This application claims the priority benefit of China application serial no. 202011047025.9, filed on Sep. 29, 2020. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
This invention relates to a turntable structure and a projection device, and more particularly, to an optical processing turntable and a projection device having the optical processing turntable.
In general, a locking surface between a phosphor wheel and an optical engine is disposed on a motor, and a mass center of the phosphor wheel is located between a heat dissipation substrate and the locking surface. When the phosphor wheel rotates at a high speed in the optical engine, there is a distance (CF) between the mass center of the phosphor wheel and the locking surface, and this distance will cause a force arm to cause unstable force on the locking surface. Consequently, the phosphor wheel produces vibration and noise when it rotates at a high speed, which greatly affects the life of the phosphor wheel during long-term operation. In addition, a distance from the mass center of the heat dissipation substrate of the phosphor wheel to the mass center of the phosphor wheel (DC) plus the distance between the mass center of the phosphor wheel and the locking surface (CF) is greater than 90% of an overall height (TF) of the phosphor wheel (i.e., DC+CF>90% TF). It will cause the phosphor wheel to produce greater vibration and noise due to the structural relationship during operation.
The information disclosed in this Background section is only for enhancement of understanding of the background of the described technology and therefore it may contain information that does not form the prior art that is already known to a person of ordinary skill in the art. Further, the information disclosed in the Background section does not mean that one or more problems to be resolved by one or more embodiments of the invention was acknowledged by a person of ordinary skill in the art.
The invention provides an optical processing turntable and a projection device having the optical processing turntable, which can effectively reduce the vibration and noise during operation, thereby increasing the operating life of the optical processing turntable.
Other objects and advantages of the invention can be further illustrated by the technical features broadly embodied and described as follows.
To achieve one, a part, or all of the objects or other objects, an embodiment of the invention proposes an optical processing turntable having a first mass center and a height. The optical processing turntable includes a substrate and a driving component. The substrate has a second mass center. The driving component is disposed on the substrate to drive the substrate to rotate. The driving component has a locking surface. A distance between the locking surface and one of the first mass center and the second mass center relatively far from the locking surface is less than or equal to ⅔ of the height.
To achieve one, a part, or all of the above objectives or other objectives, an embodiment of the invention proposes a projection device, which includes a light source module, an optical processing turntable, a light valve and a projection lens. The light source module is configured to provide an illumination beam. The optical processing turntable is disposed on a transmission path of the illumination beam. The optical processing turntable has a first mass center and a height, and includes a substrate and a driving component. The substrate has a second mass center. The driving component is disposed on the substrate to drive the substrate to rotate. The driving component has a locking surface. A distance between the locking surface and one of the first mass center and the second mass center relatively far from the locking surface is less than or equal to ⅔ of the height. The light valve is disposed on a transmission path of the illumination beam, and configured to convert the illumination beam into an image beam. The projection lens is disposed on a transmission path of the image beam and configured to convert the image beam into a projection beam.
Based on the above, the embodiments of the invention have at least one of the following advantages and effects. In the design of the optical processing turntable of the invention, the driving component has the locking surface, and the distance between the locking surface and one of the first mass center of the optical processing turntable and the second mass center of the substrate relatively far from the locking surface is less than or equal to ⅔ of the height. In this way, the first mass center of the optical processing turntable and the second mass center of the substrate can be brought closer to the locking surface, and the influences of the force arm on the locking surface caused by the distance between the mass center and the locking surface can be reduced. Accordingly, the vibration and noise of the optical processing turntable during high-speed operation can be effectively reduced, and the operating life of the optical processing turntable can be increased.
Other objectives, features and advantages of the present invention will be further understood from the further technological features disclosed by the embodiments of the present invention wherein there are shown and described preferred embodiments of this invention, simply by way of illustration of modes best suited to carry out the invention.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” etc., is used with reference to the orientation of the Figure(s) being described. The components of the invention can be positioned in a number of different orientations. As such, the directional terminology is used for purposes of illustration and is in no way limiting. On the other hand, the drawings are only schematic and the sizes of components may be exaggerated for clarity. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. Similarly, the terms “facing,” “faces” and variations thereof herein are used broadly and encompass direct and indirect facing, and “adjacent to” and variations thereof herein are used broadly and encompass directly and indirectly “adjacent to”. Therefore, the description of “A” component facing “B” component herein may contain the situations that “A” component directly faces “B” component or one or more additional components are between “A” component and “B” component. Also, the description of “A” component “adjacent to” “B” component herein may contain the situations that “A” component is directly “adjacent to” “B” component or one or more additional components are between “A” component and “B” component. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
Furthermore, the light source module 12 used in this embodiment is, for example, a laser diode (LD) (e.g., a laser diode bank). Specifically, any light source that meets the volume requirement in actual design can be implemented, and this embodiment is not limited to thereto. The light valve 14 is, for example, a reflective light modulator such as a liquid crystal on silicon panel (LCoS panel), a digital micro-mirror device (DMD) and the like. In an embodiment, the light valve 14 is, for example, a transmissive optical modulator, such as a transparent liquid crystal panel, an electro-optical modulator, a magneto-optical modulator and an acousto-optic modulator, but this embodiment does not limit the form and type of the light valve 14. Enough teaching, suggestion, and implementation illustration for detailed steps and embodiments regarding how the light valve 14 converts the illumination beam L1 into the image beam L2 may be obtained with reference to common knowledge in the related art, which is not repeated hereinafter. In addition, the projection lens 16 includes, for example, a combination of one or more optical lens with refractive powers, such as various combinations among non-planar lenses including a biconcave lens, a biconvex lens, a concavo-convex lens, convexo-convex lens, a plano-convex and a plano-concave lens. In an embodiment, the projection lens 16 may also include a flat optical lens for converting the image beam L2 from the light valve 14 into the projection beam L3 in reflective or transmissive manner to be projected outside the projection device 10. Here, the form and type of the projection lens 16 are not particularly limited by the invention.
Referring to
Specifically, referring to
Referring to
In addition, referring to
In brief, the optical processing turntable 100a of this embodiment and the locking surface F1 of a light engine (not shown) are disposed on the driving component 120a, and the distance between the locking surface F1 and one of the first mass center M11 of the optical processing turntable 100a and the second mass center M21 of the substrate 110 relatively far from the locking surface F1 is less than or equal to ⅔ of the overall height H1. Therefore, the first mass center M11 of the optical processing turntable 100a and the second mass center M21 of the substrate 110 can be brought closer to the locking surface F1, and the influences of the force arm on the locking surface F1 caused by the distance between the mass center (i.e., the first mass center M11 and the second mass center M21) and the locking surface F1 can be reduced. Accordingly, the vibration and noise of the optical processing turntable 100a during high-speed operation can be effectively reduced, and the operating life of the optical processing turntable 100a can be increased.
It should be noted that the reference numerals and a part of the contents in the previous embodiment are used in the following embodiments, in which identical reference numerals indicate identical or similar components, and repeated description of the same technical contents is omitted. For a detailed description of the omitted parts, reference can be found in the previous embodiment, and no repeated description is contained in the following embodiments.
Referring to
Specifically, referring to
More specifically, referring to
Referring to
More specifically, referring to
Referring to
More specifically, referring to
In summary, the embodiments of the invention have at least one of the following advantages and effects. In the design of the optical processing turntable of the invention, the driving component has the locking surface, and the distance between the locking surface and one of the first mass center of the optical processing turntable and the second mass center of the substrate relatively far from the locking surface is less than or equal to ⅔ of the overall height. In this way, the first mass center of the optical processing turntable and the second mass center of the substrate can be brought closer to the locking surface, and the influences of the force arm on the locking surface caused by the distance between the mass center and the locking surface can be reduced. Accordingly, the vibration and noise of the optical processing turntable during high-speed operation can be effectively reduced, and the operating life of the optical processing turntable can be increased.
The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Accordingly, the foregoing description should be regarded as illustrative rather than restrictive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments are chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable persons skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents in which all terms are meant in their broadest reasonable sense unless otherwise indicated. Therefore, the term “the invention”, “the present invention” or the like does not necessarily limit the claim scope to a specific embodiment, and the reference to particularly preferred exemplary embodiments of the invention does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is limited only by the spirit and scope of the appended claims. Moreover, these claims may refer to use “first”, “second”, etc. following with noun or element. Such terms should be understood as a nomenclature and should not be construed as giving the limitation on the number of the elements modified by such nomenclature unless specific number has been given. The abstract of the disclosure is provided to comply with the rules requiring an abstract, which will allow a searcher to quickly ascertain the subject matter of the technical disclosure of any patent issued from this disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Any advantages and benefits described may not apply to all embodiments of the invention. It should be appreciated that variations may be made in the embodiments described by persons skilled in the art without departing from the scope of the present invention as defined by the following claims. Moreover, no element and component in the present disclosure is intended to be dedicated to the public regardless of whether the element or component is explicitly recited in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
202011047025.9 | Sep 2020 | CN | national |