A conventional Light Detection and Ranging (lidar) system may utilize a light-emitting transmitter (e.g., a laser diode) to emit light pulses into an environment. Emitted light pulses that interact with (e.g., reflect from) objects in the environment can be received by a receiver (e.g., a photodetector) of the lidar system. Range information about the objects in the environment can be determined based on a time difference between an initial time when a light pulse is emitted and a subsequent time when the reflected light pulse is received.
The present disclosure generally relates to light detection and ranging (lidar) systems, which may be configured to obtain information about an environment. Such lidar devices may be implemented in vehicles, such as autonomous and semi-autonomous automobiles, trucks, motorcycles, and other types of vehicles that can navigate and move within their respective environments.
In a first aspect, a light detection and ranging (lidar) system is provided. The lidar system includes a transmitter and a receiver. The transmitter includes at least one light-emitter device configured to transmit emission light into an environment of the lidar system. The receiver is configured to detect return light from the environment. The receiver includes a plurality of apertures, a plurality of photodetectors, and a plurality of optical redirectors. Each optical redirector is configured to receive return light from a respective aperture, separate the return light into unequal portions, and illuminate at least two photodetectors of the plurality of photodetectors. At least one of the optical redirectors includes an optically isolating coating.
Optionally, the plurality of optical redirectors substantially extends between the plurality of apertures and the plurality of photodetectors.
In a second aspect, an optical redirector device is provided. The optical redirector device includes a plurality of apertures, a plurality of photodetectors, and a plurality of optical redirectors. Each optical redirector is configured to receive return light from a respective aperture, separate the return light into unequal portions, and illuminate at least two photodetectors of the plurality of photodetectors. At least one of the optical redirectors includes an optically isolating coating.
Optionally, the plurality of optical redirectors substantially extends between the plurality of apertures and the plurality of photodetectors.
In some aspects, each optical redirector is configured to receive return light from a respective aperture and direct the light through a redirection path that illuminates at least one photodetector. Each optical redirector has a rotational orientation relative to other optical redirectors such that no redirection paths of adjacent optical redirectors are coplanar with one another.
Optionally, an optically absorbing structure may be placed between optical redirectors.
In a third aspect, a vehicle is provided. The vehicle includes a light detection and ranging (lidar) system. The lidar system includes a transmitter. The transmitter includes at least one light-emitter device configured to transmit emission light into an environment of the vehicle. The lidar system also includes a receiver configured to detect return light from the environment. The receiver includes a plurality of apertures, a plurality of photodetectors, and a plurality of optical redirectors. Each optical redirector is configured to receive return light from a respective aperture, separate the return light into unequal portions, and illuminate to at least two photodetectors of the plurality of photodetectors. At least one of the optical redirectors includes an optically isolating coating.
Optionally, the plurality of optical redirectors substantially extends between the plurality of apertures and the plurality of photodetectors.
In a fourth aspect, a method for enhancing a dynamic range of a light detection and ranging (lidar) system is provided. The method includes transmitting emission light from the lidar into an environment of the lidar. The method also includes receiving return light. The return light is at least a portion of the emission light reflected from an object in the environment of the lidar. The method also includes transmitting the return light through a plurality of apertures into a plurality of optical redirectors. At least one of the optical redirectors includes an optically isolating coating.
Other aspects, embodiments, and implementations will become apparent to those of ordinary skill in the art by reading the following detailed description, with reference where appropriate to the accompanying drawings.
Example methods, devices, and systems are described herein. It should be understood that the words “example” and “exemplary” are used herein to mean “serving as an example, instance, or illustration.” Any embodiment or feature described herein as being an “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or features. Other embodiments can be utilized, and other changes can be made, without departing from the scope of the subject matter presented herein.
Thus, the example embodiments described herein are not meant to be limiting. Aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are contemplated herein.
Further, unless context suggests otherwise, the features illustrated in each of the figures may be used in combination with one another. Thus, the figures should be generally viewed as component aspects of one or more overall embodiments, with the understanding that not all illustrated features are necessary for each embodiment.
A lidar system includes a transmitter and a receiver. The transmitter may include one or more light-emitter devices (e.g., one or more laser bars with one to eight laser diodes each) configured to transmit light into an environment of the lidar system via one or more optical elements in a transmit path (e.g., a transmit lens, a rotatable mirror, and an optical window).
The rotatable mirror could be configured to rotate about a mirror rotation axis. The rotatable mirror could be configured to interact with light pulses emitted by the one or more light-emitter devices so as to direct the light pulses toward various locations within an environment. Furthermore, the rotatable mirror may be configured to direct light pulses toward the receiver after such light pulses have interacted with the environment to form return light pulses.
In an example embodiment, the mirror rotation axis could be perpendicular to the emission axis of one or more of the light-emitter devices. In some embodiments, the emission axis of the one or more light-emitter devices could be positioned so as to not intersect the mirror rotation axis. At least a portion of the lidar system could be configured to rotate about a first axis at an azimuthal rotational rate (e.g., 3 Hz-60 Hz).
In some examples, the first axis could be perpendicular to the mirror rotation axis. In such scenarios, at least the optical window and the rotatable mirror could be rotated about the first axis so as to scan an emitted light beam through an azimuthal angle range associated with the lidar system. As the rotatable mirror rotates about the mirror rotation axis, the emitted light beam may be scanned through varying elevation angles with respect to the lidar system.
In other words, while rotating about the rotational axis, the rotatable mirror may be configured to direct the light from the laser light source(s) into an environment of the lidar system over a wide field of view in both azimuthal angle range and elevation angle range. By directing the light over this large angular field of view, the lidar system may provide ranging information about objects within a large three-dimensional volume.
In some embodiments, the lidar system could be configured to provide information about a field of view that may extend more than 180 degrees (e.g., 210 degrees or 360 degrees) in azimuth and more than 90 degrees (e.g., 95 degrees, 110 degrees, 120 degrees, 150 degrees, or more) in elevation angle range around the system. Other sizes and shapes of various fields of view are possible and contemplated. In some examples, based on utilizing multiple light-emitter devices, the lidar system could provide an azimuthal angle resolution or elevation angle resolution of less than one degree (e.g., 0.2 degrees-0.6 degrees between beams in azimuth or in elevation, or less).
In some embodiments, the rotatable mirror may include a three or four-sided mirror surface that is coupled to a shaft. Rotatable mirrors with more or fewer sides are possible and contemplated. The shaft could be made of steel and may be configured to rotate such that the four-sided mirror surface can rotate about the shaft's axis. In some embodiments, the mirror could include an injection-molded plastic (e.g., polycarbonate) body. In such scenarios, the four-sided mirror surface could include one or more deposited materials, such as gold, silicon oxide, titanium oxide, titanium, platinum, or aluminum.
Deformations in a surface of the mirror are undesirable because light pulses could be diverted to irregular and/or unknown positions within the environment. Furthermore, mismatches in the coefficient of thermal expansion (CTE) between the mirror body (e.g., plastic) and the shaft (e.g., steel) could introduce undesirable temperature-dependent deformations that could change dynamically.
In some embodiments, the body of the mirror could be substantially hollow so as to reduce deformation issues related to the CTE mismatch between the shaft and the mirror. For example, the four-sided mirror surface could be coupled to the shaft via a plurality of flexible members (e.g., four members extending toward a shaft from each apex of the four-sided mirror surface. The flexible members could be straight or curved. In some embodiments, the flexible members could be substantially stiff when in torsion, but elastic along the radial axis. In some embodiments, at least a portion of the shaft could have an octagonal cross-section or another type of symmetric cross-section (e.g., square or hexagonal cross-section, etc.). In various examples, the cross-section of the shaft could be shaped or otherwise configured to prevent slipping of the multi-sided rotatable mirror with respect to the shaft.
In some embodiments, the rotatable mirror may be configured to be easily replaceable and/or serviceable. For example, the rotatable mirror may be mechanically coupled to the shaft and drive magnet. In other embodiments, the rotatable mirror may include an optical mirror baffle, which may include a flat, disk-shaped opaque material that is configured to optically-separate the transmit path and the receive path within the optical cavity of the LIDAR system. In some examples, the rotatable mirror may be coupled to a mirror bracket that may be configured to be easily removed from other elements of the LIDAR system. In such a manner, the rotatable mirror (and related components) could be easily serviced and/or replaced. In some embodiments, the rotatable mirror may require servicing due to wear and tear of various components, such as rotational bearings, shaft wear, among other possibilities.
In some embodiments, an encoder magnet may be coupled to the shaft of the rotatable mirror. In such scenarios, the encoder magnet may be configured to provide information indicative of a rotational position of the rotatable mirror. For example, the encoder magnet could be utilized to determine a “zero-angle” of the plurality of reflective surfaces of the rotatable mirror. Among other possibilities, the encoder magnet could help improve positioning accuracy and repeatability of objects sensed within the environment. In various examples, the same magnet may serve as the encoder magnet and the mirror drive motor. That is, the same magnet may be configured to sense the mirror position as well as to rotatably actuate the shaft and mirror.
In one specific implementation, the width of the optical window may be between 20 millimeters and 25 millimeters. Other sizes are possible. In some examples, the optical window may be tilted at an offset angle (e.g., 10 degrees) relative to the first axis of rotation. In some embodiments, the lidar system may be configured to control a temperature of the optical window (e.g., to de-ice and/or reduce the likelihood of water condensation, etc.). In one embodiment, the lidar system may include one or more heating elements (e.g., perimeter resistor, transparent resistive film, etc.) positioned on, near, or adjacent to the optical window. In another embodiment, the lidar system may include an air duct configured to direct air toward the rotatable mirror, and the rotatable mirror may be arranged to redirect the air toward the optical window. As an example, the redirected air could defrost or otherwise control or adjust the temperature of the optical window.
In some embodiments, the receiver could include a plurality of optical redirectors and a corresponding plurality of light detectors (e.g., four to sixteen detectors). The light detectors are configured to detect return light via one or more optical elements in a receive path (e.g., the optical window, the rotating mirror, a receive lens, and a pinhole aperture). The return light is light that has been transmitted from the transmitter and reflected back toward the receiver by an object in the environment. The optical redirectors could be configured to direct return light entering the receiver by way of the pinhole aperture and the receive lens to respective light detectors. In some embodiments, the optical redirectors could optically couple portions of the return light toward each light detector using total internal reflection. In some embodiments, the optical redirectors could be configured to separate the respective portions of return light so as to efficiently utilize as much of the return light flux as possible.
In an example embodiment, the number of light detectors could be greater than the number of light-emitter devices. As an example, the light redirector devices could be configured to spatially separate the respective portions of the return light so as to be detected by the plurality of light detectors. In some embodiments, the optical redirectors could separate the return light into unequal portions so as to illuminate a first light detector with a first photon flux of a first portion of return light and illuminate a second light detector with a second photon flux of a second portion of return light. In such a scenario, the first photon flux could be at least an order of magnitude different from the second photon flux. Thus, the receiver may be configured to detect a greater dynamic range within a given scene than if the respective photon fluxes provided to each photodetector were similar.
In some embodiments, the optical redirectors could include four total internal reflection optical elements configured to spatially separate light from four pinholes spaced apart by between 400-600 microns and direct the light toward the photodetectors, which may be spaced more widely than the respective pinholes (e.g., separated by 1000 microns or more). In some embodiments, the optical redirectors could include one or more reflectors (e.g., at least two reflectors). The reflectors redirect light by reflecting the light within the optical redirectors and towards the photodetectors (e.g., the optical redirector may function like a periscope). In some embodiments, one or more of the reflectors may include mirrors. The optical redirectors may also provide an expanded beam to more fully fill the active area of the respective detectors. In various embodiments, the optical redirectors could be physically grouped in pairs. In such scenarios, a first pair of optical redirectors could be configured or otherwise shaped to interlock and/or interleave with a second pair of optical redirectors. For example, the first and second pair of optical redirectors could be configured to slidably couple to one another, such as via a dovetail joint. As such, the respective in-coupling ends of the optical redirectors could be more closely spaced than might be possible with conventional injection molding processes. In some embodiments, the plurality of apertures may be coplanar with each other. Additionally, the plurality of apertures may be collinear with each other.
In some embodiments, the pinhole aperture may be a thin plate formed from stainless steel. However, other materials are possible and contemplated. The pinhole aperture plate may be around 100 microns thick. Each pinhole could be 200-300 microns in diameter and the pinhole aperture plate may include one pinhole for each light-emitter device (e.g., four light-emitter devices, four pinholes).
In some embodiments, the plurality of light detectors could be grouped into two sets. For example, the plurality of light detectors could include four primary light detectors and four secondary light detectors. In such scenarios, a first portion of the return light could be detected by the four primary light detectors. Some of the light incident on the four primary light detectors could be reflected from a top surface of the four primary light detectors. The reflected light could be redirected and/or reflected toward the four secondary light detectors. Such scenarios could be beneficial because the optical beam does not need to be split off and other optical elements (e.g., beamsplitters, mirrors) are not necessary. In other words, the return light could be focused or directed toward the primary light detectors and a portion of the light could be reflected or deflected so as to interact with the secondary light detectors. Other ways to provide reduced coupling to the secondary light detectors are also contemplated and possible. As such, the primary light detectors could be illuminated by a majority (e.g., greater than 90%) of the return light. The secondary light detectors could be illuminated by less than 10% of the return light. In such scenarios, the combination of primary and secondary light detectors could provide a larger dynamic range (e.g., four to six orders of magnitude or more) than a standard detector array.
In some embodiments, the transmit path and the receive path could intersect with the same rotatable mirror. For example, the rotatable mirror could be shaped as a rectangular prism or triangular prism with a plurality of reflective surfaces. In such scenarios, the light emitted from the plurality of light-emitter devices could interact with a portion of the rotatable mirror so as to be redirected toward an external environment of the lidar system via the optical window. Upon interaction with objects in the external environment, at least a portion of the light could be reflected as return light. The return light could interact with the optical window and a second portion of the rotatable mirror and redirected toward the plurality of light detectors. In some embodiments, the first portion of the rotatable mirror and the second portion of the rotatable mirror could be separated by an optical mirror baffle. In such scenarios, the mirror baffle could be coupled to the rotatable mirror and could be shaped like a flat disk. The mirror baffle could be centered about the rotational axis of the rotatable mirror, such that the flat disk is oriented along a plane perpendicular to the rotational axis.
Example systems and methods could optionally utilize optical feedback. As an example, an optical feedback system could include an internal optical path through the optical baffle, and one or more internal reflectors. The transmitter and receiver could be disposed in a common optical cavity. The optical cavity could be substantially separated into a receiver portion and a transmitter portion by the optical baffle. The internal optical path could include a pinhole or other opening in the optical baffle that may optically couple the two portions of the optical cavity. As an example, the opening in the optical baffle could be a circular opening approximately 1 mm in diameter. However, openings of other sizes and/or other shapes are also contemplated and possible.
In some embodiments, the one or more internal reflectors could reflect and/or diffuse light emitted by the transmitter. In such scenarios, the one or more internal reflectors could be disposed so as to reflect and/or diffuse light emitted by the transmitter toward the internal optical path. For example, the emitted light could be reflected from a first internal reflector toward the opening in the optical baffle and into the receiver portion of the optical cavity. Once the light has been redirected into the receiver portion of the optical cavity, it may interact with a second internal reflector. The second internal reflector could be oriented or disposed so as to reflect or diffuse light toward the receiver.
In some embodiments, the receiver includes a plurality of photodetectors. The photodetectors could include, for example, photodetectors, such as silicon photomultipliers (SiPMs) or avalanche photodiodes (APDs). Other types of photodetectors are possible and contemplated. In various examples, the one or more internal reflectors could include a polycarbonate material. Other types of diffusers and/or partially reflecting surfaces and/or materials are possible and contemplated. In some embodiments, the internal reflectors could act as low-efficiency reflectors (e.g., less than 0.1% reflectivity, less than 0.05% reflectivity, or less than 10 reflected photons per billion photons emitted by the receiver). In some embodiments, the internal reflectors could be patterned (e.g., stippled, raised, dimpled, grooved, or otherwise having a non-flat/level surface). In some embodiments, an internal reflector could include a surface with a parabolic section and/or conic section. In such scenarios, the surface of the internal reflector could be curved in one dimension or two dimensions. Optionally, the size of the internal reflector could be configured, adjusted, or selected so as to tune a coupling amount.
In some examples, the optical feedback system could be utilized in lidar applications. For example, the transmitter could also act as a source of ranging light pulses (e.g., emitted from a plurality of light-emitter devices) for the lidar. Furthermore, the receiver could additionally act as a photodetector (or a photodetector array) to determine the time of flight of the light pulses so as to determine the distance to objects in the environment. In some embodiments, the light pulses received via the internal optical path may represent a more reliable “zero-time” reference than those provided by, for example, a calibration target or known features within the environment. Such calibration targets and known features are not always available within the environment. Furthermore, temperature-dependent electronic delays make a one-time calibration process time-consuming and/or inaccurate. Accordingly, a real-time optical feedback system could provide a continuous range reference from which time-dependent offsets can be determined.
Additionally or alternatively, example optical feedback systems could provide a way to more-directly estimate and/or extrapolate the transmit power. That is, in some examples, the amount of light received by the receiver via the internal reflector(s) could be proportional to an overall transmitted optical power. For example, an output signal of one or more of the photodetectors could be compared to a lookup table that provides information about associations between the output signal and the overall transmitted optical power. As such, the optical feedback system could provide a way to directly measure the optical output of a lidar system on a per-shot basis.
In some embodiments, examples systems and methods could include an occlusion detection system. Such an occlusion detection system could provide a way to determine the presence of dust, dirt, and/or cracks in the optical window or another optical element in the systems described herein. The occlusion detection system could include a camera, a flash illuminator, a primary reflective surface, and an optical element (e.g., the optical window). The camera could include a CMOS camera or another type of video capture device. The flash illuminator could include an infrared LED or another type of light-emitter device.
The flash illuminator could be configured to emit light toward the primary reflective surface. The primary reflective surface could be positioned so as to redirect the emitted light toward the rotatable mirror. In some embodiments, the primary reflective surface could be a rectangular-shaped mirror with aspect ratio of at least 8:1 (e.g., length:width). Other shapes of the primary reflective surface are possible. In such scenarios, the rotatable mirror could be configured to rotate about a rotational axis so as to sweep a field of view over a range of angles (e.g., more than 110 degrees in elevation angle). In such a manner, the flash illuminator could provide illumination light to a range of elevation angles based on a rotational position of the reflective surfaces of the rotatable mirror. In such scenarios, a long axis of the primary reflective surface could be disposed substantially parallel to the rotational axis of the rotatable mirror. While example embodiments herein include a primary reflective surface, it will be understood that, in some examples, a primary reflective surface need not be present. Furthermore, while example embodiments include the primary reflective surface as being in a particular location, it will be understood that the primary reflective surface could be located elsewhere. For example, some embodiments may include reflective surfaces along the beam path to facilitate packaging and other spatial (e.g., housing) constraints. In some embodiments, the pulse duration of the flash illuminator could be short relative to the mirror rotation speed. In such scenarios, the rotating mirror is effectively “frozen” while the illuminator briefly illuminates a desired region of the optical element by way of the mirror. For example, the illuminator could be configured to provide light pulses that have a pulse time of 10 ms, 1 ms, or less. Furthermore, the exposure time of the camera can be long relative to the rotation speed of the mirror so that multiple flashes can be used to illuminate the window, thereby increasing the amount of signal on the camera.
The optical element is optically coupled to the rotatable mirror such that at least a portion of the illumination light is incident upon the optical element. The camera could be positioned so as to capture images of the primary reflective surface. In such scenarios, the camera could capture images of various “slice” portions of the optical element as the rotatable mirror rotates about the rotational axis. In some embodiments, the camera could include a fixed focal length lens so as to focus on the optical element. As such, the occlusion detector system could be configured to detect debris, cracks, or other types of occluding objects adjacent to, or within the optical element.
In such scenarios, at least a portion of the occlusion detection system could be disposed within a same optical cavity as that of the receiver and transmitter. For example, the primary reflective surface could be positioned adjacent to, or outside the transmit path of the transmitter and/or the receive path of the receiver so as to avoid optically occluding (e.g., blocking) the primary operation of the lidar system. In such a manner, the occlusion detection system could be configured to detect occlusions on or adjacent to the optical element (e.g., primary optical window) of the lidar system.
System 100 includes a rotatable base 110 configured to rotate about a first axis 102. In some embodiments, a base actuator 112 could be operable to rotate the rotatable base 110 about the first axis 102 at an azimuthal rotational rate between 3 Hertz and 60 Hertz (e.g., between 180 revolutions per minute (RPM) and 3600 RPM). However, other azimuthal rotational rates are possible and contemplated. In some embodiments, the base actuator 112 could be controlled by the controller 150 to rotate at a desired rotational rate. In such scenarios, the controller 150 could control the base actuator 112 to rotate at a single target rotational rate and/or the controller 150 could dynamically adjust a desired rotational rate of the base actuator 112 within a range of possible rotational rates.
In some embodiments, the base actuator 112 could include an electric motor. For example, the electric motor could include a stator 116 and a rotor 114 that could be operable to rotate a shaft 118 of the rotatable base 110. In various embodiments, the base actuator 112 could be a direct current (DC) motor, a brushless motor, or another type of rotational actuator. In some embodiments, the shaft 118 could be coupled to the rotatable base 110 by way of one or more bearings 119. Bearings 119 could include a rotational bearing or another type of low-friction bearing.
In some embodiments, system 100 need not include a rotatable base 110. In such scenarios, one or more elements of the system 100 within housing 160 may be configured to rotate about the first axis 102. However, in other cases, some elements of the system 100 need not rotate about the first axis 102. Accordingly, in such embodiments, system 100 could be utilized in line-scanning applications, single-point scan applications, among other possibilities.
The system 100 also includes a mirror assembly 130 with shaft 134 and a mirror body 133 that is configured to rotate about a mirror rotation axis 131. In some embodiments, the mirror rotation axis 131 could be substantially perpendicular to the first axis 102 (e.g., within 0 to 10 degrees of perpendicular). In an example embodiment, a mirror actuator 136 could be configured to rotate the mirror body 133 about the mirror rotation axis 131 at a mirror rotational rate between 100 Hz to 1000 Hz (e.g., between 6,000 RPM and 60,000 RPM). In some contexts, the mirror body 133 could be configured to rotate about the mirror rotation axis 131 within a period of rotation (e.g., between 3.3 milliseconds and 1 millisecond).
The mirror actuator 136 could be a DC motor, a brushless DC motor, an AC motor, a stepper motor, a servo motor, or another type of rotational actuator. It will be understood that the mirror actuator 136 could be operated at various rotational speeds or at a desired rotational speed, and that the mirror actuator 136 could be controlled by the controller 150.
In example embodiments, the mirror assembly 130 includes a plurality of reflective surfaces 132. For example, the plurality of reflective surfaces 132 could include four reflective surfaces (e.g., reflective surface 132a, 132b, 132c, and 132d). In various embodiments, the reflective surfaces 132 could be formed from at least one of: gold, silicon oxide, titanium oxide, titanium, platinum, or aluminum. In such scenarios, the four reflective surfaces could be arranged symmetrically about the mirror rotation axis 131 such that a mirror body 133 of the mirror assembly 130 has a rectangular prism shape. It will be understood that the mirror assembly 130 could include more or less than four reflective surfaces. Accordingly, the mirror assembly 130 could be shaped as a multi-sided prism shape having more or less than four sides. For example, the mirror assembly 130 could have three reflective surfaces. In such scenarios, the mirror body 133 could have a triangular cross-section.
In some embodiments, the mirror body 133 could be configured to couple the plurality of reflective surfaces 132 to the shaft 134. In such scenarios, the mirror body 133 could be substantially hollow. In various embodiments, at least a portion of the mirror body 133 could have an octagonal cross-section and/or a four-fold symmetry. In one example, mirror body 133 may include a polycarbonate material. In this example, an octagonal and/or four-fold symmetry configuration for mirror body 133 may facilitate reducing potential slippage of the polycarbonate material of the mirror body 133 on the shaft 134 during rotation of the mirror body. Other examples are possible as well.
In some embodiments, the mirror body 133 could include a plurality of flexible support members 138. In such scenarios, at least one flexible support member 138 could be straight. Additionally or alternatively, at least one flexible support member 138 could be curved. In some embodiments, based on a geometry of the system of flexible support members, the mirror body 133 could be stiff in some directions (e.g., to transfer load) and elastic in some directions to accommodate thermal expansion. For example, the flexible support members 138 could be configured to be substantially stiff when in torsion and substantially elastic in response to forces perpendicular to the rotational axis. In various embodiments, the mirror body 133 could be formed from an injection molded material. Furthermore, the shaft 134 could be formed from steel or another structural material.
In some embodiments, the mirror assembly 130 could include an encoder magnet 139, which could be coupled to the shaft 134. In such scenarios, the encoder magnet 139 is configured to provide information indicative of a rotational position of the rotatable mirror assembly 130 with respect to the transmitter 127 and the receiver 121.
In some embodiments, encoder magnet 139 may also be configured as a mirror motor magnet (e.g., included in mirror actuator 136). In these embodiments, system 100 may use magnet 139 to facilitate both measuring and adjusting the rotational position of the rotatable mirror assembly 130. In one example embodiment, magnet 139 may be one of a plurality of magnets (e.g., magnet ring, etc.) disposed in a circular arrangement and configured to interact with a magnetic field (e.g., generated at actuator 136) to cause the rotation of the mirror assembly. Other embodiments are possible.
In various examples, the mirror assembly 130 could additionally or alternatively include a coupling bracket 135 configured to couple at least a portion of the mirror assembly 130 to the other elements of system 100, such as housing 160. The coupling bracket 135 could be configured to attach the mirror assembly 130 to the housing 160 by way of one or more connectors 137. In such scenarios, the coupling bracket 135 and the connectors 137 could be configured to be easily removable from other elements of the system 100. Such ease of removability could provide better recalibration, service, and/or repair options.
The system 100 additionally includes an optical cavity 120 coupled to the rotatable base 110. The optical cavity includes a transmitter 127 having at least one light-emitter device 126 and a light-emitter lens 128. In example embodiments, the at least one light-emitter device 126 could include one or more laser diode. Other types of light sources are possible and contemplated. The at least one light-emitter device 126 and the light-emitter lens 128 are arranged so as to define a light-emission axis 18.
In various embodiments, the rotatable mirror assembly 130 could be configured to controllably rotate about the mirror rotation axis 131 so as to transmit emission light toward, and receive return light from, locations within the environment 10.
The optical cavity 120 also includes a receiver 121 configured to detect return light 16 from the environment 10. In various embodiments, the receiver 121 could include a bandpass filter configured to transmit light within a predetermined wavelength band (e.g., infrared light between 800-1600 nanometers). The receiver 121 includes a plurality of photodetectors 122. As an example, the plurality of photodetectors 122 could include at least one solid-state single-photon-sensitive device. For example, in some embodiments, the plurality of photodetectors 122 could include one or more silicon photomultipliers (SiPMs). In such scenarios, the SiPMs could each include a plurality (e.g., a two-dimensional array) of single-photon avalanche diodes (SPADs). Additionally or alternatively, the plurality of photodetectors 122 could include an avalanche photodiode (APD), an infrared photodiode, photoconductor, a PIN diode, or another type of photodetector. Additionally, it will be understood that systems incorporating multiple photodetectors, such as a focal plane array or another type of image sensor, are also possible and contemplated.
The plurality of photodetectors 122 includes a respective set of two or more photodetectors for each light-emitter device of the at least one light-emitter device 126. In various embodiments, the at least one light-emitter device 126 could be configured to emit light pulses that interact with the mirror assembly 130 such that the light pulses are redirected toward an environment 10 of the system 100 as transmit light 14. In such scenarios, at least a portion of the light pulses could be reflected back toward the system 100 as return light 16 and received by the plurality of photodetectors 122 so as to determine at least one of: a time of flight, a range to an object 12, and/or a point cloud.
In example embodiments, the photodetectors 122 could provide an output signal to the controller 150. For example, the output signal could include information indicative of a time of flight of a given light pulse toward a given portion of the field of view 17 of the environment 10. Additionally or alternatively, the output signal could include information indicative of at least a portion of a range map or point cloud of the environment 10.
In some embodiments, each set of two or more photodetectors could include a primary light detector 123 and a secondary light detector 125. The primary light detector 123 is configured to receive a first portion of return light 16 corresponding to light pulses emitted from a given light-emitter device. In such scenarios, the secondary light detector 125 is configured to receive a second portion of return light emitted from the given light-emitter device.
In various embodiments, the first portion of the return light 16 and the second portion of the return light 16 could have widely different intensities. For example, the first portion of the return light 16 could be at least an order of magnitude greater in photon flux than the second portion of the return light 16.
In an example embodiment, the at least one light-emitter device 126 could include a four-element laser diode bar (e.g., four discrete light sources disposed on a laser bar). In such scenarios, the plurality of photodetectors 122 could include four primary light detectors (e.g., primary light detector 123a, 123b, 123c, and 123d). Each primary light detector could correspond to a respective light-emitter on the laser diode bar. Additionally, the plurality of photodetectors 122 could include four secondary light detectors (e.g., secondary light detector 125a, 125b, 125c, and 125d). Each secondary light detector could correspond to a respective light-emitter on the laser diode bar.
In alternate embodiments, the at least one light-emitter device 126 may include two or more laser diode bars, and a laser bar may include more or fewer than four light-emitter devices.
In some embodiments, the light-emitter device 126 could be coupled to a laser pulser circuit operable to cause the light-emitter device 126 to emit one or more laser light pulses. In such scenarios, the laser pulser circuit could be coupled to a trigger source, which could include controller 150. The light-emitter device 126 could be configured to emit infrared light (e.g., light having a wavelength between 800-1600 nanometers (nm), such as 905 nm). However, other wavelengths of light are possible and contemplated.
The receiver 121 also includes a photodetector lens 124. The plurality of photodetectors 122 and the photodetector lens 124 are arranged so as to define a light-receiving axis 19.
The receiver 121 additionally includes a plurality of apertures 178, which may be openings in an aperture plate 176. In various embodiments, the aperture plate 176 could have a thickness between 50 microns and 200 microns. Additionally or alternatively, at least one aperture of the plurality of apertures 178 may have a diameter between 150 microns and 300 microns. However, other aperture sizes, larger and smaller than this range, are possible and contemplated. Furthermore, in an example embodiment, the respective apertures of the plurality of apertures 178 could be spaced apart by between 200 microns and 800 microns. Other aperture spacings are possible and contemplated.
The receiver 121 could also include one or more optical redirectors 129. In such a scenario, each optical redirector 129 could be configured to optically couple a respective portion of return light 16 from a respective aperture to at least one photodetector of the plurality of photodetectors 122. For example, each optical redirector could be configured to optically couple a respective portion of return light from a respective aperture to at least one photodetector of the plurality of photodetectors by total internal reflection.
In some embodiments, the optical redirectors 129 could be formed from an injection-moldable optical material. In such scenarios, the optical redirectors 129 are coupled together in element pairs such that a first element pair and a second element pair are shaped to slidably couple with one another. In example embodiments, the optical redirectors 129 are configured to separate the return light 16 into unequal portions so as to illuminate a first photodetector with a first photon flux of a first portion of the return light 16 and illuminate a second photodetector with a second photon flux of a second portion of the return light 16. In some embodiments, one or more surfaces of the optical redirectors 129 could be coated or shaped so as to suppress or eliminate cross-talk between receiver channels. As an example, one or more surfaces of the optical redirectors 129 could be coated with an opaque optical material configured to suppress or eliminate cross-talk between receiver channels.
In some examples, the optical redirectors 129 may also be configured to expand a beam width of the first portion of the return light 16 projected onto the first photodetector (and/or the second portion of the return light 16 projected onto the second photodetector). In this way, for example, detection area(s) at the respective photodetectors on which respective portion(s) of return light 16 are projected may be greater than the cross-sectional areas of their associated apertures.
In various example embodiments, the rotatable base 110, the mirror assembly 130, and the optical cavity 120 could be disposed so as to provide a field of view 17. In some embodiments, the field of view 17 could include an azimuthal angle range of 360 degrees about the first axis 102 and an elevation angle range of between 60 degrees and 120 degrees (e.g., at least 100 degrees) about the mirror rotation axis 131. In one embodiment, the elevation angle range could be configured to allow system 100 to direct one or more emitted beams along the direction (and/or substantially parallel to) the first axis 102. It will be understood the other azimuthal angle ranges and elevation angle ranges are possible and contemplated.
In some embodiments, the field of view 17 could have two or more continuous angle ranges (e.g., a “split” field of view or a discontinuous field of view). In one embodiment, the two or more continuous angle ranges may extend away from a same side of the first axis 102. Alternatively, in another embodiment, the two or more continuous angle ranges may extend away from opposite sides of the first axis 102. For example, a first side of the first axis 102 may be associated with elevation angles between 0 degrees and 180 degrees, and a second side of the first axis may be associated with elevation angles between 180 degrees and 360 degrees.
In some embodiments, the system 100 includes a rotatable housing 160 having an optical window 162. The optical window 162 could include a flat window. Additionally or alternatively, the optical window 162 could include a curved window and/or a window with refractive optical power. As an example, the curved window could provide an extended field of view (compared to a flat optical window) in exchange for some loss or degradation in the quality of the optical beam. In such scenarios, the light pulses could be emitted toward, transmitted through, and received from, the environment 10 through the optical window 162. Furthermore, although one optical window is described in various embodiments herein, it will be understood that examples with more than one optical window are possible and contemplated.
The optical window 162 could be substantially transparent to light having wavelengths such as those of the emitted light pulses (e.g., infrared wavelengths). For example, the optical window 162 could include optically transparent materials configured to transmit the emitted light pulses with a transmission efficiency greater than 80% in the infrared wavelength range. In one embodiment, the transmission efficiency of the optical window 162 may be greater than or equal to 98%. In another embodiment, the transmission efficiency of the optical window 162 may vary depending on the angles-of-incidence of the transmit and/or receive light incident on the optical window 162. For instance, the transmission efficiency may be lower when light is incident on the optical window from relatively higher angles-of-incidence than when the light is incident from relatively lower angles-of-incidence.
In some examples, the optical window 162 could be formed from a polymeric material (e.g., polycarbonate, acrylic, etc.), glass, quartz, or sapphire. It will be understood that other optical materials that are substantially transparent to infrared light are possible and contemplated.
In some embodiments, other portions of the rotatable housing 160 could be coated with, or be formed from, an optically absorptive material such as black tape, absorptive paint, carbon black, black anodization, micro-arc oxidation treated surface or material, and/or another type of optically absorptive, anti-reflective surface or material.
The various elements of system 100 could be disposed in different arrangements. For example, in an example embodiment, at least one of the light-receiving axis 19 or the light-emission axis 18 does not intersect the mirror rotation axis 131.
The system 100 includes a controller 150. In some embodiments, the controller 150 includes at least one of a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC). Additionally or alternatively, the controller 150 may include one or more processors 152 and a memory 154. The one or more processors 152 may include a general-purpose processor or a special-purpose processor (e.g., digital signal processors, graphics processor units, etc.). The one or more processors 152 may be configured to execute computer-readable program instructions that are stored in the memory 154. As such, the one or more processors 152 may execute the program instructions to provide at least some of the functionality and operations described herein.
The memory 154 may include, or take the form of, one or more computer-readable storage media that may be read or accessed by the one or more processors 152. The one or more computer-readable storage media can include volatile and/or non-volatile storage components, such as optical, magnetic, organic, or other memory or disc storage, which may be integrated in whole or in part with at least one of the one or more processors 152. In some embodiments, the memory 154 may be implemented using a single physical device (e.g., one optical, magnetic, organic or other memory or disc storage unit), while in other embodiments, the memory 154 can be implemented using two or more physical devices.
As noted, the memory 154 may include computer-readable program instructions that relate to operations of system 100. As such, the memory 154 may include program instructions to perform or facilitate some or all of the operations or functionalities described herein.
For example, the operations could include causing the light-emitter device 126 to emit the light pulses. In such scenarios, the controller 150 could cause a pulser circuit associated with light-emitter device 126 to provide one or more current/voltage pulses to the light-emitter device 126, which may cause the light-emitter device 126 to provide the light pulses.
The operations could also include receiving at least a first portion of reflected light pulses (e.g., return light 16) from the field of view 17 as a detected light signal. For example, at least some of the light pulses emitted from the light-emitter device 126 via the optical window 162 (e.g., transmit light 14) could interact with objects 12 in the environment 10 in the field of view 17 so as to provide reflected light pulses or return light 16. At least the portion of the reflected light pulses could be received by at least one photodetector of the plurality of photodetectors 122. In turn, the given photodetector could provide a detected light signal, which could include a photocurrent signal or a photovoltage signal.
Furthermore, the operations could include determining, based on the detected light signal, a point cloud indicative of objects 12 within the field of view 17. In an example embodiment, determining the point cloud could be performed by controller 150. For example, the controller 150 could determine and accumulate a plurality of spatial points based on a respective time of flight for each light pulse emitted and received. Determining the point cloud could be further based on an elevation angle of the mirror assembly 130 and an azimuthal angle of the rotatable base 110.
It will be understood that some or all of the operations described herein could be carried out by computing devices located remotely from the controller 150 and/or other elements of system 100.
In various embodiments, the system 100 could include at least one baffle. For example, the system 100 could include at least one rotatable baffle 170 and/or at least one static baffle 172. In such scenarios, the at least one rotatable baffle 170 and/or at least one static baffle 172 could be configured to reduce stray light within the optical cavity 120 (e.g., light traveling internally from the light-emitter device 126 to the plurality of photodetectors 122 without first interacting with the environment around the system 100). In an example embodiment, the static baffle 172 could include an optically-opaque material disposed between the light-receiving axis 19 and the light-emission axis 18. In some embodiments, the rotatable baffle 170 could be coupled to the mirror body 133 and could also include an optically-opaque material configured to reduce or eliminate stray light between the transmitter portions and the receiver portions of the system 100. In other words, a first portion of the mirror body 133 and a second portion of the mirror body 133 could be separated by the rotatable baffle 170. In such scenarios, the rotatable baffle 170 could be shaped like a flat disk, however other shapes are contemplated and possible. The rotatable baffle 170 could be centered about, and perpendicular to, the mirror rotation axis 131.
In some embodiments, the system 100 could include an optical feedback system. As a part of the optical feedback system, the transmitter 127 could be configured to transmit, during the period of rotation of the mirror body 133, a plurality of light pulses toward the reflective surfaces 132 of the mirror assembly 130. In such a scenario, the mirror assembly 130 could be configured to (i) reflect at least a first light pulse of the plurality light pulses into an environment 10 of the system 100 and (ii) reflect at least a second light pulse of the plurality of light pulses into an internal optical path 168. In some embodiments, the internal optical path 168 may include a baffle opening 174 in the rotatable baffle 170, the static baffle 172, and/or in a gap between the rotatable baffle 170 and the static baffle 172.
In such scenarios, the plurality of photodetectors 122 of the receiver 121 could be configured to (i) detect a reflected light pulse including a reflection of the first light pulse caused by an object 12 in the environment 10 and (ii) detect the second light pulse received via the internal optical path 168. In various embodiments, the internal optical path 168 could be defined at least in part by one or more internal reflectors 180 that reflect the second light pulse toward the reflective surfaces 132 of the mirror assembly 130 such that the reflective surfaces 132 reflect the second light pulse toward the receiver 121.
Furthermore, in such scenarios, the controller 150 could be configured to determine a distance to the object 12 in the environment 10 based on a time when the first light pulse is transmitted by the transmitter 127, a time when the reflected light pulse is detected by the photodetector 122, and a time when the second light pulse is detected by the photodetector 122. In such scenarios, a first light pulse (and its corresponding reflected light pulse) could provide information indicative of a distance to an object and a second light pulse (and its corresponding reflected light pulse) could provide information indicative of a feedback distance or zero-length reference.
An occlusion detection system of system 100 could include a primary reflective surface 163. In some embodiments, the primary reflective surface 163 could include a rectangular mirror with an aspect ratio of at least 8:1. However, it will be understood that other shapes of the primary reflective surface 163 are contemplated and possible within the context of the present disclosure. In example embodiments, the primary reflective surface 163 could include a long axis that is disposed substantially parallel to the mirror rotation axis 131.
In such a scenario, the reflective surfaces 132 of the mirror body 133 could represent a plurality of secondary reflective surfaces. System 100 could also include a camera 166. The camera 166 is configured to capture at least one image of an optical element (e.g., the optical window 162) by way of the primary reflective surface 163 and at least one secondary reflective surface of the mirror body 133.
In such scenarios, the controller 150 may be configured to carry out further operations relating to occlusion detection. Such operations could include causing the camera 166 to capture a plurality of images of the optical element by way of the primary reflective surface 163 and at least one secondary reflective surface of the mirror body 133. Each image of the plurality of images is captured at a corresponding mirror angle of the at least one secondary reflective surface.
The system 100 additionally includes an illuminator 161. In some embodiments, the illuminator 161 could include an infrared light-emitting diode (LED). In such scenarios, the operations of the controller 150 could additionally include while causing the camera 166 to capture the plurality of images, causing the illuminator 161 to emit light to illuminate the optical element by way of the primary reflective surface 163 and at least one secondary reflective surface of the mirror body 133.
The operations may additionally include determining an aggregate image of the optical element based on the plurality of images and the corresponding mirror angles of the at least one secondary reflective surface.
Additionally or alternatively, the operations could include determining, based on the aggregate image, that at least one occlusion object is present on the optical element.
In some embodiments, the camera includes a fixed focal length lens configured to focus on the optical element by way of the primary reflective surface and the at least one secondary reflective surface. As an example, the camera could include a video capture device.
In some embodiments, the light-emitter device 126 and the light-emitter lens 128 could form a light-emission axis 18. As illustrated in
In some embodiments, the photodetector 122 and the photodetector lens 124 could form a light-receiving axis 19. Light pulses emitted by the light-emitter device 126 could be reflected or otherwise interact with the environment and could be received as return light 16 by way of the reflective surfaces 132 (e.g., reflective surface 132d) and observed at the plurality of photodetectors 122 by way of one or more optical redirectors 129.
As illustrated in
The system 220 includes a camera 166 that is configured to capture at least one image of the optical window 162 by way of the primary reflective surface 163 and at least one secondary reflective surface of the mirror assembly 130.
The system 220 also includes a controller (e.g., controller 150) having at least one processor and a memory. The at least one processor executes program instructions stored in the memory so as to carry out operations. The operations include causing the mirror assembly 130 to rotate about the mirror rotation axis 131.
The operations also include causing the camera 166 to capture a plurality of images of the optical window 162 by way of the primary reflective surface 163 and at least one secondary reflective surface of the mirror assembly 130. Each image of the plurality of images is captured at a corresponding mirror angle of the at least one secondary reflective surface.
In some embodiments, the operations include determining an aggregate image of the optical window 162 based on the plurality of images and the corresponding mirror angles of the at least one secondary reflective surface.
In some embodiments, the operations of controller 150 could additionally include determining, based on the aggregate image, that at least one occlusion object 222 is present on, or integral to, the optical window 162. In some embodiments, in response to determining the at least one occlusion object 222, the controller 150 could adjust subsequent operations of the system 100 to account for the occlusion object 222. For example, the controller 150 could adjust lidar scans and/or camera images so as to ignore or adjust point cloud and/or image information that corresponds to a region of the field of view 17 that could be affected by the occlusion object 222. In other embodiments, the controller 150 could provide a notification about the occlusion object 222. Based on the notification, the system 100 could transmit a service request to clean the optical window 162 and/or cause an associated vehicle (e.g., vehicle 500) to travel to a service location for optical window cleaning. In other embodiments, the system 100 could provide a notification to request further information from other sensors (e.g., other lidar systems) that could provide information about regions of the field of view 17 that might be obscured or otherwise affected by the occlusion object 222. Other ways to obtain backup or substitute information from other sensor systems are possible and contemplated. Furthermore, it will be understood that other adjustments could be made to the operations of system 100 so as to compensate for the presence of the occlusion object and/or to maintain safe and reliable operations of the system 100.
As illustrated in
As illustrated in
In an example embodiment, the mirror body 133 and corresponding reflective surfaces 132 could reflect a “first light pulse” into the environment 10 during a first part of the period of rotation of the mirror body 133. In such a scenario, the mirror body 133 and corresponding reflective surfaces 132 could reflect the second light pulse toward the first internal reflector 180a during a second part of the period of rotation of the mirror body 133.
As described herein, the light pulses received via the internal optical path 168 could provide a more reliable “zero-time” reference for system 100 than those provided by, for example, a calibration target and/or known features within the environment.
Additionally or alternatively, the optical feedback systems described herein could provide a way to directly estimate and/or extrapolate the transmit power of light pulses emitted by the transmitter 127. That is, in some examples, the amount of light received by the receiver 121 via the internal reflector(s) 180 could be proportional to an overall transmitted optical power. In such scenarios, an output signal of one or more of the photodetectors could be compared to a lookup table that provides information about associations between the output signal and the overall transmitted optical power. As such, the optical feedback system could provide a way to directly measure the optical output of the transmitter 127 of system 100 on a per-shot basis.
In some embodiments, the transmitter 127 could emit light pulses toward the mirror assembly 300 along a light-emission axis 18. A reflective surface 132d of the mirror assembly 300 could reflect such light pulses such that they are transmitted toward an external environment 10.
In such examples, light from the environment 10 (e.g., return light 16) could be reflected by the reflective surface 132d of the mirror assembly 300. In some embodiments, the received light could be directed along light-receiving axis 19 toward the receiver 121.
In example embodiments, the flexible members 138 could be t-shaped. Additionally or alternatively, the flexible members 138 could have an elongated t-shape. That is, the t-shape could be extended lengthwise along the x-axis. Other shapes are possible and contemplated.
In some embodiments, the flexible members 138 could each include two first ends 324a and 324b and a second end 326. In such a scenario, the two first ends 324a and 324b and the second end 326 could be coupled by way of a t-shaped member 328. As illustrated, the two first ends 324a and 324b could couple to two different interior surfaces that correspond to (are located opposite) two different reflective surfaces 132 of the mirror body 133.
In some embodiments, the two first ends 324a and 324b could be formed from a first material and the second end 326 could be formed from a second, different, material. As an example, various portions of the support member 138 could be formed from, without limitation, plastic (e.g., polypropylene, polyethylene, polycarbonate, silicone, etc.), rubber (e.g., latex, etc.), metal (e.g., aluminum, steel, titanium, etc.), and/or ceramic. It will be understood that other materials and material combinations are possible and contemplated within the scope of the present disclosure.
In example embodiments, the materials and/or geometry for one or more elements of the flexible members 138 could be selected so as to reduce or minimize the effect of differences in the coefficient of thermal expansion between, for example, the shaft 134 and the reflective surfaces 132. For example, the two first ends 324a and 324b could be selected to be silicone so as to provide a compliant, flexible material that is relatively insensitive to thermal variations. Additionally or alternatively, in some embodiments, the t-shaped member 328 could be formed from a flexible material so as to reduce or minimize the forces upon, or relative displacement of, the reflective surfaces 132 from the shaft 134. Such forces and/or displacement could be due, at least in part, to differences in the coefficient of thermal expansion. Accordingly, by utilizing the disclosed flexible members 138, mirror assembly 130 and/or other portions of system 100 could be less affected by fluctuation in temperature, temperature-dependent material bowing or displacement, and/or long term temperature-cycling effects (e.g., thermal destressing).
Receiver 400 includes a plurality of photodetectors 122 (e.g., primary light detectors 123a, 123b, 123c, and 123d and second light detectors 125a, 125b, 125c, and 125d).
Receiver 400 additionally includes a plurality of optical redirectors 129 (e.g., optical redirectors 129a, 129b, 129c, and 129d). Each optical redirector 129a, 129b, 129c, and 129d is configured to optically couple a respective portion of return light 16 from a respective aperture 178a, 178b, 178c, or 178d to at least one photodetector of the plurality of photodetectors.
In some embodiments, each optical redirector 129a, 129b, 129c, and 129d is configured to optically couple a respective portion of return light 16 from a respective aperture 178a, 178b, 178c, or 178d to at least one photodetector of the plurality of photodetectors 122 by total internal reflection.
In various embodiments, the optical redirectors 129 could be formed from an injection-moldable optical material. For example, the optical redirectors 129 could be formed from a polymeric thermoplastic optical material such as acrylic (polymethyl methacrylate or PMMA), polystyrene, polycarbonate, Cyclic Olefin Polymer (COP), Cyclic Olefin Copolymer (COC), or various copolymers, such as NAS, a copolymer of 70% polystyrene and 30% acrylic. Additionally or alternatively, some embodiments may include various polyaryletherketone (PAEK)-based materials and/or polysulfones (PSU, PPSU, PES, etc) or polyetherimide (PEI). It will be understood that other optical materials are possible and contemplated.
The optical redirectors 129 could be coupled together in pairs such that a first pair and a second pair are shaped to slidably couple with one another. For example, as illustrated in
It will be understood that while two pairs could be shaped so as to slidably couple together with one another (e.g., providing four optical channels), other ways to mechanically assemble the optical redirectors are possible and contemplated. For example, the optical redirectors could be partitioned into two groups that may be slidably coupled to one another, which may provide for 4, 6, 8, 10, or more optical channels. Furthermore, it will be understood that the optical redirectors 129 could be arranged so as to provide between 2-64 optical channels, or more. Yet further, other ways to form the optical redirectors 129 are possible and contemplated. For example, processes such as laser-cutting, semiconductor processing, and/or 3D printing are possible and contemplated to form the optical redirectors 129.
While
While
In some embodiments, the optical redirector could include a lensed surface. As an example, the lensed surface could be utilized on the input and/or output surface of the optical redirector. Such lensed surfaces could be beneficially configured to control the divergence of the optical beam and facilitate uniform optical coverage of the photodetector. Additionally or alternatively, at least one surface of the optical redirector could include a rippled surface, which may provide an engineered diffuser and an alternative way to control optical beam divergence.
Yet further, it will be understood that one or more redirector channels could be incorporated or combined into a single optical redirector body. In such a scenario, each redirector channel could include an entrance aperture, an exit aperture, and one or more intermediate control surfaces. The redirector channel may be made of a solid, transparent material, or it may be hollow. Both the entrance and exit apertures, as well as some or all of the intermediate control surfaces may be configured to manipulate the incoming light via refraction, e.g. a prism with one or more facets, a lens in one or two directions, or an engineered diffusing pattern, or via reflection, e.g. a planar reflector with one or more facets, a curved reflector with optical power in one of two directions, or an engineered diffusing reflector. In various examples, optical reflectivity may be provided by the use of total internal reflection, or via the application of reflective coatings. In one embodiment, the redirector channel could include a solid transparent material, with entrance and exit apertures oriented to be nearly normal with the incoming light, and a pair of reflective facets disposed between the apertures. In a second embodiment, the redirector channel could be substantially similar to the first example, but the exit aperture is at a significant angle with respect to the exiting light, and one of the intermediate reflectors is formed of multiple facets which serve to compress the beam pattern in one direction, thereby offsetting the elongation of the beam pattern caused by the oblique intersection between the exit aperture and the beam. In a third embodiment, the redirector channel includes a solid material, and consists only of an entrance aperture and an exit aperture, and the entrance aperture is inclined with respect to the incoming light so as to refract the incident light towards the exit aperture.
The optically isolating coating 402 may prevent stray light (e.g., from external sources, etc.) from inadvertently entering the optical redirector 129a and/or from being detected by the associated light detectors 123a, 125a. Further, the optically isolating coating 402 may prevent crosstalk between channels of the receiver 470. For example, the optically isolating coating 402 may prevent return light within the optical redirector 129a from escaping the optical redirector 129a and entering optical redirector 129b, optical redirector 129c, or optical redirector 129d, thereby preventing return light 16 intended for light detectors 123a, 125a from inadvertently being detected by light detectors 123b, 125b, 123c, 125c, 123d, 125d. As such, the optically isolating coating 402 may reduce detector noise and improve detection accuracy.
The optically isolating coating 402 may be a reflective coating (e.g., configured to reflect return light 16 that escapes from the optical redirector 129a back into the optical redirector 129a, etc.), an absorptive coating, or some combination thereof. For example, the optically isolating coating 402 may include a three-layer coating (e.g., with one absorptive layer, one reflective layer, and another absorptive layer, etc.). The optically isolating coating 402 may be integrated within the edge regions of the optical redirector 129a and/or adhered or otherwise applied to the exterior of the optical redirector 129a, in various embodiments.
In various embodiments, the optically isolating coating 402 may include various materials. For example, the optically isolating coating 402 may include a dielectric material (e.g., a periodic dielectric stack having alternating materials with different refractive indices, etc.), a metal (e.g., silver, gold, aluminum, etc.), and/or a dielectric-metal stack (e.g., a periodic stack having dielectrics and metals arranged in an alternating fashion, etc.). In some embodiments, the optically isolating coating 402 may include a paint (e.g., applied to an exterior of the optical redirector 129a, etc.), an ink, or a dye (e.g., implanted into edge regions of the optical redirector 129a and/or implanted into an additional material that is adhered to an exterior of the optical redirector 129a, etc.). Further, the materials used in the optically isolating coating 402 may be selected based on the wavelength (or range of wavelengths) of the return light 16. For example, a dielectric stack may include dielectrics having refractive indices selected to absorb, scatter, or reflect light having a wavelength (or range of wavelengths) corresponding to the wavelength (or range of wavelengths) of the return light 16.
In some embodiments, the material of the optically isolating coating 402 may be graded (e.g., parallel to the direction of propagation of the return light 16 within the optical redirector 129a and/or perpendicular to the direction of propagation of the return light 16 within the optical redirector 129a, etc.). In this way, the absorptive, attenuative, and/or reflective qualities of the optically isolating coating 402 may be different at different regions of the optically isolating coating 402. For example, the optically isolating coating 402 may be an absorptive coating that is most absorptive in the portion of the optically isolating coating 402 near the aperture 178a (e.g., where the optical redirectors 129a, 129b, 129c, 129d are closest to one another, etc.) and gradually gets less absorptive along the optically isolating coating 402 as the optically isolating coating 402 approaches light detectors 123a, 125a. Additionally or alternatively, in some embodiments, one portion of the optically isolating coating 402 may be reflective while another portion is absorptive. In this way, different regions of the optically isolating coating 402 could interact with the return light 16 differently.
Although the receiver 470 illustrated in
Although the receiver 480 illustrated in
Similar to the optically isolating coatings 402, 404 illustrated in
Although the receiver 490 illustrated in
Further, while the receiver 490 illustrated in
In some embodiments, the optical redirectors are rotated with respect to one another such that the redirection paths of optical redirectors that correspond to adjacent apertures are not coplanar with one another. The expected path that return light travels within an optical redirector may be referred to herein as the redirection path. In the absence of such a non-coplanar arrangement, when an optical redirectors redirects light, some of the light may deviate (e.g., unintendedly) from the associated redirection path. A non-limiting example of how the light may deviate from the redirection path includes a portion of the light that, upon striking one or more photodetectors, is reflected and scattered by the photodetector(s) back into the optical redirectors. Such light may subsequently be coupled out of the optical redirector and interact with an unintended photodetector (e.g., after coupling into an adjacent optical redirector). Additionally or alternatively, internal reflections within a given optical redirector may be unintendedly coupled into nearby optical redirectors. This deviation from the intended redirection paths may result in additional crosstalk and/or noise. By setting the rotational orientations of optical reflectors that correspond to adjacent apertures such that they are not coplanar with one another, the resulting crosstalk from nearby optical redirectors can be reduced. In some embodiments, the rotational orientation of an optical redirector may be described with respect to other optical redirectors. Additionally or alternatively, the rotational orientation of an optical redirector may be defined with respect to the position of the apertures.
In some embodiments, the rotational orientation of at least two optical redirectors that correspond to adjacent apertures may be offset by 180°. For example, the center two apertures within a plurality of apertures may have corresponding optical redirectors that are offset by 180°. In other embodiments, the rotational orientations of at least two optical redirectors that correspond to adjacent apertures may be offset by other angles (e.g., 90°). For example, the rotational orientations of at least two optical redirectors that correspond to adjacent apertures may be offset by a multiple of 360° divided by a total number of optical redirectors within the plurality of optical redirectors (e.g., if there are 3 redirectors, the offset between optical redirectors corresponding to adjacent apertures may be 120° whereas if there are 6 redirectors, the offset between optical redirectors corresponding to adjacent apertures may be) 60°. Other angles for the rotational orientation between two optical redirectors corresponding to adjacent apertures are also possible and are contemplated herein.
In some embodiments, the separation between two photodetectors may be adjusted to accommodate differences in optical redirector structure and/or orientation. For example, photodetectors that are illuminated by light from adjacent apertures may be separated by a greater distance than photodetectors that are illuminated by light from non-adjacent apertures.
In some embodiments, the rotational orientations of two optical redirectors are considered to be co-planar with each other if a line drawn between the point where a light enters one optical redirector and the point where a light exits the optical redirector is coplanar with a line drawn between the point where a light enters the other optical redirector and the point where a light exits that optical redirector. In some embodiments, an optically absorbing structure may be positioned between two or more of the optical redirectors 129a, 129b, 129c, 129d (e.g., between all of the optical redirectors 129a, 129b, 129c, 129d). The optically absorbing structure may be positioned such that it absorbs light that escapes the optical redirectors, thereby reducing optical crosstalk and/or noise. In some embodiments, multiple optically absorbing structures may be positioned between the plurality of optical redirectors 129a, 129b, 129c, 129d. Further, in some embodiments, the optically absorbing structure may include silicone. Additionally or alternatively, the portion of an optically absorbing structure that is closer to the apertures of the receiver may have a smaller cross-sectional area than the portion of the optically absorbing structure that is farther from the apertures. In some embodiments, the optically absorbing structure may fill the entire space between at least two optical redirectors. For example, the optically absorbing structure may fill the entire space between all optical redirectors. In other embodiments, there may be a separation between the optically absorbing structure and at least one of the optical redirectors. Such a separation may be filled with a material having a low index of refraction (e.g., air).
The vehicle 500 may include one or more sensor systems 502, 504, 506, 508, and 510. In some embodiments, sensor systems 502, 504, 506, 508, and 510 could include LIDAR sensors having a plurality of light-emitter devices arranged over a range of angles with respect to a given plane (e.g., the x-y plane).
One or more of the sensor systems 502, 504, 506, 508, and 510 may be configured to rotate about an axis (e.g., the z-axis) perpendicular to the given plane so as to illuminate an environment around the vehicle 500 with light pulses. Based on detecting various aspects of reflected light pulses (e.g., the elapsed time of flight, polarization, intensity, etc.), information about the environment may be determined.
In an example embodiment, sensor systems 502, 504, 506, 508, and 510 may be configured to provide respective point cloud information that may relate to physical objects within the environment of the vehicle 500. While vehicle 500 and sensor systems 502, 504, 506, 508, and 510 are illustrated as including certain features, it will be understood that other types of sensor systems are contemplated within the scope of the present disclosure.
An example embodiment may include a system having a plurality of light-emitter devices. The system may include a transmit block of a lidar device. For example, the system may correspond to (or may be included in) a lidar device of a vehicle (e.g., a car, a truck, a motorcycle, a golf cart, an aerial vehicle, a boat, etc.). Each light-emitter device of the plurality of light-emitter devices is configured to emit light pulses along a respective beam elevation angle. The respective beam elevation angles could be based on a reference angle or reference plane. In some embodiments, the reference plane may be based on an axis of motion of the vehicle 500.
While lidar systems with single light-emitter devices are described and illustrated herein, lidar systems with multiple light-emitter devices (e.g., a light-emitter device with multiple laser bars on a single laser die) are also contemplated. For example, light pulses emitted by one or more laser diodes may be controllably directed about an environment of the system. The angle of emission of the light pulses may be adjusted by a scanning device such as, for instance, a mechanical scanning mirror and/or a rotational motor. For example, the scanning devices could rotate in a reciprocating motion about a given axis and/or rotate about a vertical axis. In another embodiment, the light-emitter device may emit light pulses towards a spinning prism mirror, which may cause the light pulses to be emitted into the environment based on an angle of the prism mirror angle when interacting with each light pulse. Additionally or alternatively, scanning optics and/or other types of electro-opto-mechanical devices are possible to scan the light pulses about the environment. Embodiments utilizing a plurality of fixed beams are also contemplated within the context of the present disclosure.
In some embodiments, a single light-emitter device may emit light pulses according to a variable shot schedule and/or with variable power per shot, as described herein. That is, emission power and/or timing of each laser pulse or shot may be based on a respective elevation angle of the shot. Furthermore, the variable shot schedule could be based on providing a desired vertical spacing at a given distance from the lidar system or from a surface (e.g., a front bumper) of a given vehicle supporting the lidar system. As an example, when the light pulses from the light-emitter device are directed downwards, the power-per-shot could be decreased due to a shorter anticipated maximum distance to target. Conversely, light pulses emitted by the light-emitter device at an elevation angle above a reference plane may have a relatively higher power-per-shot so as to provide sufficient signal-to-noise to adequately detect pulses that travel longer distances.
In some embodiments, the power/energy-per-shot could be controlled for each shot in a dynamic fashion. In other embodiments, the power/energy-per-shot could be controlled for successive set of several pulses (e.g., 10 light pulses). That is, the characteristics of the light pulse train could be changed on a per-pulse basis and/or a per-several-pulse basis.
While
In an example embodiment, vehicle 500 could include a lidar system (e.g., system 100) configured to emit light pulses into an environment of the vehicle 500 so as to provide information indicative of objects within a default field of view. For example, vehicle 500 could include an optical system (e.g., system 100) having a rotatable base (e.g., rotatable base 110) configured to rotate about a first axis (e.g., first axis 102). The optical system could also include a mirror assembly (e.g., mirror assembly 130). The mirror assembly could be configured to rotate about a mirror rotation axis (e.g., mirror rotation axis 131). In some embodiments, the mirror rotation axis is substantially perpendicular to the first axis.
The optical system also includes an optical cavity (e.g., optical cavity 120) coupled to the rotatable base. In such scenarios, the optical cavity includes at least one light-emitter device (e.g., light-emitter device 126) and a light-emitter lens (e.g., light-emitter lens 128). The at least one light-emitter device and the light-emitter lens are arranged so as to define a light-emission axis (e.g., light-emission axis 18).
The optical system additionally includes a plurality of photodetectors (e.g., photodetectors 122. In an example embodiment, the plurality of photodetectors includes a respective set of two or more photodetectors for each light-emitter device of the at least one light-emitter device. The optical system also includes a photodetector lens (e.g., photodetector lens 124. In such scenarios, the plurality of photodetectors and the photodetector lens are arranged so as to define a light-receiving axis (e.g., light-receiving axis 19).
In some embodiments, each set of two or more photodetectors could include a primary light detector (e.g., primary light detector 123) and a secondary light detector (e.g., secondary light detector 125). In such scenarios, the primary light detector is configured to receive a first portion of return light emitted from a given light-emitter device. Furthermore, the secondary light detector is configured to receive a second portion of return light emitted from the given light-emitter device.
In some embodiments, the first portion of the return light is at least an order of magnitude greater in photon flux than the second portion of the return light.
Block 602 includes emitting, from a light-emitter device coupled to a rotatable base, a light pulse that initially interacts with a mirror assembly and is then emitted toward an environment as emitted light
Block 604 includes receiving return light from the environment that initially interacts with the mirror assembly and is then detected by at least a primary light detector and a secondary light detector.
Block 606 includes determining, based on a time of flight between an emission time and a receive time, a range to an object in the environment.
In some embodiments, method 600 may additionally include causing the rotatable base to rotate about a first axis, causing the mirror assembly to rotate about a mirror rotation axis, and, while the mirror assembly is rotating, repeating the emitting, receiving, and determining steps so as to form a point cloud. The point cloud includes a plurality of ranges or range data within a three-dimensional representation of the environment.
Block 702 includes causing a rotatable mirror (e.g., mirror body 133) to rotate about a rotational axis (e.g., mirror rotation axis 131). In such scenarios, the rotatable mirror could include a plurality of secondary reflective surfaces (e.g., reflective surfaces 132).
Block 704 includes causing a camera (e.g., camera 166) to capture a plurality of images of an optical element (e.g., optical window 162) by way of a primary reflective surface (e.g., primary reflective surface 163) and at least one secondary reflective surface of the rotatable mirror. Each image of the plurality of images is captured at a corresponding mirror angle of the at least one secondary reflective surface.
In some embodiments, method 700 could additionally include determining an aggregate image of the optical element based on the plurality of images and the corresponding mirror angles of the at least one secondary reflective surface.
In such scenarios, method 700 could include determining, based on the aggregate image, that at least one occlusion object is present on the optical element.
Method 700 could additionally include, while causing the camera to capture the plurality of images, causing an illuminator (e.g., illuminator 161) to emit light to illuminate the optical element by way of the primary reflective surface and the rotatable mirror.
Block 802 includes causing at least one light-emitter device (e.g., light-emitter device 126) to emit a plurality of light pulses toward a rotatable mirror (e.g., mirror assembly 130). The rotatable mirror (i) reflects at least a first light pulse of the plurality light pulses into an external environment (e.g., environment 10); and (ii) reflects at least a second light pulse of the plurality of light pulses into an internal optical path (e.g., internal optical path 168).
Block 804 includes receiving, by a photodetector (e.g., photodetectors 122), (i) a reflected light pulse that includes a reflection of the first light pulse caused by an object (e.g., object 12) in the external environment (e.g., environment 10); and (ii) a second light pulse received via the internal optical path. The internal optical path is defined at least in part by one or more internal reflectors (e.g., internal reflector 180) that reflect the second light pulse toward the rotatable mirror such that the rotatable mirror reflects the second light pulse toward the photodetector.
Additionally or alternatively, method 800 could include determining a distance to the object in the external environment based on a time when the first light pulse is emitted by the light-emitter device, a time when the reflected light pulse is detected by the photodetector, and a time when the second light pulse is detected by the photodetector.
Method 900 may be for enhancing a dynamic range of a light detection and ranging (lidar) system. Block 902 could include transmitting emission light (e.g., transmit light 14) from the lidar (e.g., system 100) into an environment of the lidar (e.g., environment 10).
Block 904 may include receiving return light (e.g., return light 16). The return light is at least a portion of the emission light reflected from an object (e.g., object 12) in the environment of the lidar.
Block 906 includes transmitting the return light through a plurality of apertures (e.g., apertures 178) into a plurality of optical redirectors (e.g., optical redirectors 129). At least one of the optical redirectors includes an optically isolating coating.
Block 1004 may include receiving return light (e.g., return light 16), wherein the return light is at least a portion of the emission light reflected from an object (e.g., object 12) in the environment of the lidar device.
Block 1006 includes transmitting the return light through a plurality of apertures (e.g., apertures 178).
Block 1008 includes receiving, by each optical redirector in a plurality of optical redirectors (e.g. optical redirector 129), return light from a respective aperture.
Block 1010 includes directing, by each optical redirector, the return light from the respective aperture through a respective redirection path (e.g. redirection path 425), wherein each optical redirector in the plurality of optical redirectors has a rotational orientation relative to other redirectors within the plurality of optical redirectors such that the redirection paths of optical redirectors within the plurality of optical redirectors that correspond to adjacent apertures are not coplanar with one another.
Block 1012 includes illuminating, by each optical redirector, at least one of a plurality of photodetectors (e.g. photodetector 123).
The arrangements shown in the Figures should not be viewed as limiting. It should be understood that other embodiments may include more or less of each element shown in a given Figure. Further, some of the illustrated elements may be combined or omitted. Yet further, an illustrative embodiment may include elements that are not illustrated in the Figures.
A step or block that represents a processing of information can correspond to circuitry that can be configured to perform the specific logical functions of a herein-described method or technique. Alternatively or additionally, a step or block that represents a processing of information can correspond to a module, a segment, or a portion of program code (including related data). The program code can include one or more instructions executable by a processor for implementing specific logical functions or actions in the method or technique. The program code and/or related data can be stored on any type of computer readable medium such as a storage device including a disk, hard drive, or other storage medium.
The computer readable medium can also include non-transitory computer readable media such as computer-readable media that store data for short periods of time like register memory, processor cache, and random access memory (RAM). The computer readable media can also include non-transitory computer readable media that store program code and/or data for longer periods of time. Thus, the computer readable media may include secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media can also be any other volatile or non-volatile storage systems. A computer readable medium can be considered a computer readable storage medium, for example, or a tangible storage device.
While various examples and embodiments have been disclosed, other examples and embodiments will be apparent to those skilled in the art. The various disclosed examples and embodiments are for purposes of illustration and are not intended to be limiting, with the true scope being indicated by the following claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 17/565,572, filed Dec. 30, 2021; which is a continuation-in-part of U.S. patent application Ser. No. 17/134,277, filed Dec. 26, 2020; which claims the benefit of U.S. Patent Application No. 62/954,088, filed Dec. 27, 2019; the contents of each of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62954088 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17565572 | Dec 2021 | US |
Child | 18540486 | US | |
Parent | 17134277 | Dec 2020 | US |
Child | 17565572 | US |