All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Described herein are optical pressure sensing/sensor assemblies for measuring physiological parameters such as blood pressure and fractional flow reserve (FFR) in the peripheral and coronary vasculature. In particular, the optical pressure sensors and assembly use optical interferometry to calculate intravascular pressure. The described embodiments are compatible for use with existing imaging systems such as optical coherence tomography and can be used with atherectomy or other occlusion-crossing devices.
Assessing the pressure gradient across a portion of a patient's vasculature provides invaluable information regarding the existence of a stenotic lesion or other occlusion that necessitates surgical or other medical intervention. For example, peripheral artery disease (PAD) affects millions of people in the United States alone. PAD is a progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease. Similarly, coronary artery disease (CAD) is a narrowing or blocking of blood vessels that supply oxygen to the heart, which if left untreated can lead to severe life-threatening or painful conditions including angina pectoris, ischemic necrosis, or myocardial infraction.
Interventional treatments for PAD or CAD may include procedures for widening vessel lumens or clearing blockages. Endarterectomy is surgical removal of plaque from the blocked artery to restore or improve blood flow. Endovascular therapies such as atherectomy are typically minimally invasive techniques that open or widen arteries that have become narrowed or blocked. Other treatments may include angioplasty to open the artery. For example, a balloon angioplasty typically involves insertion of a catheter into a leg or arm artery and positioning the catheter such that the balloon resides within the blockage. The balloon, connected to the catheter, is expanded to open the artery. Surgeons may then place a wire mesh tube, called a stent, at the area of blockage to keep the artery open.
Although interventional treatments can be beneficial in managing and treating PAD or CAD, these treatments can also be completely ineffective where the occlusion is not severe enough to warrant intervention. Where a lesion is not large enough to substantially affect blood flow, atherectomies, stenting, or other occlusion removal treatments do not provide any overall benefit to the patient. Rather, employing these methods results in over-treating vessels without any commiserate improvement in the patient's condition.
One way to avoid over-treatment is to assess the pressure changes across an occlusion prior to treatment. If the pressure changes satisfy a threshold value, then the patient is a candidate for interventional procedures. Typically, referring to
Generally, P1 and P2 are compared by calculating a ratio relating the two. For example, in coronary vessels, the fractional flow ratio (FFR) may be calculated to assess whether a blockage is severe enough to actually limit blood flow to the heart. FFR is calculated by FFR=P1/P2. In some cases, the FFR calculation formula is shown, in the art, as Pd/Pa, where Pd is the pressure distal to the blockage (e.g. P1) and Pa is the pressure proximal to the blockage (P2). Regardless of the notation using distal or proximal, the concept is the same. The ratio compares the pressure at one location with another to determine the pressure differential across the target treatment section. A similar calculation can be used for any vessel to determine a pressure ratio.
Once the pressure gradient or ratio is determined, this value can be compared to an index indicating a threshold value at or above which interventional treatment is beneficial. For example, where the FFR is greater than 0.75, the blockage may be considered severe enough to limit blood flow and should be opened. In other cases, pressure ratios below a cut-off indicate that treatment is not warranted and would not significantly improve the patient's condition.
In addition to helping establish a course of treatment, pressure measurements during procedures also provide immediate feedback on efficacy. Pressure measurements may be taken during an atherectomy to determine whether the vessel has been widened enough to provide adequate blood flow through the lumen. This prevents over-cutting or excessive removal of tissue from the treatment site once pressure measurements reach a satisfactory range. Likewise, the pressure measurements provide feedback on the need for additional tissue excision where the pressure is still outside acceptable values.
Despite the advantages of having pressure readings, measuring intravascular pressure is challenging with available sensors. One reason for this is the dependence on electrical pressure sensors such as electrical pressure transducers. Electrical sensors operate by measuring electrical characteristics such as resistance or current flow induced by positive pressure acting on the sensor (e.g. movement of a sensor diaphragm to increase or decrease electrical resistance). A significant drawback of this type of sensor is calibration drift or electrical interference. The sensitivity of electrical sensors is susceptible to environmental disturbances such as changing temperature, which affect accuracy. Accordingly, there is a need for an optical pressure sensor that avoids these electrical interferences such as drift.
An additional challenge has been the ease of using pressure sensors with existing atherectomy, occlusion-crossing devices, or vessel imaging systems (e.g. optical coherence tomography). Because these devices are designed to be introduced into and advanced through a patient's narrow vasculature, it is often challenging to include additional components for a pressure sensor without detracting from the optimal size of the devices. Moreover, the mechanisms of pressure measurement for existing sensors are often independent or incompatible with imaging modalities (e.g. OCT) utilized on devices. As such, there is a need for an optical pressure sensor that is easily integrated or incorporated into existing vascular treatment devices.
Embodiments described herein address at least these concerns. In particular, contemplated embodiments provide for optical pressure sensors and sensor assemblies that can be used alone or in conjunction with existing PAD or CAD treatment systems.
The present invention relates to optical pressure sensing devices, systems, and methods.
Some embodiments described herein provide for an optical pressure sensor assembly, having an optical fiber; a housing having a first end and a second end, the housing including a lumen through which the optical fiber extends, the housing having an opening at the first end; an elastic membrane attached to the housing and positioned at the opening, the elastic membrane configured to be movable relative to the housing in response to pressure; and an optical fiber connector attached to a proximal end of the fiber, the connector configured for optical communication with a light source.
In some embodiments, a distal end of the optical fiber is secured in the housing near the opening, the distal end of the fiber may be configured to transmit light from a light source to the elastic membrane and to receive light reflected or scattered by the elastic membrane. In additional embodiments, the optical fiber is moveable relative to the housing.
In any of the preceding embodiments, the elastic membrane is adapted to deflect toward the optical fiber under positive pressure. In some of the embodiments, the elastic membrane includes a convex surface facing the optical fiber when the membrane is deflected under positive pressure. In any of the preceding embodiments, the elastic membrane is configured to cover the opening.
In any of the preceding embodiments, the elastic membrane is adapted to reflect and scatter light toward a distal end of the optical fiber. In any of the preceding embodiments, the elastic membrane is made from fluorinated ethylene propylene.
In any of the preceding embodiments, the elastic membrane includes a first surface facing the optical fiber and a second surface facing an intravascular lumen, the distance between the first surface and the optical fiber decreasing when positive pressure is applied to the second surface of the elastic membrane. In any of the preceding embodiments, the elastic membrane is adapted to move toward a central longitudinal axis of the housing under positive pressure.
In any of the preceding embodiments, the pressure sensor device or assembly includes a memory storage device storing pressure sensor calibration data. The storage device may be an EEPROM storing pressure sensor calibration data for the assembly. In any of the preceding embodiments, the calibration data includes a pressure to deflection relationship for the elastic membrane. In any of the preceding embodiments, the pressure sensor device or assembly includes a mirror aligned with the opening to reflect light exiting the fiber toward the elastic membrane.
Any of the preceding embodiments may include an interface medium at the distal end of the optical fiber, the interface medium having a first refractive index different from a second refractive index of the optical fiber, wherein the differing refractive indices creates a Fresnel reflection. In some embodiments, the interface medium is an adhesive such as Masterbond EP42HT-2, EpoTek OG127-4 or OG116, or UV curable photonics adhesive OP-4-20658.
Any of the preceding embodiments may include a rotational mechanism configured to rotate a portion of the assembly to generate an OCT image.
In any of the preceding embodiments, a catheter may form the housing and the catheter may have an outer diameter of about 0.14 inches to about 0.19 inches. In any of the preceding embodiments, a catheter may form the housing and the catheter may have an outer diameter of about 0.014 inches to about 0.019 inches.
In any of the preceding embodiments, the optical connector includes a lens configured to transmit collimated light into a proximal end of the fiber.
In any of the preceding embodiments, the assembly is dimensioned for insertion through a catheter lumen.
Other embodiments provide for an optical pressure sensor system for sensing intravascular blood pressure including a pressure wire assembly having an elongate hollow body having a proximal end and a distal end, a tip portion located at the distal end; an opening on the tip portion formed through a wall of the elongate hollow body; an optical fiber extending through the elongate body, the fiber having a light emitting distal end and a proximal end having an optical connector; and a flexible membrane at the opening, the membrane adapted to move under pressure; and an optical imaging system having a controller, a light source, and a detector, the light source in optical communication with the fiber and the detector configured to receive light reflected or scattered by the membrane. In any of the preceding embodiments, the pressure wire assembly is adapted to measure a pressure exerted on an outer surface of the membrane. In any of the preceding embodiments, the pressure wire assembly is configured to generate a Fresnel reference light.
In any of the preceding embodiments, the controller may be configured to operate the detector and control the transmission of light from the light source. In some variations, the controller is in electrical communication with an optical switch, the optical switch configured to move between at least two modes, one of the modes providing optical communication from the light source through the optical switch and into the optical connector on the proximal end of the fiber. In some cases, the controller is configured to generate a pressure value for the pressure exerted on the outer surface of the membrane, the pressure value generated based on the movement of the flexible membrane in response to the pressure exerted on the outer surface the membrane.
In any of the preceding embodiments, the detector receives an interference signal resulting from the interaction of the Fresnel reference light and light reflected or scattered by membrane. In any of the preceding embodiments, the controller receives the interference signal from the detector and computes a pressure measurement based on the interference signal. In any of the preceding embodiments, the controller receives the interference signal from the detector and computes a pressure measurement based on the interference signal and a deflection-to-pressure relationship for the membrane. In any of the preceding embodiments, the controller computes a pressure value based on a distance between the fiber distal end and the membrane.
Any of the preceding embodiments may include an intravascular catheter device having a hollow shaft adapted for insertion into a blood vessel, the pressure wire assembly dimensioned for insertion through the hollow shaft. In some embodiments, the pressure wire assembly has an outer diameter between about 0.014 inches to about 0.019 inches. In some embodiments, the pressure wire assembly has an outer diameter between about 0.14 inches to about 0.19 inches.
In any of the preceding embodiments, the pressure wire assembly includes an interface medium at the distal end of the fiber, the interface medium having a first refractive index different from a second refractive index of a fiber core in the optical fiber.
Other embodiments provide a pressure measurement system having an optical radiation source; a pressure probe, the probe having an optical fiber; a housing surrounding a portion of the optical fiber, a distal end of the fiber positioned at an opening of the housing at a first end of the housing; a resilient sheath overlaid across the opening in the housing, the sheath adapted to deflect in response to a pressure exerted on an outer surface of the sheath, the optical fiber configured to transmit optical radiation to the sheath and receive optical radiation reflected or scattered by the sheath while the sheath is deflected; and an optical connector in optical communication with an optical radiation source. The pressure measurement system may include receiving electronics to receive reflected or scattered optical radiation from the optical fiber and a processor configured to compute a pressure value based upon the optical radiation received by the receiving electronics.
Any of the preceding embodiments may include a display in communication with the processor, the display configured for displaying measured pressure values.
In any of the preceding embodiments, the resilient sheath is a flexible membrane adapted to deflect toward the optical fiber under positive pressure from the environment. In any of the preceding embodiments, the optical fiber is removable from the housing.
In any of the preceding embodiments, the resilient sheath is a flexible membrane having a convex surface facing the optical fiber when deflected by pressure exerted on the outer surface.
In any of the preceding embodiments, the processor is configured to generate the pressure value by comparing the optical radiation received by the receiving electronics with a set of pressure calibration data for the probe.
Any of the preceding embodiments may include a memory storage device in which the set of calibration data is stored. The memory storage device may be an EEPROM. In any of the preceding embodiments, the calibration data comprises a pressure-deflection relationship for the resilient sheath.
Any of the preceding embodiments may include a catheter forming the housing. In some embodiments, the optical fiber is adhered to the housing.
Any of the preceding embodiments may include a rotational mechanism configured to rotate the probe to generate an OCT image. Any of the preceding embodiments may include a mirror near the opening, the mirror configured to reflect optical radiation from the fiber to the sheath.
In any of the preceding embodiments, the optical fiber comprises a core providing a common path for optical radiation reflected from a reference and the sheath.
In any of the preceding embodiments, the receiving electronics includes a detector.
Further embodiments provide for methods of determining pressure in a blood vessel. These methods include transmitting light from a source through an optical fiber; transmitting the light from the optical fiber to a deflected surface of an elastic membrane, wherein the elastic membrane is moveable in response to pressure exerted against the membrane; transmitting reflected or scattered light from the elastic membrane to a detector; receiving the reflected or scattered light at the detector; generating a intravascular pressure measurement from the light received by the detector from the elastic membrane.
In any of the preceding embodiments, the generating step includes computing the pressure measurement based on a membrane deflection distance between the membrane surface and the optical fiber. In any of the preceding embodiments, the deflection distance is indicated by an intensity value and a pixel depth value for the light received by the detector from the elastic membrane.
In any of the preceding embodiments, the generating step includes transmitting data from the detector to a processor, wherein the data represents an interference signal resulting from the interaction of a reference reflected light and a membrane scattered or reflected light, the processor computing an intravascular pressure based on the interference signal.
In any of the preceding embodiments, the generating step includes computing a path length from the optical fiber and the deflected surface of the membrane, the computation based on a difference in phase, time or frequency between a reference reflected light and a membrane scattered or reflected light.
Any of the preceding embodiments may include calculating a fractional flow reserve for the vessel. Any of the preceding embodiments may include calculating a first pressure at a first location and a second pressure at a second location.
Further embodiments provide for methods of determining pressure in a vessel with an OCT catheter. These methods include advancing an optical fiber through a lumen of the catheter; transmitting light from a source through an optical fiber; transmitting the light from the optical fiber to a flexible elastic membrane on the catheter, wherein the elastic membrane deflects toward the fiber under pressure; transmitting reflected or scattered light from the elastic membrane to a detector; receiving the reflected or scattered light at the detector; generating an intravascular pressure measurement based on the light received by the detector from the elastic membrane.
Any of the preceding embodiments may include computing the pressure measurement based on a membrane deflection distance. Any of the preceding embodiments may include generating an OCT image by rotating a portion of the catheter.
Further embodiments describe an OCT pressure sensing device including an elongate body; a central lumen extending within the elongate body from a proximal end of the elongate body to a distal end of the elongate body; a rotatable tip at the distal end of the elongate body and configured to rotate relative to the elongate body, the rotatable tip having an open across which sits an elastic membrane, the membrane adapted to deflect in response to a pressure exerted against an outer surface of the membrane; and an optical fiber coupled with the rotatable tip and configured to rotate therewith.
In any of the preceding embodiments, the optical fiber is an OCT imaging sensor. In any of the preceding embodiments, the optical fiber and elastic membrane are adapted to measure pressure exerted against the device. In any of the preceding embodiments, the optical fiber and elastic membrane measure pressure while the rotational position of the device is relatively fixed.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Embodiments described herein provide for optical pressure sensor assemblies that utilize the basic framework of an imaging system to provide pressure measurements. Although any suitable optical or imaging modality can be used with the contemplated invention(s), optical coherence tomography (OCT) is described as an illustrative example of how the invention is compatible with an imaging system. As such, a general overview of OCT is provided below, followed by a description of the optical pressure sensor assemblies that can be used with OCT or other imaging systems. It is to be appreciated, that the OCT discussion is for illustration purposes and not limiting the invention to any specific imaging modality.
I. OCT System General Overview
OCT has been proposed as one technique that may be particularly helpful for imaging regions of tissue, including within a body lumen such as a blood vessel. At a basic level, OCT relies on the fact that light traveling from a source and scattering from more distant objects takes longer to travel back than light scattering from nearby objects. Due to the wave nature of light, very small timing differences caused by light signals traveling different distances on the micron scale can cause constructive or destructive interference with reference light signals. OCT systems measure the resulting interference to obtain an image of the target. A typical OCT system requires one or more interferometers to distinguish the signal from the applied light.
Referring to
In addition, most known OCT systems, when applied to catheters, include a fiber that is rotated (often at high rates) within the catheter in order to scan around a lumen. During a medical procedure, such a cardiovascular catheter is typically removed from the factory sterile container. The proximal end of the catheter is connected to equipment needed to control the catheter (which in this case would also include the link to the OCT engine used to drive any OCT optical fiber in the catheter), and the distal tip is immediately inserted into the patient's body. The catheter is then discarded once the procedure is complete.
A Faraday isolation device 112, such as a Faraday Effect optical circulator, can be used to separate the paths of the outgoing light source signal and the target and reference signals returning from the distal end of the fiber. The reflected or scattered target light and the reflected reference light from the fiber can travel back to a detector 110 located at the proximal end of the optical fiber 104.
Because the reflected or scattered target light in the OCT system 100 travels a longer distance than the reflected reference light, the reflected or scattered target light can be displaced by frequency, phase and or time with respect to the reference beam. For example, if swept-source radiation is used, then the light from the target will be displaced in frequency. The difference in displacement in phase, time or frequency between the reflected or scattered target light and the reference light can be used to derive the path length difference between the end of the optical fiber tip and the light reflecting or light scattering region of the target. In the case of swept source OCT, the displacement is encoded as a beat frequency heterodyned on the carrier reference beam. Additionally, a computer or other processor may receive data corresponding to the reflected light in order to generate images of the target or to perform computations with the received data.
The laser source 102 can operate at a wavelength within the biological window where both hemoglobin and water do not strongly absorb the light, i.e. between 800 nm and 1.5 μm. For example, the laser source 102 can operate at a center wavelength of between about 1300 nm and 1400 nm, such as about 1310 nm to 1340 nm. In various embodiments, where the imaging modality is not OCT, the light source does not have to operate in a biological window, rather any wavelength of light can be used to provide light to the optical pressure assemblies described.
Additionally, the optical fiber 104 can be a single mode optical fiber for the ranges of wavelengths provided by the laser source 102. The optical fiber may have a cut-off less than 1260 nm and have single mode performance between 1270 and 1380 nm (and be manufactured compatible with SMF-28 standards).
II. Optical Pressure Sensor Assembly
As described above, one of the challenges for intravascular pressure measurement is the need for a pressure sensor that avoids the drawbacks of electrical interference such as drift, which affects the accuracy and reliability of electrical pressure sensors. To address this need, embodiments described provide for an optically-based pressure sensor that uses interferometry to determine intravascular pressure. In particular, the contemplated pressure sensor uses light reflected or scattered from an elastic membrane deflected by vessel pressure to determine blood pressure at target vessel locations. Because the mechanism is light-based, electrical disturbances like drift are avoided.
Generally, the pressure sensor assembly includes an elongate body such as an elongate housing or catheter. The elongate body is hollow or includes a lumen through which an optic fiber extends. The body includes an opening or hole, which is covered by an elastic membrane. The elastic membrane may only cover the hole or, alternatively, the elastic membrane may extend around the body to cover the hole as well as other portions of the body. The elastic membrane is adapted to move, deflect, or change shape in response to pressure exerted against the membrane.
In operation, positive intravascular fluid pressure pushes against a surface of the membrane exposed to the intravascular environment. The positive fluid pressure depresses or deflects the membrane toward an interior of the elongate body such as toward a central longitudinal axis of the body.
To provide optical pressure sensing, the optical fiber inside the body has a light emitting end aligned with the elastic membrane to allow the transmission of light from the fiber end to the elastic membrane. A light beam emitting from the fiber end will encounter the elastic membrane, which results in absorption, scattering, and reflection. Some of the reflected or scattered light will re-enter the light emitting end of the fiber to travel back down the fiber toward a proximal end of the fiber. The interaction of a reference light and the reflected/scattered light from the membrane is detected and used to determine the membrane deflection distance, which is used to compute the intravascular pressure exerted on the membrane.
Advantageously, the optical pressure sensors/assemblies can be used as standalone devices that are fed into a patient's vasculature to measure blood pressure at specific vessel locations. The pressure sensor assemblies may be used with an imaging system that provides a light source and electronics for detecting reflected/scattered light and computing pressure measurements.
Additionally, the described optical pressure sensor/assemblies are compatible for use with the existing architecture of intravascular devices (without or without imaging capability). In some embodiments, the pressure sensor assembly can be dimensioned to fit inside a lumen, such as a guidewire lumen, of an intravascular device. The pressure sensor assembly is advanced through the device lumen into a patient's vasculature. Once a pressure measuring end of the assembly is exposed in the vessel, pressure readings can be taken for that location. Where an intravascular device includes an optical interferometry system such as OCT, the pressure sensor assembly may use the existing light source and other components of the imaging system to measure and compute pressure. Alternatively, where the intravascular device is not equipped for imaging, the pressure sensor assembly may include an optical/imaging system for providing light, detecting reflected/scattered light, and computing intravascular pressure. In further embodiments, the optical pressure sensor assembly also functions as a guidewire.
In another variation, the pressure sensor assembly may be integrated into an intravascular device such that the device has built-in pressure measuring capabilities. For example, the pressure sensor assembly components can be integrated with an OCT imaging and occlusion-crossing catheter device, such as those described in U.S. patent application Ser. No. 13/433,049, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012. The integrated device may include a catheter having a tip portion with an opening covered by an elastic membrane. An optical fiber resides within the body of the catheter with a light emitting end aligned with the opening and membrane. In one mode, the integrated device measures pressure while the device is rotationally fixed. In another mode, the integrated device generates OCT images by rotating the tip portion. In such cases, the optic fiber serves both as a pressure sensor and an OCT imaging sensor. Additionally, the integrated device may operate as part of an integrated system having components to control the integrated device, compute pressure, and generate OCT images.
Referring now to
The pressure sensor assembly 202 includes an optical fiber 212 that is coupled to the imaging system 200. The optical fiber 212 is surrounded by a housing 210 that includes an opening 209 at a distal tip of the housing. The opening 209 is covered by an elastic membrane 208 that can deflect or move in response to pressure from the intravascular environment.
Any suitable membrane shape is acceptable provided that the membrane shape distorts to decrease the distance between the membrane and the fiber when the membrane experiences pressure. In some embodiments, the membrane is configured to adopt a concave shape or meniscus shape when pressure is exerted against a surface of the membrane, such as a top surface exposed to a surrounding intravascular environment. In a neutral non-deflected state, the membrane can have any shape including a relatively straight or slightly curved profile. In various embodiments, the membrane may be adapted to measure pressure between 40 mmHg to 250 mmHg or 60 mmHg to 200 mmHg.
As shown in
In practice, the light source 204 provides optical radiation/light for transmission through the optical fiber 212. At the light emitting fiber end, some of the transmitted light will be reflected back from the distal tip or the circumference at the distal tip (in case of a side-firing fiber) of the fiber, hence forth referred as reference surface to create a first signal that serves as a reference signal for the pressure sensor assembly.
In some embodiments, the reference reflected light or reference signal is created by a common-path OCT system 100 shown in
In the common-path OCT system the optical fiber has a core providing a common path for optical radiation reflected from a reference interface and a target. The core has a first refractive index, n1. The distal tip of the optical fiber is surrounded by interface medium such as an adhesive. The interface medium has a second refractive index n2. Part of the light that exits from the distal tip of the fiber is reflected back due to Fresnel reflection. When the incident and thus the reflected light are perpendicular intensity of reflection can be given by the Fresnel equation shown below.
For common path OCT the first refractive index and the second refractive index are mismatched such that the reference reflection lies between −28 dB and −38 dB. This ensures optimal operation of the receiving electronics of the common path OCT system are described in U.S. patent application Ser. No. 12/790,703, filed May 28, 2010 and titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING”, Publication No. US-2010-0305452-A1.
Some examples of the adhesive used as an interface medium are Masterbond EP42HT-2, EpoTek OG127-4 or OG116, produced by Epoxy Technology, Billerica Mass. and UV curable photonics adhesive OP-4-20658, produced by Dymax corporation, Torrington Conn.
In addition to the reflected reference light described above, some of the light exiting the fiber 212 encounters a surface or region of the elastic membrane 208. Some of this light will be reflected or scattered by the elastic membrane and re-enter the fiber 212, traveling down the fiber 212 in the opposite direction to generate a second signal, wherein the second signal represents light reflected/scattered by the membrane.
As shown in
In general, the housing may be sealed so that the pressure inside the housing is known and/or constant. The tip of the fiber optic from which light is emitted and received may be fixed within the housing, for example, to a wall of the housing that is opposite to the membrane-covered opening. In some variations the housing is sealed completely, with a known pressure, which may allow a pressure measurement relative to the known pressure. In some variations the interior of the housing is open to atmosphere pressure at the proximal end of the elongate device (e.g., near the light source), providing pressure relative to external pressure.
Moreover, an interference signal is generated from the interaction of the first and second signals. As described, the first reference signal is generated at the distal end of the fiber. This is also where the second signal from the membrane re-enters the fiber. When the two signals meet, an interference signal is generated. The resulting interference signal from the reference reflection and the back-scattered light from elastic membrane is displaced in phase, time or frequency which can be measured to find precise distance D between the end of the optical fiber tip, which is stationary with respect to the housing, and the deflected membrane. Referring to
In some embodiments, one method for determining the distance D between the membrane and the light-emitting end of the optic fiber includes generating an interference signal as described above. As discussed, light is transmitted from the distal end of the fiber. Some of this light encounters an interface medium to generate a Fresnel reference reflection that provides a first reference signal. Additionally, some of the transmitted light passes through the interface medium and encounters the deflected surface of the membrane to reflect or scatter off regions of the deflected surface. Some of the scattered/reflected light will re-enter the optic fiber to form a second signal.
Because the reflected or scattered light (second signal) from the membrane travels a longer distance than the reflected reference light, the reflected or scattered target light can be displaced by frequency, phase and or time with respect to the reference beam. For example, if swept-source radiation is used, then the light from the membrane will be displaced in frequency. The difference in displacement in phase, time or frequency between the reflected or scattered target light and the reference light can be used to derive the path length difference D between the end of the optical fiber tip and the light reflecting or light scattering region of the membrane. In the case of swept source OCT, the displacement is encoded as a beat frequency heterodyned on the carrier reference beam, this creates the interference signal.
A detector, processor, controller, or other suitable electronic receives the interference signal and calculates the distance D based on the signal properties. For example, the greater the distance, the higher the beat frequency.
Continuing with the above example, once the distance D is known, this can compared with a non-deflected distance Do for the membrane. A deflection distance Δy can be calculated from the deflected light path length D and non-deflected light path length.
Finally, pressure exerted to deflect the membrane can be computed by comparing the deflection distance Δy to a predetermined deflection-to-pressure relationship or rate for the membrane. For example, where the Δy is 60 microns and the deflection-pressure rate is 10 microns per 20 mmHg of pressure, the pressure is 120 mmHg. In some embodiments, the pressure sensor assembly includes a storage device storing the deflection-to-pressure rate for the assembly. The storage device may be on the assembly, such as on the housing, and is accessible by a processor, controller, or other electronics performing the pressure calculation.
As described in greater detail below, any appropriate membrane material, including materials having different deflection-to-pressure rates may be used. Different thicknesses of materials may also be used. In some variations, the housing may include multiple windows having multiple deflection-to-pressure rates and therefore different sensitivities or pressure ranges (which may overlap); each of these may be monitored or polled by the same or different optical fibers. Thus, multiple optical fibers may be used, or a single optical fiber that can be directed to different membrane-covered windows (e.g. by sliding axially within the housing, by rotating with the housing, etc.).
Another related method for computing pressure is schematically shown in
This pressure-deflection relationship can be predetermined for a pressure sensor assembly. This relationship may be stored as calibration information for the assembly. The calibration information and relationship may be stored on the assembly by way of a storage device such as Electrically Erasable Programmable Read-Only Memory (EEPROM) whereby a processor can access calibration information to determine measured pressure.
As can be appreciated, the optical pressure sensor assembly may communicate with a controller, processor, detector, or any other electronics. These electronics may receive data or signals regarding the light received in the optic fiber. These electronics may also be configured to carry out any of the calculations and computations described. Additionally, these electronics may also generate images such as OCT images.
Referring to
As shown, the elastic membrane 408 covers the opening 414. The material 406 for the elastic membrane 408 surrounds and encircles a circumferential portion of the housing 402. In other variations, the elastic membrane covers only the opening 414 without substantially extending around the housing. In additional embodiments, the elastic membrane is formed by inserting the housing 402 through heat shrink tubing and shrinking the tubing to cover the opening 414 and an outer surface of the housing. The heat shrink tubing may also be applied to cover the covering 404.
Any suitable material may be used for the elastic membrane 408 including biocompatible polymers such as FEP (fluorinated ethylene propylene), Tecothane®, and PET. In general, the membrane can be made from an elastic or resilient material (e.g. cross-linked polymer) that can recover from deflection induced by intravascular pressures. In some embodiments, the membrane recover from deflection by intravascular pressures between about 40 mmHg to about 250 mmHg Additionally, any material that exhibits measurable deflection when pressure or force is exerted against the membrane can be used for the membrane. Because the pressure force will be in a range associated with blood pressure, the membrane may demonstrate a spring force or resilience that is suitable for measuring pressures between about 40 to about 250 mmHg Additionally, the elastic membrane may have a thickness between about 10 microns to about 50 microns. Although described as an elastic membrane, the membrane may also be any suitable movable element such as a flexible or compliant diaphragm, sheath, meniscus, spring or other component that moves in response to blood pressure.
In some embodiments, the elastic membrane 408 forms a crescent-shape or meniscus shape across the opening 414 when deflected. The deflected elastic membrane 408 may dip or curve slightly to form a concave top surface and a convex bottom surface across the opening 414. Any suitable membrane shape is acceptable provided that the membrane shape distorts to decrease the distance between the membrane and the fiber when the membrane experiences pressure. In some embodiments, the membrane is configured to adopt a concave shape or meniscus shape when pressure is exerted against a surface of the membrane, such as a top surface exposed to a surrounding intravascular environment. In a neutral non-deflected state, membrane can have any shape including a relatively straight or slightly curved profile.
The opening 414 is generally sized to permit an elastic membrane to sit over the opening while supported by the housing 402 structure. The opening 414 may be any suitable size for achieving this purpose including between about 100-500 microns, 200-400 microns, or 100-200 microns. Generally, the opening is sized to allow a light beam to exit the opening. As shown, the opening is formed on the housing 402 through the side wall of the housing 402. Additionally, the opening can have a circular, oval, and/or elliptical shape. However, the opening is not limited to these shapes.
As shown in
Additionally, the optical fiber 410 can be a single mode optical fiber for the ranges of wavelengths provided by the light source. The optical fiber may have a cut-off less than 1260 nm and have single mode performance between 1270 and 1380 nm (and be manufactured compatible with SMF-28 standards).
In yet another embodiment, a front-firing fiber, such as optical fiber cleaved between 0 and 2 degrees may be used in conjunction with a mirror for reflecting light through from the opening on the side of the housing.
Referring to the cross-sectional views in
Furthermore, to use the pressure sensor assembly with an optical/imaging system, the assembly may include optical and electrical connectors to transfer light and power from the imaging system to the assembly.
In operation, the optical pressure sensor assembly 400 measures blood pressure by detecting reflected/scattered light from the elastic membrane and computing the distance between the deflected elastic membrane and the distal tip of the optical fiber. Referring to
In practice, pressure measurements at two locations are taken for comparison to determine the pressure ratio or gradient caused by an occlusion. In some cases, a measurement is taken on either side of an occlusion.
As discussed, a processor, computer, or other electronic component may be used to calculate pressure. The processor may compute the measured deflection with reference or calibration data for the pressure sensor assembly. Reference or calibration data for the assembly can include the pressure-membrane deflection relationship for the specific assembly. This data can be provided in a memory storage device such as EEPROM that is accessible by a processor or computer configured for computing the measured pressure(s). The memory storage device may be included in the body of the assembly, e.g. on the housing, for easy access by a processor.
Because the optical pressure sensor assembly is designed to be introduced into and advanced through a patient's vasculature, the assembly may employ a catheter as the main body for containing the described components. The catheter can be dimensioned to fit within vessels of the body, such as blood vessels. For example, the catheters can be configured to be placed within the peripheral blood vessels. Thus, the catheters can have an outer diameter of less than 0.1 inch, such as less than 0.09 inches, such as less than or equal to 0.08 inches.
Advantageously, as mentioned, the pressure sensor assemblies described can be used as a standalone device, as a complementary device for an existing intravascular device (e.g. occlusion-crossing or atherectomy catheters), or as part of an integrated intravascular device with pressure sensing capabilities. For example,
As shown, the OCT system can be used with the standalone optical pressure sensor assembly 310. The optical pressure sensor assembly may be any of the embodiments described; however, in
Alternatively, the optical pressure sensor assembly 310 may be used with the occlusion-crossing and OCT imaging catheter device 308. The OCT device 308 includes connectors 303 for optically and electrically coupling the device 304 to the controller 304. Although having occlusion-crossing or OCT capabilities, the catheter 308 is not equipped for pressure sensing. Because the OCT system has a light source, detector, applicable electronics, processors, etc., the imaging components of the OCT system can be used with the pressure sensor assembly 310 described to generate pressure measurements once the catheter 310 is advanced into the patient's vessel.
In operation, once the catheter 1302 is placed inside the patient's body using a guide wire the guide wire can be removed to insert the optical pressure sensor assembly 1304 through the catheter 1302. The pressure sensor assembly 1304 moves through the catheter tip 1301 to expose a sensing portion 1340 of the assembly 1304 to the surrounding intravascular environment. Alternatively, in some variations, the pressure sensor assembly 1304 also functions as a guide wire, in which case it eliminates the need for a separate guide wire.
As shown in
Additionally, the proximal end of the pressure sensor assembly 1348 may include a first optical connector for coupling to a second connector 1308. The second connector 1308 may be fused to another optic fiber in optical communication with a light source. The proximal end of the assembly may also connect to an OCT imaging console for pressure sensing.
The proximal end of the pressure sensor assembly includes an optical connector 2610 for coupling to a system connector 2612 that is in communication with a console 2620 via line 2614. In some embodiments, the console 2620 includes an optical switch 2622 for controlling the transmission of light between the OCT device and the optical pressure sensor assembly. In one mode, the optical switch 2622 connects the console 2620 (and light source) to the device 2603 via connectors 2605 and 2607. In another mode, the optical switch 2622 connects the console 2620 (and light source) to the pressure sensor assembly.
Referring again to
In some variations, the catheter 312 can switch between imaging and pressure measurement modes. In one operation mode, the catheter 312 rotates and provides OCT images showing the vessel structure. In another mode, the catheter 312 does not rotate (e.g. relatively fixed rotationally) and measures the intravascular pressure. In some embodiments, the same optical fiber used for OCT imaging is used for pressure measurement.
Another example of a catheter with built-in pressure sensing features is an atherectomy catheter that includes an elastic membrane and fixed or removable optical pressure wire/fiber. The elastic membrane is movable in response to pressure. When a pressure reading is needed the catheter is connected to an imaging system that provides a light source, detector, and other receiving electronics to compute pressure based on optical properties of light scattered or reflected by the membrane.
For any of the described embodiments, any suitable optical connector may be used. As shown in
III. Methods of Measuring Pressure with an Optical Pressure Sensor Assembly
Additional details describing the methods of measuring pressure with an optical pressure sensor assembly are provided in this section. As a general matter, any methods used for optical interferometry are applicable to detecting reflected and scattered light from a reference and a target. Typically, interferometers transmit light from a source through an optical fiber. The transmitted light is often split into two beams where a first beam is directed to a reference structure and a second beam is directed to a target structure. When each beam encounters a structure, the structure will reflect and/or scatter the received light. Some of the reflected/scattered light will enter the optical fiber and travel to a detector. The detector or a separate processor in communication with the detector can use the received light to determine the distance between the transmitting end of the optical fiber and the scatter/reflection point on the encountered structure.
As discussed above, this distance information can be used to compute intravascular pressure where distance is proportional to pressure. Optical pressure sensor assemblies include a movable membrane such as a deflectable membrane that varies in distances from the optical fiber depending on surrounding blood pressure. The movable membrane serves as the target structure from which transmitted light is reflected or scattered back into and received by the optical fiber. This reflected/scattered light is received and processed to determine the distance between the optical fiber and the deflected membrane.
Although distance can be measured in any suitable unit, in some embodiments, the distances are presented by an intensity vs. pixel depth relationship. As shown in
Alternatively, intravascular pressure may computed by determining the amount of distance that a membrane has deflected in response to pressure exerted against the membrane. In such cases, the optical pressure sensor assembly may include a baseline distance D0 indicating a first distance between the membrane and the fiber without deflection from pressure. The first distance is compared to a second distance Ds where the second distance is a deflected distance for the membrane under pressure. Typically, the second distance will be closer to the optic fiber as the pressure is exerted against an outer surface of the membrane to depress the membrane toward the optic fiber. The difference (Δy) between the first and second distance can be computed and compared to a deflection-pressure rate or relationship for the assembly to determine the pressure exerted to deflect the membrane.
In order to determine the value of the second distance, optical interferometry can be used as described. This can include the steps of transmitting light from a source through an optical fiber, transmitting the light from the optical fiber to a deflected surface of an elastic membrane, and transmitting light reflected or scattered light from the elastic membrane to a detector or processor that can compute the second distance based on properties of the received light.
In some variations, as described, an interference signal is created from the interaction of a reference reflection signal and a membrane reflected/scattered signal. A processor or controller etc. may be used to determine the second distance of the deflected membrane from the properties of the interference signal.
Once the second distance is determined, the distance difference Δy is calculated by subtracting Ds from D0. The distance difference is then compared to a predetermined deflection distance to pressure rate or relationship for the membrane and the pressure assembly. In some embodiments, a processor, detector, controller etc. is configured to compute or derive pressure from the membrane-to-fiber distance information.
Additionally, in other embodiments, pressure is determined without calculating a distance difference Δy. Rather, a single distance detected between the movable membrane and optical fiber is correlated to pressure.
Furthermore, pressure may be measured multiple times at multiple locations. For example, pressure may be measured prior to starting a procedure to confirm that the pressure gradient or pressure ratio (FFR) satisfies a threshold value warranting the procedure. Similarly, pressure may be measured after a procedure to confirm that a vessel has been adequately widened.
Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the examples described herein, but only by the plain meaning of the claim terms employed.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
This patent application is a continuation of U.S. patent application Ser. No. 14/776,748 filed on Sep. 15, 2015, entitled “OPTICAL PRESSURE SENSOR ASSEMBLY,” now U.S. Pat. No. 10,932,670, which is a national phase application under 35 USC 371 of International Patent Application No. PCT/US2013/032011, filed on Mar. 15, 2013, entitled “OPTICAL PRESSURE SENSOR ASSEMBLY,” each of which is herein incorporated by reference in its entirety. This patent application may be related to one or more of the following pending patent applications: U.S. patent application Ser. No. 12/790,703, entitled, “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” filed May 28, 2010; U.S. patent application Ser. No. 12/829,267, entitled, “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” filed Jul. 1, 2010; International Patent Application entitled, “OPTICAL COHERENCE TOMOGRAPHY WITH GRADED INDEX FIBER FOR BIOLOGICAL IMAGING” filed concurrently; U.S. patent application Ser. No. 13/433,049, entitled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012; International Application entitled “OCCLUSION-CROSSING DEVICES” filed concurrently; International Application entitled, “CHRONIC TOTAL OCCLUSION CROSSING DEVICES WITH IMAGING” filed concurrently; U.S. patent application Ser. No. 12/829,277, entitled, “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” filed Jul. 1, 2010; U.S. patent application Ser. No. 13/175,232, entitled, “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed Jul. 1, 2011; U.S. patent application Ser. No. 13/654,357, entitled, “ATHERECTOMY CATHETERS AND NON-CONTACT ACTUATION MECHANISM FOR CATHETERS,” filed Oct. 17, 2012; U.S. patent application Ser. No. 13/675,867, entitled “OCCLUSION-CROSSING DEVICES, ATHERECTOMY DEVICES, AND IMAGING,” filed Nov. 13, 2012; International Patent Application entitled, “ATHERECTOMY CATHETERS WITH IMAGING” filed concurrently; International Patent Application entitled, “BALLOON ATHERECTOMY CATHETERS WITH IMAGING” filed concurrently and International Patent Application entitled, “ATHERECTOMY CATHETER DRIVE ASSEMBLIES” filed concurrently. Each of these patent applications is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3367727 | Ward et al. | Feb 1968 | A |
3908637 | Doroshow | Sep 1975 | A |
4178935 | Gekhaman et al. | Dec 1979 | A |
4487206 | Aagard | Dec 1984 | A |
4527553 | Upsher | Jul 1985 | A |
4552554 | Gould et al. | Nov 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4611600 | Cohen | Sep 1986 | A |
4621353 | Hazel et al. | Nov 1986 | A |
4639091 | Huignard et al. | Jan 1987 | A |
4651753 | Lifton | Mar 1987 | A |
4654024 | Crittenden et al. | Mar 1987 | A |
4681106 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4691708 | Kane | Sep 1987 | A |
4729763 | Henrie | Mar 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4920961 | Grossi et al. | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
5000185 | Yock | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
5018529 | Tenerz | May 1991 | A |
5041082 | Shiber | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5085662 | Willard | Feb 1992 | A |
5099850 | Matsui et al. | Mar 1992 | A |
5178153 | Einzig | Jan 1993 | A |
5182291 | Gubin et al. | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5312415 | Palermo | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5333142 | Scheps | Jul 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5372601 | Lary | Dec 1994 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383467 | Auer et al. | Jan 1995 | A |
5425273 | Chevalier | Jun 1995 | A |
5425371 | Mischenko | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5437284 | Trimble | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507795 | Chiang et al. | Apr 1996 | A |
5517998 | Madison | May 1996 | A |
5556405 | Lary | Sep 1996 | A |
5607394 | Andersen et al. | Mar 1997 | A |
5613981 | Boyle et al. | Mar 1997 | A |
5620426 | Braithwaite | Apr 1997 | A |
5632754 | Farley et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5722403 | McGee et al. | Mar 1998 | A |
5728148 | Bostrom et al. | Mar 1998 | A |
5749846 | Edwards et al. | May 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5807339 | Bostrom et al. | Sep 1998 | A |
5830145 | Tenhoff | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5868778 | Gershony et al. | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5907425 | Dickensheets et al. | May 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5938671 | Katoh et al. | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5957952 | Gershony et al. | Sep 1999 | A |
5987995 | Sawatari | Nov 1999 | A |
5997558 | Nash | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017359 | Gershony et al. | Jan 2000 | A |
6027514 | Stine et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6110164 | Vidlund | Aug 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134002 | Stimson et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6152938 | Curry | Nov 2000 | A |
6152951 | Hashimoto et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6175669 | Colston et al. | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6283957 | Hashimoto et al. | Sep 2001 | B1 |
6285903 | Rosenthal et al. | Sep 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6294775 | Seibel et al. | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6307985 | Murakami et al. | Oct 2001 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6416527 | Berg et al. | Jul 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6451009 | Dasilva et al. | Sep 2002 | B1 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6454717 | Pantages et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6482216 | Hiblar et al. | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6497649 | Parker et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6503261 | Bruneau et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6542665 | Reed et al. | Apr 2003 | B2 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6563105 | Seibel et al. | May 2003 | B2 |
6564087 | Pitris | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6572563 | Ouchi et al. | Jun 2003 | B2 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6579298 | Bruneau et al. | Jun 2003 | B1 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6629953 | Boyd | Oct 2003 | B1 |
6638233 | Corvi et al. | Oct 2003 | B2 |
6645217 | MacKinnon et al. | Nov 2003 | B1 |
6657727 | Izatt et al. | Dec 2003 | B1 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6673042 | Samson et al. | Jan 2004 | B1 |
6687010 | Horii | Feb 2004 | B1 |
6728571 | Barbato | Apr 2004 | B1 |
D489973 | Root et al. | May 2004 | S |
6730063 | Delaney et al. | May 2004 | B2 |
6758854 | Butler et al. | Jul 2004 | B1 |
6760112 | Reed et al. | Jul 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6853457 | Bjarklev et al. | Feb 2005 | B2 |
6856712 | Fauver et al. | Feb 2005 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6970732 | Winston et al. | Nov 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
7068878 | Crossman-Bosworth et al. | Jun 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7126693 | Everett et al. | Oct 2006 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7261687 | Yang | Aug 2007 | B2 |
7288087 | Winston et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7311723 | Seibel et al. | Dec 2007 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7426036 | Feldchtein et al. | Sep 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7428053 | Feldchtein et al. | Sep 2008 | B2 |
7455649 | Root et al. | Nov 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7485127 | Nistal | Feb 2009 | B2 |
7488340 | Kauphusman et al. | Feb 2009 | B2 |
7530948 | Seibel et al. | May 2009 | B2 |
7530976 | MacMahon et al. | May 2009 | B2 |
7538859 | Tearney et al. | May 2009 | B2 |
7538886 | Feldchtein | May 2009 | B2 |
7539362 | Teramura | May 2009 | B2 |
7542145 | Toida et al. | Jun 2009 | B2 |
7544162 | Ohkubo | Jun 2009 | B2 |
7545504 | Buckland et al. | Jun 2009 | B2 |
7555333 | Wang et al. | Jun 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583872 | Seibel et al. | Sep 2009 | B2 |
7616986 | Seibel et al. | Nov 2009 | B2 |
7637885 | Maschke | Dec 2009 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7706863 | Imanishi et al. | Apr 2010 | B2 |
7728985 | Feldchtein et al. | Jun 2010 | B2 |
7729745 | Maschke | Jun 2010 | B2 |
7734332 | Sher | Jun 2010 | B2 |
7738945 | Fauver et al. | Jun 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7776062 | Bessellink et al. | Aug 2010 | B2 |
7785286 | Magnin et al. | Aug 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7821643 | Amazeen et al. | Oct 2010 | B2 |
7824089 | Charles | Nov 2010 | B2 |
7840283 | Bush et al. | Nov 2010 | B1 |
7944568 | Teramura et al. | May 2011 | B2 |
7952718 | Li et al. | May 2011 | B2 |
7972299 | Carter et al. | Jul 2011 | B2 |
8002763 | Berthiaume et al. | Aug 2011 | B2 |
8059274 | Splinter | Nov 2011 | B2 |
8062316 | Patel et al. | Nov 2011 | B2 |
8068921 | Prakash et al. | Nov 2011 | B2 |
8313493 | Fisher | Nov 2012 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8548571 | He et al. | Oct 2013 | B2 |
8548603 | Swoyer et al. | Oct 2013 | B2 |
8632557 | Thatcher et al. | Jan 2014 | B2 |
8644913 | Simpson et al. | Feb 2014 | B2 |
8647335 | Markus | Feb 2014 | B2 |
8696695 | Patel et al. | Apr 2014 | B2 |
8911459 | Simpson et al. | Dec 2014 | B2 |
9119662 | Moberg | Sep 2015 | B2 |
9125562 | Spencer et al. | Sep 2015 | B2 |
9333007 | Escudero et al. | May 2016 | B2 |
9345398 | Tachibana et al. | May 2016 | B2 |
9345406 | Spencer et al. | May 2016 | B2 |
9345510 | Patel et al. | May 2016 | B2 |
9345511 | Smith et al. | May 2016 | B2 |
9351757 | Kusleika | May 2016 | B2 |
9498247 | Patel et al. | Nov 2016 | B2 |
9498600 | Rosenthal et al. | Nov 2016 | B2 |
9557156 | Kankaria | Jan 2017 | B2 |
9572492 | Simpson et al. | Feb 2017 | B2 |
9579157 | Moberg | Feb 2017 | B2 |
9592075 | Simpson et al. | Mar 2017 | B2 |
9642646 | Patel et al. | May 2017 | B2 |
9788790 | Black et al. | Oct 2017 | B2 |
9854979 | Smith et al. | Jan 2018 | B2 |
9918734 | Patel et al. | Mar 2018 | B2 |
9949754 | Newhauser et al. | Apr 2018 | B2 |
10052125 | Rosenthal et al. | Aug 2018 | B2 |
10130386 | Simpson et al. | Nov 2018 | B2 |
10244934 | Tachibana et al. | Apr 2019 | B2 |
10335173 | Carver et al. | Jul 2019 | B2 |
10342491 | Black et al. | Jul 2019 | B2 |
10349974 | Patel et al. | Jul 2019 | B2 |
10357277 | Patel et al. | Jul 2019 | B2 |
10363062 | Spencer et al. | Jul 2019 | B2 |
10406316 | Garvey et al. | Sep 2019 | B2 |
10470795 | Patel et al. | Nov 2019 | B2 |
10548478 | Simpson et al. | Feb 2020 | B2 |
10568520 | Patel et al. | Feb 2020 | B2 |
10568655 | Simpson et al. | Feb 2020 | B2 |
10722121 | Smith et al. | Jul 2020 | B2 |
10729326 | Spencer et al. | Aug 2020 | B2 |
10860484 | Simpson et al. | Oct 2020 | B2 |
10869685 | Patel et al. | Dec 2020 | B2 |
10932670 | Smith | Mar 2021 | B2 |
10952615 | Kankaria | Mar 2021 | B2 |
10952763 | Newhauser et al. | Mar 2021 | B2 |
11033190 | Patel et al. | Jun 2021 | B2 |
20010005788 | McGuckin, Jr. | Jun 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020072706 | Hiblar et al. | Jun 2002 | A1 |
20020082585 | Carroll et al. | Jun 2002 | A1 |
20020082626 | Donohoe et al. | Jun 2002 | A1 |
20020097400 | Jung | Jul 2002 | A1 |
20020111548 | Swanson et al. | Aug 2002 | A1 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020147459 | Bashiri et al. | Oct 2002 | A1 |
20020158547 | Wood | Oct 2002 | A1 |
20030002638 | Mawatari | Jan 2003 | A1 |
20030028100 | Tearney et al. | Feb 2003 | A1 |
20030032880 | Moore | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030095248 | Frot | May 2003 | A1 |
20030097044 | Rovegno | May 2003 | A1 |
20030120150 | Govari | Jun 2003 | A1 |
20030120295 | Simpson et al. | Jun 2003 | A1 |
20030125756 | Shturman et al. | Jul 2003 | A1 |
20030125757 | Patel et al. | Jul 2003 | A1 |
20030125758 | Simpson et al. | Jul 2003 | A1 |
20030139751 | Evans et al. | Jul 2003 | A1 |
20030181855 | Simpson et al. | Sep 2003 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040057667 | Yamada et al. | Mar 2004 | A1 |
20040059257 | Gaber | Mar 2004 | A1 |
20040082850 | Bonner et al. | Apr 2004 | A1 |
20040092915 | Levatter | May 2004 | A1 |
20040093001 | Hamada | May 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040167553 | Simpson et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040181249 | Torrance et al. | Sep 2004 | A1 |
20040186368 | Ramzipoor et al. | Sep 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040202418 | Ghiron et al. | Oct 2004 | A1 |
20040220519 | Wulfman et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040236312 | Nistal et al. | Nov 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040254599 | Lipoma et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050020925 | Kleen et al. | Jan 2005 | A1 |
20050021075 | Bonnette et al. | Jan 2005 | A1 |
20050027199 | Clarke | Feb 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050054947 | Goldenberg | Mar 2005 | A1 |
20050075660 | Chu et al. | Apr 2005 | A1 |
20050085708 | Fauver et al. | Apr 2005 | A1 |
20050085721 | Fauver et al. | Apr 2005 | A1 |
20050105097 | Fang-Yen et al. | May 2005 | A1 |
20050141843 | Warden et al. | Jun 2005 | A1 |
20050154407 | Simpson | Jul 2005 | A1 |
20050159712 | Andersen | Jul 2005 | A1 |
20050159731 | Lee | Jul 2005 | A1 |
20050171478 | Selmon et al. | Aug 2005 | A1 |
20050177068 | Simpson | Aug 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050187571 | Maschke | Aug 2005 | A1 |
20050192496 | Maschke | Sep 2005 | A1 |
20050197623 | Leefang et al. | Sep 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050203553 | Maschke | Sep 2005 | A1 |
20050222519 | Simpson | Oct 2005 | A1 |
20050222663 | Simpson et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20060011820 | Chow-Shing et al. | Jan 2006 | A1 |
20060032508 | Simpson | Feb 2006 | A1 |
20060046235 | Alexander | Mar 2006 | A1 |
20060049587 | Cornwell | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060084911 | Belef et al. | Apr 2006 | A1 |
20060109478 | Tearney et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060173475 | Lafontaine et al. | Aug 2006 | A1 |
20060229646 | Sparks | Oct 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060235262 | Arnal et al. | Oct 2006 | A1 |
20060235366 | Simpson | Oct 2006 | A1 |
20060236019 | Soito et al. | Oct 2006 | A1 |
20060239982 | Simpson | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060264741 | Prince | Nov 2006 | A1 |
20060264743 | Kleen et al. | Nov 2006 | A1 |
20060264907 | Eskridge et al. | Nov 2006 | A1 |
20070010840 | Rosenthal et al. | Jan 2007 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070015979 | Redel | Jan 2007 | A1 |
20070035855 | Dickensheets | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038125 | Kleen et al. | Feb 2007 | A1 |
20070038173 | Simpson | Feb 2007 | A1 |
20070050019 | Hyde | Mar 2007 | A1 |
20070078469 | Soito et al. | Apr 2007 | A1 |
20070078500 | Ryan et al. | Apr 2007 | A1 |
20070081166 | Brown et al. | Apr 2007 | A1 |
20070088230 | Terashi et al. | Apr 2007 | A1 |
20070106155 | Goodnow et al. | May 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070196926 | Soito et al. | Aug 2007 | A1 |
20070213618 | Li et al. | Sep 2007 | A1 |
20070219484 | Straub | Sep 2007 | A1 |
20070250080 | Jones et al. | Oct 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070270647 | Nahen et al. | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20070288036 | Seshadri | Dec 2007 | A1 |
20070299309 | Seibel et al. | Dec 2007 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080015491 | Bei et al. | Jan 2008 | A1 |
20080015618 | Sonnenschein et al. | Jan 2008 | A1 |
20080027334 | Langston | Jan 2008 | A1 |
20080033396 | Danek et al. | Feb 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080049234 | Seitz | Feb 2008 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
20080065124 | Olson | Mar 2008 | A1 |
20080065125 | Olson | Mar 2008 | A1 |
20080065205 | Nguyen et al. | Mar 2008 | A1 |
20080095421 | Sun et al. | Apr 2008 | A1 |
20080103439 | Torrance et al. | May 2008 | A1 |
20080103446 | Torrance et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080132929 | O'Sullivan et al. | Jun 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080147000 | Seibel et al. | Jun 2008 | A1 |
20080154293 | Taylor et al. | Jun 2008 | A1 |
20080154296 | Taylor et al. | Jun 2008 | A1 |
20080177138 | Courtney et al. | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080207996 | Tsai | Aug 2008 | A1 |
20080221388 | Seibel et al. | Sep 2008 | A1 |
20080228033 | Tumlinson et al. | Sep 2008 | A1 |
20080243030 | Seibel et al. | Oct 2008 | A1 |
20080243031 | Seibel et al. | Oct 2008 | A1 |
20080262312 | Carroll et al. | Oct 2008 | A1 |
20080275485 | Bonnette et al. | Nov 2008 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090024191 | Seibel et al. | Jan 2009 | A1 |
20090028407 | Seibel et al. | Jan 2009 | A1 |
20090028507 | Jones et al. | Jan 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090073444 | Wang | Mar 2009 | A1 |
20090076447 | Casas et al. | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090099641 | Wu et al. | Apr 2009 | A1 |
20090125019 | Douglass et al. | May 2009 | A1 |
20090135280 | Johnston et al. | May 2009 | A1 |
20090137893 | Seibel et al. | May 2009 | A1 |
20090152664 | Tian et al. | Jun 2009 | A1 |
20090185135 | Volk | Jul 2009 | A1 |
20090196477 | Cense et al. | Aug 2009 | A1 |
20090196554 | Irisawa | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090208143 | Yoon et al. | Aug 2009 | A1 |
20090216180 | Lee et al. | Aug 2009 | A1 |
20090221904 | Shealy et al. | Sep 2009 | A1 |
20090221920 | Boppart et al. | Sep 2009 | A1 |
20090234220 | Maschke | Sep 2009 | A1 |
20090235396 | Wang et al. | Sep 2009 | A1 |
20090244485 | Walsh et al. | Oct 2009 | A1 |
20090244547 | Ozawa | Oct 2009 | A1 |
20090264826 | Thompson | Oct 2009 | A1 |
20090268159 | Xu et al. | Oct 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090292199 | Bielewicz et al. | Nov 2009 | A1 |
20090306520 | Schmitt et al. | Dec 2009 | A1 |
20090316116 | Melville et al. | Dec 2009 | A1 |
20090318862 | Ali et al. | Dec 2009 | A1 |
20100004544 | Toida | Jan 2010 | A1 |
20100021926 | Noordin | Jan 2010 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100080016 | Fukui et al. | Apr 2010 | A1 |
20100082000 | Honeck et al. | Apr 2010 | A1 |
20100125253 | Olson | May 2010 | A1 |
20100130996 | Doud et al. | May 2010 | A1 |
20100198081 | Hanlin et al. | Aug 2010 | A1 |
20100217245 | Prescott | Aug 2010 | A1 |
20100241147 | Maschke | Sep 2010 | A1 |
20100253949 | Adler et al. | Oct 2010 | A1 |
20100292539 | Lankenau et al. | Nov 2010 | A1 |
20100292721 | Moberg | Nov 2010 | A1 |
20100312263 | Moberg et al. | Dec 2010 | A1 |
20100317973 | Nita | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110023617 | Yu | Feb 2011 | A1 |
20110028977 | Rauscher et al. | Feb 2011 | A1 |
20110040238 | Wulfman et al. | Feb 2011 | A1 |
20110058250 | Liu et al. | Mar 2011 | A1 |
20110060186 | Tilson et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110092955 | Purdy et al. | Apr 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110118660 | Torrance et al. | May 2011 | A1 |
20110130777 | Zhang et al. | Jun 2011 | A1 |
20110137140 | Tearney | Jun 2011 | A1 |
20110144673 | Zhang et al. | Jun 2011 | A1 |
20110201924 | Tearney et al. | Aug 2011 | A1 |
20110208222 | Ljahnicky et al. | Aug 2011 | A1 |
20110257478 | Kleiner et al. | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110270187 | Nelson | Nov 2011 | A1 |
20110295148 | Destoumieux et al. | Dec 2011 | A1 |
20110301625 | Mauch et al. | Dec 2011 | A1 |
20110319905 | Palme et al. | Dec 2011 | A1 |
20120002928 | Irisawa | Jan 2012 | A1 |
20120004506 | Tearney et al. | Jan 2012 | A1 |
20120123352 | Fruland et al. | May 2012 | A1 |
20120136350 | Goshgarian et al. | May 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120259337 | del Rio et al. | Oct 2012 | A1 |
20120277730 | Salahieh et al. | Nov 2012 | A1 |
20120289971 | Segermark et al. | Nov 2012 | A1 |
20130023865 | Steinke et al. | Jan 2013 | A1 |
20130035692 | Sorensen et al. | Feb 2013 | A1 |
20130072787 | Wallace et al. | Mar 2013 | A1 |
20130184549 | Avitall et al. | Jul 2013 | A1 |
20130211221 | Sunnarborg et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130223801 | Bhagavatula et al. | Aug 2013 | A1 |
20130255069 | Higashi et al. | Oct 2013 | A1 |
20130266259 | Bhagavatula et al. | Oct 2013 | A1 |
20130287282 | Yokota et al. | Oct 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130325003 | Kapur et al. | Dec 2013 | A1 |
20130331819 | Rosenman et al. | Dec 2013 | A1 |
20140005534 | He et al. | Jan 2014 | A1 |
20140046250 | Jain et al. | Feb 2014 | A1 |
20140128893 | Guggenheimer et al. | May 2014 | A1 |
20140187949 | Zhao et al. | Jul 2014 | A1 |
20140222042 | Kessler et al. | Aug 2014 | A1 |
20140222047 | Vreeman | Aug 2014 | A1 |
20140275996 | Stigall | Sep 2014 | A1 |
20140371718 | Alvarez et al. | Dec 2014 | A1 |
20150025310 | Everingham et al. | Jan 2015 | A1 |
20150141816 | Gupta et al. | May 2015 | A1 |
20150320975 | Simpson et al. | Nov 2015 | A1 |
20160008025 | Gupta et al. | Jan 2016 | A1 |
20160144155 | Simpson et al. | May 2016 | A1 |
20160262839 | Spencer et al. | Sep 2016 | A1 |
20170238808 | Simpson et al. | Aug 2017 | A1 |
20180042520 | Patel et al. | Feb 2018 | A1 |
20180207417 | Zung et al. | Jul 2018 | A1 |
20190021679 | Christensen | Jan 2019 | A1 |
20190029714 | Patel et al. | Jan 2019 | A1 |
20190110809 | Rosenthal et al. | Apr 2019 | A1 |
20190209206 | Patel et al. | Jul 2019 | A1 |
20190313941 | Radjabi | Oct 2019 | A1 |
20200029801 | Tachibana et al. | Jan 2020 | A1 |
20200060718 | Patel et al. | Feb 2020 | A1 |
20200069253 | Black et al. | Mar 2020 | A1 |
20200069327 | Patel et al. | Mar 2020 | A1 |
20200315654 | Patel et al. | Oct 2020 | A1 |
20200323553 | Fernandez et al. | Oct 2020 | A1 |
20210059713 | Patel et al. | Mar 2021 | A1 |
20210076949 | Smith et al. | Mar 2021 | A1 |
20210177262 | Spencer et al. | Jun 2021 | A1 |
20210345903 | Patel et al. | Nov 2021 | A1 |
20220039828 | Patel et al. | Feb 2022 | A1 |
20220168011 | Patel et al. | Jun 2022 | A1 |
20220273336 | Fernandez et al. | Sep 2022 | A1 |
20220273337 | Patel et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1875242 | Dec 2006 | CN |
1947652 | Apr 2007 | CN |
101601581 | Dec 2009 | CN |
103027727 | Apr 2013 | CN |
104968285 | Oct 2015 | CN |
202006018883.5 | Feb 2007 | DE |
0347098 | Dec 1989 | EP |
0808638 | Nov 1997 | EP |
0845692 | Nov 2005 | EP |
1859732 | Nov 2007 | EP |
2090245 | Aug 2009 | EP |
2353526 | Sep 2013 | EP |
S62-275425 | Nov 1987 | JP |
03502060 | Feb 1990 | JP |
H05501065 | Mar 1993 | JP |
05103763 | Apr 1993 | JP |
06027343 | Feb 1994 | JP |
H07184888 | Jul 1995 | JP |
07308393 | Nov 1995 | JP |
2002214127 | Jul 2002 | JP |
2004509695 | Apr 2004 | JP |
2004516073 | Jun 2004 | JP |
2005114473 | Apr 2005 | JP |
2005230550 | Sep 2005 | JP |
2005249704 | Sep 2005 | JP |
2005533533 | Nov 2005 | JP |
2008175698 | Jul 2006 | JP |
2006288775 | Oct 2006 | JP |
2006313158 | Nov 2006 | JP |
2006526790 | Nov 2006 | JP |
2006326157 | Dec 2006 | JP |
200783053 | Apr 2007 | JP |
200783057 | Apr 2007 | JP |
2007225349 | Sep 2007 | JP |
2007533361 | Nov 2007 | JP |
2008023627 | Feb 2008 | JP |
2008128708 | Jun 2008 | JP |
2008145376 | Jun 2008 | JP |
2008183208 | Aug 2008 | JP |
2008253492 | Oct 2008 | JP |
200914751 | Jan 2009 | JP |
2009509690 | Mar 2009 | JP |
200978150 | Apr 2009 | JP |
2009066252 | Apr 2009 | JP |
2009201969 | Sep 2009 | JP |
2010042182 | Feb 2010 | JP |
2010518900 | Jun 2010 | JP |
2011521747 | Jul 2011 | JP |
2012143558 | Aug 2012 | JP |
2012229976 | Nov 2012 | JP |
2012533353 | Dec 2012 | JP |
2013512736 | Apr 2013 | JP |
2013524930 | Jun 2013 | JP |
2015533584 | Nov 2015 | JP |
2016508758 | Mar 2016 | JP |
20070047221 | May 2007 | KR |
2185859 | Jul 2002 | RU |
221819102 | Dec 2003 | RU |
WO9117698 | Nov 1991 | WO |
WO9923958 | May 1999 | WO |
WO0054659 | Sep 2000 | WO |
WO0115609 | Mar 2001 | WO |
WO0176680 | Oct 2001 | WO |
WO2006133030 | Dec 2006 | WO |
WO2008005888 | Jan 2008 | WO |
WO2008029506 | Mar 2008 | WO |
WO2008042987 | Apr 2008 | WO |
WO2008051951 | May 2008 | WO |
WO2008065600 | Jun 2008 | WO |
WO2008086613 | Jul 2008 | WO |
WO2008087613 | Jul 2008 | WO |
WO2008151155 | Dec 2008 | WO |
WO2009005779 | Jan 2009 | WO |
WO2009006335 | Jan 2009 | WO |
WO2009009799 | Jan 2009 | WO |
WO2009009802 | Jan 2009 | WO |
WO2009023635 | Feb 2009 | WO |
WO2009024344 | Feb 2009 | WO |
WO2009094341 | Jul 2009 | WO |
WO2009140617 | Nov 2009 | WO |
WO2009148317 | Dec 2009 | WO |
WO2010039464 | Apr 2010 | WO |
WO2010056771 | May 2010 | WO |
WO2011044387 | Apr 2011 | WO |
WO2011062087 | May 2011 | WO |
WO2012057940 | May 2012 | WO |
WO2012061935 | May 2012 | WO |
WO2012123737 | Sep 2012 | WO |
WO2012166332 | Dec 2012 | WO |
WO2013033490 | Mar 2013 | WO |
WO2013056262 | Apr 2013 | WO |
WO2014077870 | May 2014 | WO |
WO2014093148 | Jun 2014 | WO |
Entry |
---|
Patel et al.; U.S. Appl. No. 17/455,655 entitled “Atherectomy catheter with shapeable distal tip,” filed Nov. 18, 2021. |
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021. |
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021. |
Kankaria; U.S. Appl. No. 17/209,162 entitled “Optical coherence tomography with graded index fiber for biological imaging,” filed Mar. 22, 2021. |
Newhauser et al.; U.S. Appl. No. 17/209,168 entitled “Occlusion-crossing devices,” filed Mar. 22, 2021. |
Aziz et al.; Chronic total occlusions—a stiff chaliege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005. |
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733if_/http://fab.cba.mit.edu:80/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf) on Sep. 26, 2018. |
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003. |
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003. |
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5: No. 9; pp. 1156-1164; Sep. 1987. |
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009. |
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages. |
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003. |
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990. |
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages. |
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999. |
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical experiences; Cardiovascular and Interventional Radiology; Springer-Verlag; 22(6); pp. 504-509; Nov. 1, 1999. |
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; Rev. Sci. Instrum.; vol. 78; 113102; 5 pages; Nov. 6, 2007. |
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages. |
Shinkle et al.; Evaluation of stent placement and outcomes with optical coherence tomography; Interv. Cardiol.; 2(4); pp. 535-543; (manuscript version, 12 pages); Aug. 2010. |
Stamper et al.; Plaque characterization with optical coherence tomography. Journal of the American College of Cardiology. 47(8); pp. 69-79; Apr. 18, 2006. |
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994. |
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp.(011104-1)-(011104-8); Jan.-Feb. 2010. |
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010. |
Spencer et al.; U.S. Appl. No. 16/943,446 entitled “Catheter-based off-axis optical coherence tomography imaging system,” filed Jul. 30, 2020. |
Simpson et al.; U.S. Appl. No. 17/075,548 entitled “Identification of elastic lamina to guide interventional therapy,” filed Oct. 20, 2020. |
Tachibana et al.; U.S. Appl. No. 17/645,722 entitled “Atherectomy catheter drive assemblies,” filed Dec. 22, 2021. |
Black et al.; U.S. Appl. No. 17/652,073 entitled “Optical coherence tomography for biological imaging,” filed Feb. 22, 2022. |
Patel et al.; U.S. Appl. No. 17/762,815 entitled “Atherectomy catheter with shapeable distal tip,” filed Mar. 23, 2022. |
Patel et al.; U.S. Appl. No. 17/763,810 entitled “Occlusion-crossing devices,” filed Mar. 25, 2022. |
Patel et al.; U.S. Appl. No. 17/347,419 entitled “Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters,” filed Jun. 14, 2021. |
Gupta et al.; U.S. Appl. No. 17/445,648 entitled “Tissue collection device for catheter,” filed Aug. 23, 2021. |
Simpson et al.; U.S. Appl. No. 17/449,867 entitled “Occlusion-crossing devices, imaging, and atherectomy devices,” filed Oct. 4, 2021. |
Spencer et al.; U.S. Appl. No. 17/449,895 entitled “Occlusion-crossing devices, atherectomy devices, and imaging,” filed Oct. 4, 2021. |
Patel et al.; U.S. Appl. No. 17/816,673 entitled “Atherectomy catheter with serrated cutter,” filed Aug. 1, 2022. |
Number | Date | Country | |
---|---|---|---|
20220039658 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14776748 | US | |
Child | 17189123 | US |