Optical bar code scanners typically include a mirrored spinner. An imbalanced spinner can cause excessive wear on bearings and an unacceptable amount of audible noise. It would be desirable to provide an optical scanner having a balanced mirrored spinner.
An optical scanner having a balanced mirrored spinner is provided.
The optical scanner includes a laser for producing a laser beam, a mirrored spinner for directing the laser beam to produce scanning light beams, and an apparatus for rotating the mirrored spinner including a motor having a shaft which rotates about a first axis of rotation, a spinner mount coupled to the shaft and having an axle coupled to the mirrored spinner for rotating the mirrored spinner about a second axis of rotation, a drive mechanism for rotating the mirrored spinner about the axle, and a balance for counteracting precession of the mirrored spinner as it rotates.
a-c are views of an example scan engine;
a-b are views of the example scan engine illustrating a second balancing technique.
With reference to
Laser 12 produces a laser beam. Mirror flat 26 (
Mirrored spinner 16 directs the laser beam to pattern mirrors 18. Mirrored spinner 16 further directs light reflected from item 30 to collector 20. Mirrored spinner 16 is rotated by drive assembly 34. Mirrored spinner 16 is shown with may have any number of mirrored facets. Four facets are illustrated in
Mirrored spinner 16 and drive assembly 34 form a scan engine having two axes 36 and 40 of rotation to essentially rotate scan volume 38 about axis 36 (
First axis 36 is rotated by motor 50. In an example embodiment, motor rotates first axis 36 as high as about 1200 RPM. Drive assembly 34 produces an example speed of rotation about second axis 40 of as high as about 19,200 RPM (16:1 ratio). Other speeds are envisioned for various scanning applications.
Pattern mirrors 18 produce scanning light beams for scanning bar code 32 on item 30. Pattern mirrors 18 further collect light reflected from item 30 and direct the reflected light to mirrored spinner 16.
Collector 20 collects the reflected light from mirrored spinner 16.
Detector 22 converts the reflected light into electrical signals based upon the intensity of the reflected light.
Control circuitry 24 controls operation of laser 12 and motor 34 and decodes bar code information contained within the electrical signals received from detector 22.
With reference to
With reference to
Motor 50 is mounted in stationary fashion and rotates shaft 52.
Shaft 52 rotates spinner assembly 54 about axis 36.
Spinner assembly 54 includes yoke 60, axle 62, bearings 66, balance plates 68, and facets 69.
Yoke 60 attaches to and rotates with shaft 52. Opposite arms 61 of yoke 52 retain axle 62.
Axle 62 rotates about axis 40. Mirrored spinner 16 rotates with axle 62.
Bearings 66 are located in yoke 60. Shaft 52 rides on bearings 66.
Facets 69 are mirrored to reflect scanning light beams and reflected light. The orientations of facets 69 vary around spinner 16 so as to direct the scanning light beams in various directions. Eight facets 69 are shown in
Drive assembly further includes spinner rotation mechanism 55. In an example embodiment, spinner rotation mechanism 55 uses magnetic interaction to rotate yoke 60. Other methods for rotating spinner 16 are also envisioned, including another motor, a mechanical linkage to motor 50, and air pressure.
Thus, spinner rotation mechanism 55 includes cylinder 56, magnet 64, and ring of magnets 58.
Cylinder 56 is mounted in stationary fashion about axis 36.
Ring of magnets 58 is mounted to cylinder 56.
Magnet 64 is mounted to axle 62 and interacts with ring of magnets 58 to rotate axle 62 as yoke 60 rotates with shaft 52. In this embodiment, magnet 64 is mounted with the poles perpendicular to axle 62. Other configurations and angles are also envisioned. For example, axle 62 may be extended and another magnet 64 may be mounted to an opposite end of axle 62 from the other.
With reference to
As motor shaft 52 rotates spinner assembly 54, attractive and repulsive forces from ring of magnets 58 act on magnet 64 on axle 62 to cause rotational torque on axle 62. In one example, ring of magnets includes nine pairs of north-south magnets 70 and 72, and each pair of north-south magnets 70 and 72 causes one revolution of axle 62, resulting in a spinner rotational speed nine times faster than the rotational speed of shaft 52.
With reference to
With reference to
With reference to
Other methods of providing a counter torque are envisioned and may include applying other types of contact forces or electromagnet forces. Passive balancing techniques are inexpensive, reliable, and relatively easy to manufacture, however, other balancing techniques are also envisioned.
Although particular reference has been made to certain embodiments, variations and modifications are also envisioned within the spirit and scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4838632 | Manian | Jun 1989 | A |
4941739 | Grudic et al. | Jul 1990 | A |
5420713 | Kunii | May 1995 | A |
5663550 | Peng | Sep 1997 | A |
5742420 | Peng | Apr 1998 | A |
6154304 | Manley | Nov 2000 | A |
20070057065 | Hammer et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070045423 A1 | Mar 2007 | US |