sensing. However, since the grazing incidence angle of the illumination is used to create appropriately large bright-dark shadows of the surface terrain in the image, the system is inherently optically inefficient, as a significant fraction of the light is reflected off in a specular manner away from the detector and thus contributes nothing to the image formed. In contrast, a speckle-based displacement sensor can make efficient use of a larger fraction of the illumination light from the laser source, thereby allowing the development of an optically efficient displacement sensor.
Disclosed Design for Speckle-Based Displacement Sensor
The detailed description below describes an architecture for one such laser-speckle-based displacement sensor using CMOS photodiodes with analog signal combining circuitry, moderate amounts of digital signal processing circuitry, and a low-power light source, such as, for example, a 850 nm Vertical Cavity Surface Emitting Laser (VCSEL). While certain implementational details are discussed in the detailed description below, it will be appreciated by those skilled in the art that different light sources, detector or photosensitive elements, and/or different circuitry for combining signals may be utilized without departing from the spirit and scope of the present invention.
A speckle-based mouse according to an embodiment of the present invention will now be described with reference to
Speckle generated by the rough surface 304 is mapped to the detector plane with imaging optics 310. Preferably, the imaging optics 310 are telecentric for optimum performance.
In one embodiment, the comb array detection is performed in two independent, orthogonal arrays to obtain estimations of displacements in x and y. A small version of one such array 302 is depicted in
Each array in the detector consists of a number, N, of photodiode sets, each set having a number, M, of photodiodes (PD) arranged to form an MN linear array. In the embodiment shown in
Preferably, to suppress the introduction of phase errors, which can translate directly into displacement error, the sensor of the present invention uses multiple comb arrays. Moreover, although the embodiments described herein use “4N” scheme for the individual arrays, the system design rationale is applicable (with appropriate modifications) for other array configurations or schemes, such as 3N, 5N, 6N, 7N, 8N, and so on. The terminology “4N” refers to a detector array in which every fourth detector is wired together, and the resulting four photocurrent signals are subtracted from each other as described in Dandliker, et al. (U.S. Pat. No. 5,907,152). However, many other groupings are possible with appropriate schemes for combining the signals.
Telecentric Imaging to Reduce Speckle Boiling Problem
The speckle pattern, such as the example shown in
The change in speckle pattern comes from at least two sources. A first source of change is due to part of the surface leaving the detector FOV, while a new part is entering the detector FOV, as the detector system is displaced with respect to the surface. This source of speckle pattern change is unavoidable, but its effect be minimized by estimating the displacement in a time which is much faster than it takes the detector to move across its FOV.
A second source of speckle pattern change is due to changes of viewing angle with respect to points on the rough surface as the surface is displaced. As discussed in the present patent application, applicants note that this second source of change occurs if the imaging optics is non-telecentric on the object side (the scattering surface), meaning that the angular extent of ray depends on the field point—see
The illustration in
As the detector of an object-side non-telecentric imaging system is displaced, the set of rays from a given field point that contributes to the image changes. At an undesirable extreme, a completely uncorrelated speckle would occur when the angular change is greater than or equal to twice the lens numerical aperture. In order to maintain relatively translation-invariant speckle patterns, the angular change should be less than the lens numerical aperture (NA).
Imaging systems which are telecentric on the object side are illustrated in
The first example in
The second example in
Chief rays are rays that go through the center of the system aperture. As used in the present disclosure, an imaging system is telecentric on the object side if all or a substantial majority of the chief rays coming from the object (or surface) are parallel or practically parallel. Similarly, an imaging system is telecentric on the image side if all or a substantial majority of the chief rays going toward the image (or detector) are parallel or substantially parallel.
In an object-side telecentric system, moving the object axially (along the z-axis such that the object surface moves closer to or farther from the imaging system) should result in no or little change in the magnification of the image. This is because of the chief rays being parallel, as discussed above. Moving the object axially may defocus the image, but such defocus should not be problematic when tracking movement based on movement of the speckle pattern.
In accordance with an embodiment of the invention, an optical position sensing system may be adapted to have substantially reduced speckle boiling if it is telecentric on the object side and if its illumination beam has a substantially planar phase front before it strikes the surface. In contrast, substantial speckle boiling occurs without object-side telecentric optics and/or without a uniform phase front of the illumination beam. A non-uniform phase front may be, for example, divergent.
The imaging system that is telecentric on the object side and that has a substantially planar (i.e. has a substantially uniform) phase front before it impinges the surface results in reduced speckle boiling during translation. On the other hand, the imaging system that is telecentric on the imaging side, but not on the object side, does not reduce speckle boiling during translation.
The object-side telecentric system illustrated in
While
While
A system which is telecentric on both the object and image sides is shown in
In accordance with an embodiment of the invention, in order to maintain a speckle image which translates without changing or with very little change, an image point at the detector may be formed from the same bundle of rays as the object (surface) is translated. In other words, the angular extent of the contributing rays should be invariant or near invariant as the surface translation occurs. Such invariance is present if the optical system is telecentric on the object side, for example, as in
In the above discussion, the plane of the system aperture is located where the numerical aperture of the image is defined. The aperture may comprise a purposely introduced opaque structure with transparent sections, for example, as depicted in
Optics Layout
As discussed above, telecentric imaging optics (for example, as shown in
One embodiment of this combination of illumination optics 1002 and imaging optics 1004 is shown in
The foregoing description of specific embodiments and examples of the invention have been presented for the purpose of illustration and description, and although the invention has been described and illustrated by certain of the preceding examples, it is not to be construed as being limited thereby. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications, improvements and variations within the scope of the invention are possible in light of the above teaching. It is intended that the scope of the invention encompass the generic area as herein disclosed, and by the claims appended hereto and their equivalents.
The present application claims the benefit of U.S. provisional application No. 60/573,316, entitled “Optical position sensing device using telecentric imaging,” filed May 21, 2004, by inventors Jahja I. Trisnadi, Clinton B. Carlisle, Charles B. Roxlo, and David A. LeHoty. The disclosure of the aforementioned U.S. provisional application is hereby incorporated by reference in its entirety. The present application also claims the benefit of U.S. provisional application No. 60/573,075, entitled “Optical position sensing device having a detector array using different combinations of shared interlaced photosensitive elements,” filed May 21, 2004, by inventors David A. LeHoty, Douglas A. Webb, Charles B. Roxlo, Clinton B. Carlisle, and Jahja I. Trisnadi. The disclosure of the aforementioned U.S. provisional application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3922093 | Dandliker et al. | Nov 1975 | A |
4546347 | Kirsch | Oct 1985 | A |
4560881 | Briggs | Dec 1985 | A |
4751380 | Victor et al. | Jun 1988 | A |
4799055 | Nestler et al. | Jan 1989 | A |
4814553 | Joyce | Mar 1989 | A |
4920260 | Victor et al. | Apr 1990 | A |
4936683 | Purcell | Jun 1990 | A |
5086197 | Liou | Feb 1992 | A |
5288993 | Bidiville et al. | Feb 1994 | A |
5345527 | Lebby et al. | Sep 1994 | A |
5391868 | Vampola et al. | Feb 1995 | A |
5473344 | Bacon et al. | Dec 1995 | A |
5578813 | Allen et al. | Nov 1996 | A |
5606174 | Yoshimura et al. | Feb 1997 | A |
5627363 | Paxman et al. | May 1997 | A |
5644139 | Allen et al. | Jul 1997 | A |
D382550 | Kaneko et al. | Aug 1997 | S |
D385542 | Kaneko et al. | Oct 1997 | S |
5703356 | Bidiville et al. | Dec 1997 | A |
5729008 | Blalock et al. | Mar 1998 | A |
5729009 | Dandliker et al. | Mar 1998 | A |
5781229 | Zediker et al. | Jul 1998 | A |
5786804 | Gordon | Jul 1998 | A |
5825044 | Allen et al. | Oct 1998 | A |
5854482 | Bidiville et al. | Dec 1998 | A |
5907152 | Dandliker et al. | May 1999 | A |
5963197 | Bacon et al. | Oct 1999 | A |
5994710 | Knee et al. | Nov 1999 | A |
6031218 | Piot et al. | Feb 2000 | A |
6034760 | Rees | Mar 2000 | A |
6037643 | Knee | Mar 2000 | A |
6057540 | Gordon et al. | May 2000 | A |
6097371 | Siddiqui et al. | Aug 2000 | A |
6151015 | Badyal et al. | Nov 2000 | A |
6172354 | Adan et al. | Jan 2001 | B1 |
6176143 | Mo et al. | Jan 2001 | B1 |
6195475 | Beausoleil, Jr. et al. | Feb 2001 | B1 |
6218659 | Bidiville et al. | Apr 2001 | B1 |
6222174 | Tullis et al. | Apr 2001 | B1 |
6225617 | Dandliker et al. | May 2001 | B1 |
6226092 | de Lega | May 2001 | B1 |
6233044 | Brueck et al. | May 2001 | B1 |
6233368 | Badyal et al. | May 2001 | B1 |
6246050 | Tullis et al. | Jun 2001 | B1 |
6255643 | Sayag | Jul 2001 | B1 |
6256016 | Piot et al. | Jul 2001 | B1 |
6281881 | Siddiqui et al. | Aug 2001 | B1 |
6281882 | Gordon et al. | Aug 2001 | B1 |
6304330 | Millerd et al. | Oct 2001 | B1 |
6326950 | Liu | Dec 2001 | B1 |
6330057 | Lederer et al. | Dec 2001 | B1 |
6351257 | Liu | Feb 2002 | B1 |
6396479 | Gordon | May 2002 | B2 |
6421045 | Venkat et al. | Jul 2002 | B1 |
6424407 | Kinrot et al. | Jul 2002 | B1 |
6433780 | Gordon et al. | Aug 2002 | B1 |
6452683 | Kinrot et al. | Sep 2002 | B1 |
6455840 | Oliver et al. | Sep 2002 | B1 |
D464352 | Kerestegian | Oct 2002 | S |
6462330 | Venkat et al. | Oct 2002 | B1 |
6476970 | Smith | Nov 2002 | B1 |
6529184 | Julienne | Mar 2003 | B1 |
6585158 | Norskog | Jul 2003 | B2 |
6603111 | Dietz et al. | Aug 2003 | B2 |
6618038 | Bohn | Sep 2003 | B1 |
6621483 | Wallace et al. | Sep 2003 | B2 |
6642506 | Nahum et al. | Nov 2003 | B1 |
6657184 | Anderson et al. | Dec 2003 | B2 |
6664948 | Crane et al. | Dec 2003 | B2 |
6674475 | Anderson | Jan 2004 | B1 |
6677929 | Gordon et al. | Jan 2004 | B2 |
6703599 | Casebolt et al. | Mar 2004 | B1 |
6707027 | Liess et al. | Mar 2004 | B2 |
6710855 | Shiraishi | Mar 2004 | B2 |
6737636 | Dietz et al. | May 2004 | B2 |
6774351 | Black | Aug 2004 | B2 |
6774915 | Rensberger | Aug 2004 | B2 |
6795056 | Norskog et al. | Sep 2004 | B2 |
6809723 | Davis | Oct 2004 | B2 |
6819314 | Black | Nov 2004 | B2 |
6823077 | Dietz et al. | Nov 2004 | B2 |
6825998 | Yoshida | Nov 2004 | B2 |
6869185 | Kaminsky et al. | Mar 2005 | B2 |
6947459 | Kurtz et al. | Sep 2005 | B2 |
6951540 | Ebbini et al. | Oct 2005 | B2 |
7042575 | Carlisle et al. | May 2006 | B2 |
7045763 | Ballard | May 2006 | B2 |
7098894 | Yang et al. | Aug 2006 | B2 |
7116427 | Baney et al. | Oct 2006 | B2 |
7138620 | Trisnadi et al. | Nov 2006 | B2 |
7161582 | Bathiche et al. | Jan 2007 | B2 |
7189985 | Xie et al. | Mar 2007 | B2 |
7205521 | Gruhlke et al. | Apr 2007 | B2 |
7221356 | Oliver et al. | May 2007 | B2 |
7227531 | Lutian | Jun 2007 | B2 |
7248345 | Todoroff et al. | Jul 2007 | B2 |
7268341 | Lehoty et al. | Sep 2007 | B2 |
7285766 | Carlisle et al. | Oct 2007 | B2 |
7292232 | Ranta et al. | Nov 2007 | B2 |
7295324 | Jones et al. | Nov 2007 | B2 |
7423279 | Heinz et al. | Sep 2008 | B2 |
7435942 | Lang | Oct 2008 | B2 |
7505033 | Guo et al. | Mar 2009 | B2 |
7515280 | Emtman et al. | Apr 2009 | B2 |
20020113790 | Hayashi | Aug 2002 | A1 |
20020130835 | Brosnan | Sep 2002 | A1 |
20020145588 | McCahon et al. | Oct 2002 | A1 |
20020158300 | Gee | Oct 2002 | A1 |
20020190953 | Gordon et al. | Dec 2002 | A1 |
20030034959 | Davis et al. | Feb 2003 | A1 |
20030058506 | Green et al. | Mar 2003 | A1 |
20030142288 | Kinrot et al. | Jul 2003 | A1 |
20040084610 | Leong et al. | May 2004 | A1 |
20040189593 | Koay | Sep 2004 | A1 |
20050024336 | Xie et al. | Feb 2005 | A1 |
20050024623 | Xie et al. | Feb 2005 | A1 |
20050024624 | Gruhlke et al. | Feb 2005 | A1 |
20050083303 | Schroeder et al. | Apr 2005 | A1 |
20050109961 | Bittner et al. | May 2005 | A1 |
20050117137 | Hase | Jun 2005 | A1 |
20050156915 | Fisher | Jul 2005 | A1 |
20050228838 | Stetson et al. | Oct 2005 | A1 |
20050258346 | LeHoty et al. | Nov 2005 | A1 |
20050259078 | Roxlo et al. | Nov 2005 | A1 |
20050259097 | LeHoty et al. | Nov 2005 | A1 |
20060187209 | Lai et al. | Aug 2006 | A1 |
20060279545 | Lan et al. | Dec 2006 | A1 |
20090027038 | Garmire et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
WO9946603 | Sep 1999 | WO |
WO0248853 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050259098 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60573316 | May 2004 | US | |
60573075 | May 2004 | US |