Conventionally, an optical processing device has been used which includes a dispersion element (for example, a grating) to disperse an optical beam and an actuatable optical element allowing each wavelength in each of the dispersed beams to be incident on any of a plurality of output paths.
One example of such an actuatable optical element is a DMD (Digital Micromirror Device), which includes an array of micromirror elements, each of which is individually actuatable. The DMD may selectively switch an optical path of reflected wavelength components to any one of multiple output paths by adjusting the position of the mirror elements to control the direction in which the wavelength components are reflected. Such optical processing devices can be used to process the wavelengths in an optical beam in a variety of different ways for a variety of different purposes, including switching, wavelength attenuation and wavelength blocking
In accordance with one aspect of the invention, an optical arrangement is provided which includes an actuatable optical element and a compensating optical element. The actuatable optical element is provided to receive an optical beam having a plurality of spatially separated wavelength components and diffract the plurality of wavelength components in a wavelength dependent manner. The compensating optical element directs the optical beam to the actuatable optical element. The compensating optical element compensates for the wavelength dependent manner in which the wavelength components are diffracted by the actuatable optical element.
In accordance with another aspect of the invention, an optical processing device includes at least two optical input/output ports for receiving an optical beam and dispersion element for receiving the optical beam from one of the ports and spatially separating the optical beam into a plurality of wavelength components. The device also includes a collimating lens for collimating the plurality of wavelength components and an actuatable optical element. The actuatable optical element is provided to receive the collimated wavelength components from the collimating element and diffract the plurality of wavelength components in a wavelength dependent manner. A compensating optical element is located in an optical path between the dispersion element and the actuatable optical element, The compensating optical element compensates for the wavelength dependent manner in which the wavelength components are diffracted by the actuatable optical element.
a is a side view and
a shows a short wavelength beam being diffracted from a DMD and
a and 9b show the insertion loss over a portion of the C-band for an illustrative optical processing device without compensation for the wavelength dependence on the angle of diffraction from the DMD and with compensation for the wavelength dependence on the angle of diffraction, respectively.
Many optical processing devices direct an incoming and outgoing optical beam along the same optical path. Such devices may include optical switches, waveblockers and optical attenuators.
Another example of an optical processing device is shown in
It should be noted that while for purposes of illustration the example of the launch optics arrangement 260 shown in
The lenslet array 200 includes inner and outer opposing surfaces 220 and 230 and is formed from silica or another suitably optically transparent material. A series of collimating lens pairs 2101, 2102 are arranged on the inner surface 220 of the lenslet array 200. Each collimating lens pair 210 includes two collimating lenses 212. Likewise, a series of coupling lens 2141, 2142 are formed on the outer surface 230 of the lenslet array 200. Each collimating lens pair 210 is in registration with one of the coupling lens 214. For example, in
The pitch of the collimating lenses 212 is the same as the pitch of the fibers in the fiber array 250. Accordingly, the fiber array 250 and the lenslet array 200 are arranged so that each of the collimating lenses 212 of the lenslet array 200 is in registration with one of the fiber outputs in the fiber array 250. In some particular implementations the separation between the collimating lenses 212 and the coupling lenses 214 may be about equal to the sum of their individual focal lengths.
The operation of the launch optics arrangement 260 in
The coupling lens 214, in turn, focuses the beam in a launch plane, where, in the example shown in
Another example of an optical processing device is shown in
As shown, the optical launch arrangement 570 is followed by collimating lens 516, diffraction gratings 522, scan lens 530, compensating prism 540 and DMD 550. As best seen in the top view of
In operation, an optical beam entering the optical launch arrangement 570 from a fiber 502 exits the corresponding collimating lens 514 and comes to a virtual focus in the launch plane 511. The optical beam is then collimated by a collimating lens 516. The diffraction grating 522 next diffracts the collimated beam and the scan lens 530 focuses the spectrally dispersed beams onto the DMD 550 after passing through the compensating prism 540. When set to the pass state, the individual mirrors of the DMD 550 are tilted to reflect the beam nearly back on itself (near Littrow) so that it travels back through the device and exits through the corresponding waveguide 504 of the launch optics arrangement 570. Alternatively, when set to the blocking state, the individual mirrors of the DMD 550 are actuated so that are tilted at an angle which causes the beam to exit the device (see beam 560 in
Because the DMD 550 is tilted, the distance from the scan lens 530 to the DMD 550 varies from fiber to fiber. The function of the compensating prism 540 is to correct for this path length difference so that the beams from all the fibers are focused on the DMD 550. The operation of the compensating prism 540 can be more easily seen in
The device shown in
The wavelength dependent loss can be minimized or eliminated by providing a suitable optical element to compensate for the wavelength dependence of the diffracted angle which is introduced by diffraction from the DMD. In general this optical element should be located downstream from the diffraction grating 522 in
In one particular implementation, a slight twist may be added to one or both of the surfaces of the compensating prism 540. One example of such a prism is shown in
Referring again to
a and 9b show the insertion loss over a portion of the C-band for an illustrative optical processing device without compensation for the wavelength dependence on the angle of diffraction from the DMD and with compensation for the wavelength dependence on the angle of diffraction, respectively. As shown, the amount of loss and the variation in loss is reduced when the wavelength dependence is reduced.
Number | Name | Date | Kind |
---|---|---|---|
6760501 | Iyer et al. | Jul 2004 | B2 |
6956687 | Moon et al. | Oct 2005 | B2 |
7639906 | Strasser et al. | Dec 2009 | B1 |
20010035939 | Mihashi et al. | Nov 2001 | A1 |
20020079432 | Lee et al. | Jun 2002 | A1 |
20020176151 | Moon et al. | Nov 2002 | A1 |
20020181858 | Bouevitch | Dec 2002 | A1 |
20060159395 | Hnatiw et al. | Jul 2006 | A1 |
20070299487 | Shadduck | Dec 2007 | A1 |
20100103498 | Pan | Apr 2010 | A1 |
Entry |
---|
Khan et al. (“Demonstration of the MEMS Digital Micromirror Device-Based Broadband Reconfigurable Optical Add-Drop Filter for Dense Wavelength-Division-Multiplexing Systems,” Lightwave Technology, Journal of, vol. 25, No. 2, pp. 520-526, Feb. 2007). |
Sakurai et al. (“LCOS-Based Wavelength Blocker Array With Channel-by-Channel Variable Center Wavelength and Bandwidth,” Photonics Technology Letters, IEEE , vol. 23, No. 14, pp. 989,991, Jul. 2011). |
Fastie, “A Small Plane Grating Monochromator”, Journal of the Optical Society of America, vol. 42 No. 9, p. 641-647, Sep. 1952. |
Nabeel A. Riza et al. “Broadband Optical Equalizer Using Fault-Tolerant Digital Micromirrors”, Optics Express, vol. 11, No. 13, Jun. 30, 2003, pp. 1559-1565. |
Riza N. A. et al., “Broadband All-Digital Variable Fiber-Optic Attenuator Using Digital Micromirror Device” IEEE Photonics Technology Letters, vol. 19, No. 21, Nov. 1, 2007, pp. 1705-1707. |
Yoder et al. “DLP Technology Applicaitons in Optical Networking” Proceedings of SPIE, vol. 4457, Nov. 8, 2001, pp. 54-61. |
Number | Date | Country | |
---|---|---|---|
20130155512 A1 | Jun 2013 | US |