The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2014-154011, filed Jul. 29, 2014. The contents of this application are incorporated herein by reference in their entirety.
The present disclosure relates to an optical scanning device for forming an electrostatic latent image by irradiating an image bearing member with light in an electrographic image forming apparatus, and an image forming apparatus including such an optical scanning device.
Electrographic image forming apparatuses such as color copiers, color printers, etc. include an optical scanning device. The optical scanning device irradiates a plurality of charged image bearing members with light to form an electrostatic latent image on each of the image bearing members. The optical scanning device includes a casing including an accommodation section having an open end and a covering section that covers the open end. An optical scanning system is built in the interior of the accommodation section. The covering section has an emission port for each of laser beams that each are emitted from the optical scanning system to corresponding one of the image bearing members. Each of the emission ports are covered with a transmissive member. The transmissive members are transmissive to the light (laser beams) emitted from the optical scanning system.
The transmissive members can prevent toner, dust, etc. from entering into the optical scanning device. Attachment of toner, dust, etc. to any of optical components provided in the optical scanning device may cause degradation of optical characteristics. Degradation of the optical characteristics may lead to quality degradation of an image formed on a recording medium such as paper.
In addition, attachment of toner, dust, etc. to an outer surface of one or more of the transmissive members may cause degradation of the optical characteristics. For this reason, it is necessary to periodically clean the outer surface of each of the transmissive members. An image forming apparatus of some type includes an automatic cleaning mechanism that cleans the outer surfaces of the transmissive members automatically. The automatic cleaning mechanism includes screw shafts each extending in terms of the longitudinal direction of the transmissive members. Rotation of each screw shaft moves a plurality of cleaning holders simultaneously in the same direction. Each of the cleaning holders holds a single cleaning member. The cleaning members move along their travel paths to slide on the outer surfaces of the corresponding transmissive members. Thus, the transmissive members are cleaned simultaneously.
An optical scanning device according to the present disclosure forms electrostatic latent images by irradiating a plurality of image bearing members with laser light. The optical scanning device includes a casing, a plurality of transmissive members, a plurality of cleaning members, a wire-shaped member, a drive section, first and second cleaning holders, and first and second stoppers. The casing has a plurality of emission ports for the laser light. The emission ports are in one-to-one correspondence with the image bearing members. The emission ports extend in a main scanning direction of the laser light. The emission ports are arranged side by side. The transmissive members are transmissive to the laser light. The transmissive members extend in the main scanning direction of the laser light. The transmissive members each close a corresponding one of the emission ports. The cleaning members are in one-to-one correspondence with the transmissive members. The cleaning members each slide on the corresponding transmissive member to clean the corresponding transmissive member. The wire-shaped member is wound in a loop on an outer surface of the casing. The drive section circulates the wire-shaped member in first and second directions. Each of the first and second cleaning holders holds at least two of the cleaning members. When the drive section circulates the wire-shaped member, the first and second cleaning holders travel in mutually opposite travel directions in parallel to a direction in which the transmissive members are extend. The first stopper is located at one end of a travel path of the first cleaning member. Upon the first cleaning holder coming into contact with the first stopper, the first stopper restricts travel of the first cleaning holder in one of the travel directions. The second stopper is located at one end of a travel path of the second cleaning holder. Upon the second cleaning holder coming into contact with the second stopper, the second stopper restricts travel of the second cleaning holder in the one travel direction. When the wire-shaped member is circulated in the first direction, the first cleaning holder travels in the one travel direction and the second cleaning holder travels in the other travel direction. Once the first cleaning holder reaches the one end of the travel path of the first cleaning holder and comes into contact with the first stopper, the drive section switches a circulating direction of the wire-shaped member from the first direction to the second direction. When the wire-shaped member is circulated in the second direction, the first cleaning holder travels in the other travel direction and the second cleaning holder travels in the one travel direction. Once the second cleaning holder reaches the one end of the travel path of the second cleaning holder and comes into contact with the second stopper, the drive section stops circulation of the wire-shaped member.
An image forming apparatus according to the present disclosure includes a plurality of image bearing members and the above optical scanning device. The optical scanning device forms electrostatic latent images by irradiating the image bearing members with light.
Embodiments of the present disclosure will be described below with reference to the accompanying drawings. Like numerals denote like elements or corresponding elements in the drawings, and repeated description shall be omitted. The drawings are schematic illustrations that emphasize elements of configuration in order to facilitate understanding thereof. Therefore, properties of each of the elements in the drawings, such as thickness and length, may differ from actual properties of the elements for the sake of illustration convenience.
First of all, a configuration of an image forming apparatus 1 according to the present disclosure will be described with reference to
The image forming apparatus 1 is a color printer of tandem type. The image forming apparatus 1 includes four photosensitive drums 11a-11d that are photoreceptors (image bearing members). The photosensitive drums 11a-11d are rotatable. Each of the photosensitive drums 11a-11d includes an organic photoreceptor (OPC) having an organic photosensitive layer, an amorphous silicon photoreceptor including an amorphous silicon photosensitive layer, or the like. The four photosensitive drums 11a-11d are arranged in tandem in one-to-one correspondence with colors of magenta, cyan, yellow, and black.
The photosensitive drum 11a is surrounded by a developing device 2a, a charger 13a, and a cleaning device 14a. Similarly, the respective photosensitive drums 11b-11d are surrounded by respective developing devices 2b-2d, respective chargers 13b-13d, and respective cleaning devices 14b-14d. An optical scanning device 12 is located below the developing devices 2a-2d. The optical scanning device 12 irradiates the photosensitive drums 11a-11d with light to form an electrostatic latent image on each of the photosensitive drums 11a-11d. Note that terms, “above” and “below” in the present specification indicate “up” and “down” in the drawings respectively.
The developing devices 2a-2d are located left of the photosensitive drums 11a-11d, respectively. The developing devices 2a-2d are located opposite to the photosensitive drums 11a-11d to supply toner to the photosensitive drums 11a-11d, respectively. Note that terms, “right” and “left” in the present specification indicate “right” and “left” in the drawings, respectively.
The chargers 13a-13d are arranged upstream of the developing devices 2a-2d in terms of rotation directions of the photosensitive drums 11a-11d, respectively. The chargers 13a-13d are located opposite to the surfaces of the photosensitive drums 11a-11d to uniformly charge the surfaces of the photosensitive drums 11a-11d, respectively.
The optical scanning device 12 exposes each of the photosensitive drums 11a-11d through optical scanning based on image data of a text or a figure input to an image input section from a personal computer or the like. A casing 12a of the optical scanning device 12 includes an accommodation section 12b having a single open end and a covering section 12c that covers the open end. An optical scanning system 120 is disposed in the interior of the accommodation section 12b. The covering section 12c has an emission port for each of laser beams (laser light) each emitted to a corresponding one of the photosensitive drums 11a-11d from the optical scanning system 120. Each of the emission ports is covered with a transmissive member, as will be described later with reference to
The optical scanning system 120 includes a laser light source (not illustrated) and a polygon mirror. The optical scanning system 120 further includes at least one reflecting mirror and lenses for each of the photosensitive drums 11a-11d. The respective surfaces of the photosensitive drums 11a-11d are irradiated with the laser light emitted from the laser light source through the polygon mirror, the reflecting mirrors, and the lenses from downstream of the respective chargers 13a-13d in terms of rotation directions of the respective photosensitive drums 11a-11d. An electrostatic latent image is formed on the surface of each of the photosensitive drums 11a-11d through irradiation of the laser light. The respective developing devices 2a-2d develop the respective electrostatic latent images into toner images.
An endless intermediate transfer belt 17 is wound around a tension roller 6, a drive roller 25, and a driven roller 27. The drive roller 25 is driven by a motor (not illustrated). The intermediate transfer belt 17 is circulated by rotation of the drive roller 25.
The four photosensitive drums 11a-11d are arranged side by side in terms of a paper conveyance direction (an arrow direction in
A secondary transfer roller 34 is located opposite to the drive roller 25 with the intermediate transfer belt 17 therebetween. The secondary transfer roller 34 is in press contact with the intermediate transfer belt 17 to form a secondary transfer portion in cooperation with the drive roller 25. At the secondary transfer portion, the toner images (the full color toner image formed on the intermediate transfer belt 17) on the surface of the intermediate transfer belt 17 is transferred to paper P (a sheet of paper). After transfer of the toner images, the belt cleaning device 31 cleans the intermediate transfer belt 17 to remove toner remaining on the intermediate transfer belt 17.
A paper feed cassette 32 is disposed in a lower part of the image forming apparatus 1. The paper feed cassette 32 is capable of accommodating plural sheets of paper P. A manual feed stacking tray 35 is disposed right of the paper feed cassette 32. A first paper conveyance path 33 is disposed left of the paper feed cassette 32. Along the first paper conveyance path 33, the paper P fed from the paper feed cassette 32 is conveyed to the secondary transfer portion. A second paper conveyance path 36 is disposed left of the stacking tray 35. Along the second paper conveyance path 36, the paper P fed from the stacking tray 35 is conveyed to the secondary transfer portion. A fixing section 18 and a third paper conveyance path 39 are disposed in an upper left part of the image forming apparatus 1. The fixing section 18 performs fixing on paper P on which an image is formed. Along the third paper conveyance path 39, the paper P subjected to fixing is conveyed to a paper ejecting section 37.
The paper feed cassette 32 is capable of being drawn outside (a side of the obverse surface of
The first and second paper conveyance paths 33 and 36 are merged together before (upstream of) a registration roller pair 33c. The registration roller pair 33c conveys the paper P to the secondary transfer portion. The registration roller pair 33c determines timing to feed the paper P to the secondary transfer portion so that the toner images (the full color toner image formed on the intermediate transfer belt 17) transferred (primary transfer) to the intermediate transfer belt 17 is transferred (secondary transfer) to the paper P. The secondary transfer roller 34 to which bias potential is applied transfers the toner images on the intermediate transfer belt 17 to the paper P conveyed to the secondary transfer portion. The paper P to which the toner images are transferred is conveyed to the fixing section 18.
The fixing section 18 includes a fixing belt, a fixing roller, a pressure roller, etc. The fixing belt is heated by a heater. The fixing roller is in contact with the inner surface of the fixing belt. The pressure roller is in press contact with the fixing roller with the fixing belt therebetween. The fixing section 18 applies heat and pressure to the paper P to which the toner images are transferred. In this manner, fixing is performed. Subsequent to fixing of the toner images to the paper p in the fixing section 18, the paper P is reversed in a fourth paper conveyance path 40 as necessary. Then, the reverse surface of the paper P undergoes transfer (secondary transfer) of toner images by the secondary transfer roller 34 and fixing of the toner images by the fixing section 18. The paper P to which the toner images are fixed passes through the third paper conveyance path 39 and ejected onto the paper ejecting section 37 by an ejection roller pair 19.
Referring to
As described above, the casing 12a of the optical scanning device 12 includes the accommodation section 12b and the covering section 12c fitted to the accommodation section 12b. The covering section 12c has four emission ports each for corresponding one of four laser beams. The four emission ports are arranged side by side in one-to-one correspondence with the four photosensitive drums 11a-11d. The emission ports each have a rectangular shape extending in the main scanning direction of the corresponding laser light (laser beam) and are arranged in parallel to one another in the longitudinal direction thereof. The emission ports each are closed by a corresponding one of transmissive members 52 each having a rectangular plate shape. The four transmissive members 52 are arranged in parallel to one another in the longitudinal direction thereof. The transmissive members 52 are provided for preventing toner, dust, etc. from entering into the optical scanning device 12. The transmissive members 52 each are a glass cover, for example.
The optical scanning device 12 includes two cleaning holders 51 (first and second cleaning holders 511 and 512).
Each of the cleaning holders 51 includes a holding portion 51a (see
Each of the cleaning holders 51 is connected to a wire-shaped member 54 wound in a loop. The wire-shaped member 54 is circulated by drive power of a winding motor 55 that is a drive section. Specifically, respective portions of the wire-shaped member 54 runs between left two of the transmissive members 52 and between right two of the transmissive members 52. The wire-shaped member 54 may be a wire, for example.
In accompaniment of circulation of the wire-shaped member 54, the four cleaning members 53 slide on the outer surfaces of the corresponding four transmissive members 52 located on the side of the photosensitive drums 11a-11d. In this manner, the outer surfaces of the transmissive members 52 are simultaneously cleaned by the corresponding cleaning members 53.
The winding motor 55 is rotatable in both the positive and reverse directions. This can enable repetitive cleaning on the transmissive members 52. In the present embodiment, the winding motor 55 rotates in the positive direction and then in the reverse direction in one time cleaning to reciprocate the cleaning members 53 in a longitudinal direction of the transmissive members 52. Note that the cleaning is performed in response to a user operation on an input device such as a touch panel in a state in which the image forming apparatus 1 is set to a maintenance mode. Alternatively, for example, the cleaning may be performed periodically each time when printing (image formation) is performed about 10000 times.
In the present embodiment, in accompaniment of circulation of the wire-shaped member 54, the two cleaning holders 51 (the first and second cleaning holders 511 and 512) travel linearly in mutually opposite travel directions in parallel to a direction in which the transmissive members extends (the main scanning direction of the laser light). Specifically, the first and second cleaning holders 511 and 512 travel in directions opposite to each other. A first stopper 56a is located at one end of a travel path of the first cleaning holder 511. A second stopper 56b is located at one end of a travel path of the second cleaning holder 512. The first and second stoppers 56a and 56b are located on one of sides of the transmissive members 52 in the longitudinal direction of the transmissive members 52. The first stopper 56a is located between the left two transmissive members 52. The second stopper 56b is located between the right two transmissive members 52. When the first or second cleaning holder 511 or 512 travels to the one end of the corresponding travel path to come in contact with the first or second stopper 56a or 56b, the wire-shaped member 54 stops circulating. Circulation stop of the wire-shaped member 54 increases a load acting on the winding motor 55 to cause the winding motor 55 to rotate in the reverse direction or stop operating. The first and second stoppers 56a and 56b may be made from resin, for example. In a case in which the first and second stoppers 56a and 56b are made of resin, the first and second stoppers 56a and 56b may be formed integrally with the covering section 12c.
With reference to
Specifically, once cleaning starts, the wire-shaped member 54 circulates in the first direction indicated by the arrow D1 (see
In cleaning, the two cleaning members 53 held by the first cleaning holder 511 move in the same direction, while the two cleaning members 53 held by the second cleaning holder 512 also move in the same direction.
The present embodiment can reduce the number of cleaning holders and a required length of the wire-shaped member 54 when compared to the case in which each cleaning holder holds a single cleaning member 53, thereby achieving cost reduction. In other words, in a configuration in which each cleaning holder holds a single cleaning member 53, cleaning holders of which number corresponds to the number of the transmissive members 52 are necessary. This means that more cleaning holders are necessary when compared to the configuration in which the cleaning holders 51 each hold a plurality of cleaning members 53 as in the present embodiment. Further, in the configuration in which each cleaning holder holds a single cleaning member 53, the number of cleaning holders to be connected to the wire-shaped member increases when compared to the configuration in which the cleaning holders 51 each hold a plurality of cleaning members 53 as in the present embodiment. As such, the length of the wire-shaped member is necessary to be longer than a total length of one-way travel distance of each cleaning holder. Therefore, in the configuration in which each cleaning holder holds a single cleaning member 53, it is necessary to lengthen the wire-shaped member 54 when compared to the configuration in which the cleaning holders 51 each hold a plurality of cleaning members 53 as in the present embodiment.
The configuration of the optical scanning device 12 will be described further with reference to
The wire-shaped member 54 is wound plural times around a winding drum 59. Rotation of the winding drum 59 by the winding motor 55 causes the wire-shaped member 54 to circulate. The winding motor 55 and the winding drum 59 are disposed within a recess 60 that the covering section 12c has. Specifically, the winding drum 59 is rotatably held by the covering section 12c in the recess 60. The winding motor 55 is fixed to the covering section 12c in the recess 60. Note that the winding motor 55 may be fixed to the accommodation section 12b.
The cleaning holders 51 engage with the covering section 12c in a movable manner in the longitudinal direction of the transmissive members 52. An example of engagement of the cleaning holders 51 with the covering section 12c will be described with reference to
As illustrated in
Each of the guide rails 61 includes a hook portion 61a protruding toward a corresponding one of the cleaning holders 51. The hook portions 61a extend in the longitudinal direction of the transmissive members 52. The opposite end parts of the holding portion 51a of each of the cleaning holders 51 are hooked by the hook portions 61a of a corresponding one of the pairs of guide rails 61 in a direction away from the casing 12a of the optical scanning device 12 (upward in
Furthermore, in the present embodiment, two guide ribs 62 protrude from the outer surface of the covering section 12c in one-to-one correspondence with to the two cleaning holders 51. The guide ribs 62 are an example of second guide members. The guide ribs 62 each extend in the longitudinal direction of the transmissive members 52. One of the guide ribs 62 (left guide rib 62) is located between the left two transmissive members 52. The other guide rib 62 (right guide rib 62) is located between the right two transmissive members 52. On the other hand, an engaging portion 63 is located on a lower surface of the holding portion 51a of each of the cleaning holders 51. The engaging portions 63 each engage with a corresponding one of the guide ribs 62. In the above configuration, the guide ribs 62 each guide a corresponding one of the cleaning holders 51 in the longitudinal direction of the transmissive members 52. Accordingly, the cleaning holders 51 can stably travel in the longitudinal direction of the transmissive members 52.
Preferably, each of the guide ribs 62 is located closer to the wire-shaped member 54. This can further reduce vibration of the cleaning holders 51 in cleaning. In other words, each of the cleaning holders 51 can travel further stably in the longitudinal direction of the transmissive members 52. More preferably, each of the guide ribs 62 is located directly blow the wire-shaped member 54. This can still further reduce vibration of the cleaning holders 51 in cleaning.
In the present embodiment, the wire-shaped member 54 is connected to an upper part of the holing portion 51a of each of the cleaning holders 51. The respective engaging portions 63 are located on lower surfaces of the respective holding portion 51a of the cleaning holders 51. In the above configuration, engagement parts between the respective guide ribs 62 and the respective engaging portions 63 can be each arranged directly below a corresponding of one of connection parts between the respective cleaning holders 51 and the wire-shaped member 54.
Moreover, in the present embodiment, each of the engaging portions 63 includes a pair of protrusions 63a protruding downward. The guide ribs 62 each are located between a corresponding one of the pair of protrusions 63a, as illustrated in
Each of the guide ribs 62 in the present embodiment includes a protrusion 62b protruding from the covering section 12c and a hook portion 62a protruding from a tip end of the protrusion 62b. The hook portion 62a extends leftward (toward one of sides in a direction in which each holding portion 51a extends) from the tip end of the protrusion 62b. On the other hand, each of the cleaning holders 51 includes a hook portion 63b engaging with the hook portion 62a of a corresponding one of the guide ribs 62. The hook portions 63b each protrude rightward (toward the other of the sides in the direction in which each holding portion 51a extends) from one of the two protrusions 63a of a corresponding one of the engaging portions 63. In the above configuration, upward movement of the cleaning holders 51 can be restricted. Further, the cleaning holders 51 can be prevented from falling off from the covering section 12c.
In a configuration in which the opposite end parts of the holding portion 51a of each of the cleaning holders 51 are always in contact with the hook portions 61a of the corresponding one of the pairs of guide rails 61 so that the respective cleaning members 53 are in close contact with the respective transmissive members 52, the cleaning holders 51 may deform into arc shapes (in an upwardly curved fashion). In a situation in which the cleaning holders 51 deform into arc shapes, the cleaning members 53 may come off from the corresponding transmissive members 52 at the central parts of the respective cleaning holders 51. By contrast, in the present embodiment, the covering section 12c includes the hook portions 62a and each of the cleaning holders 51 includes the hook portion 63b. When the cleaning holders 51 deform into arc shapes, the hook portion 63b of each of the cleaning holders 51 is hooked at the hook portion 62a of a corresponding one of the guide ribs 62 in the direction away from the casing 12a of the optical scanning device 12, thereby preventing deformation of the cleaning holders 51 into arc shapes. As a result, the respective cleaning members 53 can be securely attached to the respective transmissive members 52. More preferably, the hook portion 62a of each of the guide ribs 62 engages with the hook portion 63b of a corresponding one of the cleaning holders 51 (the engaging portions 63) at a level (position in the vertical direction) lower than a level at which the respective transmissive members 52 are located. In the above configuration, deformation of the cleaning holders 51 into arc shapes can be reduced more effectively.
With reference to
As illustrated in
As illustrated yet in
The pairs of guide rails 61 each extend from the one end to the other end of the travel path of a corresponding one of the cleaning holders 51 in the longitudinal direction of the transmissive members 52 but do not each extend to a region to which a corresponding one of the cleaning holder attachment sections 64 imaginarily extends in a direction in which the transmissive members 52 are arranged (direction perpendicular to the longitudinal direction of the transmissive members 52). In the above configuration, once the first cleaning holder 511 is placed on the covering section 12c so that the engaging portion 63 of the first cleaning holder 511 is accommodated in the corresponding cleaning holder attachment section 64 as illustrated in
An example of a joint mechanism between the cleaning holders 51 and the wire-shaped member 54 will be described with reference to
In the present embodiment, a spherical joint member 65 is fixed to the wire-shaped member 54 in each of the cleaning holders 51. Each of the cleaning holders 51 has a recess 81 in an upper part of the holding portion 51a thereof. The spherical joint member 65 is fitted with play in each of the recesses 81. In the above configuration, each of the cleaning holders 51 is connected to the wire-shaped member 54. The joint members 65 may be swaged and fixed to the wire-shaped member 54, for example. The joint members 65 may be made of resin, for example.
In the above configuration, even when the cleaning holders 51 vibrates to vary in their posture, loads applied from the cleaning holders 51 in the varied posture to the wire-shaped member 54 can be reduced. This can lengthen the lifetime of the wire-shaped member 54.
As described above, the wire-shaped member 54 such as a wire is employed as a member for moving the cleaning holders 51 in the present embodiment. The wire-shaped member 54 has a diameter smaller than a screw shaft usually employed as a member for moving the cleaning members and can accordingly reduce the height of the optical scanning device 12.
Further, the present embodiment provides the first and second stoppers 56a and 56b at the respective one ends of the travel paths of the first and second cleaning holders 511 and 512. When the first cleaning holder 511 travels to the one end of the corresponding travel path to come into contact with the first stopper 56a, the second cleaning holder 512 is located at the other end of the corresponding travel path. In reverse, when the second cleaning holder 512 travels to the one end of the corresponding travel path to come into contact with the second stopper 56b, the first cleaning holder 511 is located at the other end of the corresponding travel path. Upon the first cleaning holder 511 coming into contact with the first stopper 56a, the winding motor 55 rotates in the reverse direction. Upon the second cleaning holder 512 coming into contact with the second stopper 56b, the winding motor 55 stops operating. The above configuration of the present embodiment can eliminate the need to provide stoppers on the both ends of each of the travel paths of the first and second cleaning holders 511 and 512. Therefore, the first and second stoppers 56a and 56b are located at only corresponding one ends of the travel paths of the first and second cleaning holders 511 and 512. No stopper is disposed at the respective other ends of the travel paths of the first and second cleaning holders 511 and 512. This configuration can enable easy assemblage of the first and second cleaning holders 511 and 512 to the covering section 12c from the respective opposite sides to respective sides on which the first and second stoppers 56a and 56b are located in the respective travel paths of the first and second cleaning holders 511 and 512. Thus, the cleaning mechanism can be easily assembled to the optical scanning device 12.
Furthermore, the respective cleaning holder attachment sections 64 are located outside one end of the travel path of the first cleaning holder 511 that is opposite to the side on which the first stopper 56a is located and outside one end of the travel path of the second cleaning holder 512 that is opposite to the side on which the second stopper 56b is located. In the above configuration, the cleaning holder attachment sections 64 in the covering section 12c can facilitate assemblage of the first and second cleaning holders 511 and 512 to the casing 12a of the optical scanning device 12.
The embodiment of the present disclosure has been described in detail so far. However, the present disclosure is not limited to the above embodiment and various alterations can be made to the above embodiment.
For example, the tension pulleys 57 are employed for winding the wire-shaped member 54 in a loop. However, a member for winding the wire-shaped member 54 in a loop is not limited to the pulleys. For example, a plurality of protrusions may be disposed on the outer surface of the covering section 12c, rather than the tension pulleys 57, for winding the wire-shaped member 54 to the respective protrusions. Likewise, at least one protrusion may be disposed on the outer surface of the covering section 12c in place of the tension adjusting pulley 58 as the tension adjusting mechanism.
Further, only one tension adjusting pulley 58 is provided in the above embodiment, but the number of tension adjusting pulleys may not be limited specifically.
The tension adjusting pulley 58 is arranged as a tension adjusting mechanism for adjusting the tension applied to the wire-shaped member 54 in the above embodiment, but may be omitted.
The winding drum 59 provided in the above embodiment may be omitted.
In the above embodiment, the recording medium is paper (sheet(s) of paper) but may be a substance other than paper such as a resin sheet or fabric.
Moreover, the present embodiment is applied to but is not limited to a tandem color printer and can be applied to any electrographic image forming apparatuses such as color copiers and facsimile machines.
The optical scanning device 12 is disposed below the photosensitive drums 11a-11d in the above embodiment but may be disposed above the photosensitive drums 11a-11d.
The properties of each of the elements, such as material and shape thereof described in the above embodiment are mere examples and not limited specifically. A wide range of variations of the properties can be made so long as such variations do not deviate from the intended scope of the present disclosure.
Any other various alterations can be made to the above embodiment within the intended scope not deviating from the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2014-154011 | Jul 2014 | JP | national |