Optical sensor and methods for measuring molecular binding interactions

Abstract
Optical sensor for the measurement of molecular binding interactions. Preferred embodiments provide real-time measurements of kinetic binding and disassociation of molecules including binding and disassociation of protein molecules with other protein molecules and with other molecules. In preferred embodiments ligands are immobilized within pores of a porous silicon interaction region produced in a silicon substrate, after which analytes suspended in a fluid are flowed over the porous silicon region. Binding reactions occur when analyte molecules diffuse closely enough to the ligands to become bound. In preferred embodiments both ligands and analytes are delivered by computer controlled robotic fluid flow control techniques to the porous silicon interaction regions through microfluidic flow channels.
Description
BACKGROUND OF THE INVENTION

The prior art includes a wide variety of optical sensors. An optical biosensor is an optical sensor that incorporates a biological sensing element. In recent years optical biosensors have become widely used for sensitive molecular binding measurements.


Surface Plasmon Resonance

An optical biosensor technique that has gained increasing importance over the last decade is the surface plasmon resonance (SPR) technique. This technique involves the measurement of light reflected into a narrow range of angles from a front side of a very thin metal film producing changes in an evanescent wave that penetrates the metal film. Ligands and analytes are located in the region of the evanescent wave on the backside of the metal film. Binding and disassociation actions between the ligands and analytes can be measured by monitoring the reflected light in real time. These SPR sensors are typically very expensive. As a result, the technique is impractical for many applications.


Resonant Mirror

Another optical biosensor is known as a resonant mirror system, also relies on changes in a penetrating evanescent wave. This system is similar to SPR and, like it, binding reactions between receptors and analytes in a region extremely close to the back side of a special mirror (referred to as a resonant mirror) can be analyzed by examining light reflected when a laser beam directed at the mirror is repeatedly swept through an arc of specific angles. Like SPR sensors, resonant mirror systems are expensive and impractical for many applications.


Thin Films

It is well known that monochromic light from a point source reflected from both surfaces of a film only a few wavelengths thick produces interference fringes and that white light reflected from a point source produces spectral patterns that depend on the direction of the incident light and the index of refraction of film material. (See “Optics” by Eugene Hecht and Alfred Zajac, pg. 295-309, Addison-Wesley, 1979.)


Porous Silicon Layers

U.S. Pat. No. 6,248,539 (incorporated herein by reference) discloses techniques for making porous silicon and an optical resonance technique that utilizes a very thin porous silicon layer within which binding reactions between ligands and analytes take place. The association and disassociation of molecular interactions affects the index of refraction within the thin porous silicon layer. Light reflected from the thin film produces interference patterns that can be monitored with a CCD detector array. The extent of binding can be determined from change in the spectral pattern.


Kinetic Binding Measurements

Kinetic binding measurements involve the measurement of rates of association (molecular binding) and disassociation. Analyte molecules are introduced to ligand molecules producing binding and disassociation interactions between the analyte molecules and the ligand molecules. Association occurs at a characteristic rate [A][B]kon that depends on the strength of the binding interaction kon and the ligand topologies, as well as the concentrations [A] and [B] of the analyte molecules A and ligand molecules B, respectively. Binding events are usually followed by a disassociation event, occurring at a characteristic rate [A][B]koff that also depends on the strength of the binding interaction. Measurements of rate constants kon and koff for specific molecular interactions are important for understanding detailed structures and functions of protein molecules. In addition to the optical biosensors discussed above, scientists perform kinetic binding measurements using other separations methods on solid surfaces combined with expensive detection methods (such as capillary liquid chromatography/mass spectrometry) or solution-phase assays. These methods suffer from disadvantages of cost, the need for expertise, imprecision and other factors.


Separations-Based Measurements

More recently, optical biosensors have been used as an alternative to conventional separations-based instrumentation and other methods. Most separations-based techniques have typically included 1) liquid chromatography, flow-through techniques involving immobilization of capture molecules on packed beads that allow for the separation of target molecules from a solution and subsequent elution under different chemical or other conditions to enable detection; 2) electrophoresis, a separations technique in which molecules are detected based on their charge-to-mass ratio; and 3) immunoassays, separations based on the immune response of antigens to antibodies. These separations methods involve a variety of detection techniques, including ultraviolet absorbance, fluorescence and even mass spectrometry. The format also lends itself to measure of concentration and for non-quantitative on/off detection assays.


What is needed is a device and method for efficiently making molecular binding measurements.


SUMMARY OF THE INVENTION

This invention provides methods and devices for the measurement of molecular binding interactions. Ligands are immobilized within pores of a porous silicon interaction region produced within a crystalline silicon substrate and analytes diluted in a buffer fluid are flowed over the porous silicon region. Binding reactions occur after analyte molecules diffuse closely enough to the ligands to become bound. Both ligands and analytes are delivered by computer controlled robotic fluid flow control techniques to the porous silicon interaction regions through microfluidic flow channels. The association and subsequent disassociation reactions are observed optically. In preferred embodiments the observation is accomplished with a white light source and thin film interference techniques with spectrometers arranged to detect changes in indices of refraction in the region where the binding and disassociation reactions occur. In a prototype unit designed as tested by applicants, four interaction regions are provided each with its own fluid delivery system and spectrometer so that up to four binding measurements can be made simultaneously. A special kinetic binding measurement model is provided to calculate apparent changes in the optical path difference (OPD) of each of the interaction regions from spectral patterns produced by spectrometers. In preferred embodiments these apparent changes in OPD are used to determine binding and disassociation rates.


In preferred embodiments linker molecules are utilized to link the ligands to specially treated surfaces within the pores of the porous silicon. Preferred linker molecules includes a polyethylene glycol molecule specially assembled to link to the specially treated walls of the pores. These linker molecules in turn link to a variety of biomolecules, which function as ligands in the binding reactions with analytes of interest. Preferred embodiments of the present invention are capable of measuring surface concentrations of proteins at precision levels of 1 picogram per square millimeter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a drawing of a preferred optical biosensor unit according to the present invention.



FIG. 2 is a drawing showing flow channels and observation regions of a disposable fluidics cartridge.



FIG. 2A through 2E show other features of the FIG. 2 cartridge.



FIG. 3 is a cartoon drawing showing some of the features a preferred features of the present invention.



FIG. 4 is a graph showing variations in optical path difference of an interaction region with various molecule containing fluids occupying the interaction region.



FIG. 5 is a drawing showing a technique for avoiding diffusion between sample and buffer.



FIG. 6 is a drawing describing a technique for monitoring changes in optical path difference in an interaction region.



FIGS. 6A&B drawings are showing optical features of a preferred embodiment.



FIGS. 7A-7E show results and techniques for making porous silicon.



FIG. 8 is a drawing showing sample flow over a porous silicon interaction region.



FIGS. 9A-9F show techniques for linking a ligand to the walls of the pores in a porous silicon region.



FIG. 10 demonstrates binding and disassociation between a ligand and an analyte.



FIG. 11 demonstrates analyte concentrate vs. time in an observation region.



FIG. 12 shows graphs representing bound molecules as a function of time for the FIG. 11 situation.



FIG. 13 shows the major steps of a computer program for calculating binding parameters.



FIG. 14 is the same as FIG. 12 with noise simulated.



FIG. 15 demonstrates a technique for measuring binding reactions where optical path changes occur just above a porous silicon region.



FIGS. 16-21 are graphs explaining features of a mathematic model supporting embodiments of the present invention.



FIG. 22 is a computational flow chart for calculating OPD.



FIG. 23 is a schematic illustration of a preferred embodiment of the invention.



FIG. 24 is an illustration of a feature of a preferred embodiment.



FIGS. 25-28 demonstrate optical concepts important to embodiments of the present invention.



FIGS. 29 and 29A, B and C show a test set-up and test results to demonstrate features of the present invention.



FIGS. 30A and 30B are scanning electron microscope top view images of porous silicon suitable for use in the invention.



FIGS. 31A and 31B show features of an embodiment of the present invention.



FIGS. 32A and 32B show an example of a micro-well design with porous silicon chip at the bottom of the well.



FIG. 33 shows the general layout of a standard 96-well micro-well plate.



FIG. 34 is a drawing showing features of a molecular sensor system fabricated by Applicants and their fellow workers.



FIG. 34A is a flow cell diagram for the FIG. 34 system.



FIG. 34B shows temperature control elements and a triple format tray adapted for use of a single flow cell.



FIG. 34C is an outside view of a modular fluidics unit for providing up to 6 different fluids to micro-well plates or flow cells.



FIG. 34D shows some of the internal features of the modular fluidics unit.



FIG. 34E shows storage cups for five buffer solutions.



FIG. 34F shows the triple format tray adapted for use of a 96-well micro-well plate.



FIG. 34G shows a 3-axis robotic unit for automatic loading of the 96-well micro-well plate.



FIG. 34H shows elements of the optical components of the FIG. 34 system.



FIG. 34I shows an X-Y robotic unit for automatic positioning of the optical beam on target regions.



FIG. 34J shows a blow-up of a portion of the flow cell shown in FIG. 34B.



FIG. 34K is an enlargement of a portion of FIG. 34J.



FIG. 34I shows an enlarged view of the gasket shown in FIG. 34K.



FIG. 34M shows how fluid flows through a porous silicon chip and the region of the chip optically examined.



FIG. 34N shows a six flow-cell strip with a blow-up of the components of one cell.



FIG. 34O show the fluid flow chart for a multiple flow cell format.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Observing Small Things with Long Wavelength Light

For an understanding of the present invention the reader should keep in mind the sizes of various elements involved in the present invention. It is important to understand that, with this device, applicants are monitoring real time interactions of molecules such as proteins having dimensions as small as a few nanometers (such as about (3 to 10 nm) with visible light having wavelengths in the range of about 400 nm to 700 nm. These molecules are much too small to be imaged with light in these wavelengths; however, actions of these molecules can be determined because the speed of light is affected by their presence or absence in an interaction region. A single light beam reflects from a top surface and from a bottom surface of a thin porous silicon region to produce two reflected beams that interfere with each other. The interference produces spectral patterns that are a function of a phase delay of the beam reflecting from the bottom surface (the signal beam) relative to the beam reflecting of the top surface (the reference beam). This delay represents an apparent optical path difference and is referred to as an optical path difference (OPD). This OPD between the reference beam and the beam passing through the molecule containing solution can be monitored by observing changes in the resulting spectral patterns produced by the interference of the two reflected beams. Changes in the concentration of molecules within the interaction region produce apparent changes in the OPD. These changes in OPD thus provide a measure of the concentration of the molecules in the solution.


The Optical Biosensor


FIG. 1 is a prospective drawing showing some of the features of an optical biosensor 13 that uses a four channel fluidics cartridge for monitoring binding reactions. This unit includes robotic equipment 62, four spectrometers 71 A, B, C and D, light source 222, sample trays 55, buffer fluid tank 60A and waste tank 60B, sample pump 56 and buffer pump 58, sample injection port 66, control box 73 and pneumatic controls, firmware and software necessary for automated real-time measurements. In this unit a small (1.7 inch×2.3 inch) disposable cartridge 42 shown in FIGS. 2 and 2A provides four interaction regions at which molecular binding interactions can be optically observed. The disposable cartridge is inserted into fluidics enclosure 45 at location 47. Light from point light sources reflects from the top and bottom surfaces of each of each of the interaction regions and produces spectral interference patterns which are monitored in order to gather information regarding molecular binding interactions.


Fabrication of Porous Silicon

In preferred embodiments these binding interactions occur in porous silicon regions 43 of cartridge 42 as shown in FIG. 2A. The porous silicon regions are high surface area regions consisting of nanometer size pores in a crystalline silicon substrate. The pores are produced by an anodic electrochemical etch of bulk crystalline silicon. The starting material for porous silicon, for preferred embodiment, is a properly doped crystalline silicon wafer, commercially available for semiconductor manufacturing purposes. Preferred techniques for fabrication of the porous silicon regions include a two-etch-step process that results in a single, macroporous layer of silicon with pore depths of several microns and relatively uniform equivalent diameters (mostly in the range of about 50 nm to 150 nm) with an operator chosen mean equivalent diameter. Described below by reference to the drawings is a preferred process for fabricating porous silicon with an average equivalent pore diameter of about 100 nanometers with more than half of the pores having equivalent pore diameters within about +/−20 nm of the average 100 nm equivalent diameter.


The pores are roughly cylindrical but can have final cross sectional shapes similar to squares, pentagons and hexagons. In this specification, we will use the phrase, “equivalent pore diameter” De, of a pore to refer to the approximate diameter of a comparable circular cylinder having the same volume as that of the pore. Since the cross sectional area of each pore is typically approximately uniform along the depth of the pore, we can estimate this equivalent pore diameter by measuring the area, A, of the pore at the surface of the wafer and calculating a value for De as follows: De=2√{square root over (A/α)}.


A preferred anodization cell 48 is shown in an exploded view in FIG. 7A and in a perspective view in FIG. 7B. It includes cell reservoir 48, wafer holder 50, anode 52 and cathode 54. Wafer holder 50 includes two fluoroelastomer gaskets 60 (such as Viton® gaskets, available from Problem Solving Products, Inc. with offices in Denver, Colo.) that provide seals separating the cell reservoir into an anode region and a cathode region to create what is known as a “double-tank” cell. Substantially the entire voltage drop in the cell's electrical circuit is through silicon die 56. (Die 56 is, as indicated in FIG. 7A, a 10 mm×13 mm section of a silicon wafer. Although the die section is only a small part of a wafer it is sometime referred to, itself, as a wafer.) Wafer holder includes two Teflon masks with etching windows 58, each defining an etch area of 0.495 cm2.


The porous silicon regions are high surface area regions consisting of nanometer size pores in a crystalline silicon substrate. The pores are produced by anodic electrochemical etches of bulk crystalline silicon. The starting material for porous silicon, for this preferred embodiment, is a heavily doped crystalline silicon wafer, commercially available for semiconductor manufacturing purposes. Wafer specifications for this porous silicon fabrication process include p-type boron doped silicon (0.001-0.0035 Ω-cm resistivity) with a <100> crystal orientation. Four inch diameter, p-type silicon (100) wafers with resistivity ranges between 0.0010 and 0.0035 Ω-cm were purchased from Silicon Quest International, Inc., with offices in Santa Clara, Calif.). The wafers were pre-scribed into 44 individual die sections measuring 10 mm×13 mm by American Precision Dicing (San Jose, Calif.) which section, as indicated above, are referred to as dies, die section or wafers. The actual etch area, defined by the Teflon masks, measures 9.0 mm×5.5 mm and equals 49.5 mm2.


All chemicals used were reagent grade or higher and purchased from Hawaii Chemical & Scientific unless otherwise noted. Ultra pure water was obtained from a Barnstead Nanopure Diamond Analytical Water System (APC Water Services, Inc.).


Precleaning

Immediately prior to anodisation, wafers were pre-cleaned as described in this section. Silicon wafer 56 was placed in 40 ml of concentrated sulfuric acid and heated to about 90 degrees C. Twenty milliliters of hydrogen peroxide (30%) was added to the acid and the wafer was allowed to oxidize for 10 minutes in the heated solution, after which the wafer was rinsed with copious amounts of ultra pure water for 5 minutes. The rinsed silicon wafer was transferred to a clean, glass beaker containing 150 ml of ultra pure water and 30 ml of ammonium hydroxide (30%). The solution was heated and, once it reached 70 degrees C., 30 ml of hydrogen peroxide (30%) was added. The silicon wafer remained in the solution for 15 minutes and again was rinsed with copious amounts of water for 5 minutes. A resulting oxide layer was stripped by soaking the wafer in a 2.5% solution of hydrofluoric acid (diluted with water) for 2 minutes and again rinsed with copious amounts of water for 5 minutes. The silicon wafer was then transferred to a clean, glass beaker containing 120 ml of ultra pure water and 30 ml of hydrochloric acid (37%). The solution was heated to 70 degrees, at which time 30 ml of hydrogen peroxide was added. The silicon wafer remained in the solution for 15 minutes before a final five minute rinse with copious amounts of ultra pure water. The wafer was blown dry under an inert stream of nitrogen gas using a nitrogen source available from GasPro, with offices in Kahului, Hi.


Anodisation

The clean wafer was then assembled into the Teflon etch chamber of anodisation cell 48 and immersed in an ethanolic hydrofluoric acid solution. The solution is a mixture of equal quantities of (1) 50% hydrofluoric acid (equal volumes of hydrofluoric acid and water) and (2) ethanol. Applicants refer to this solution as 25 percent hydrofluoric acid in ethanol. Specifically, 40 milliliters of 25 percent hydrofluoric acid in ethanol is slowly added to the cell reservoir. Conductors from a power supply (not shown) are connected to the platinum wire electrode paddles in the anodisation cell and a constant current density (J=181.8 mA/cm2) is applied for 30 seconds. The total area to be etched, defined by windows 58, is 0.99 cm2. The electric field lines direct all of the electric current through the area defined by windows 58. Therefore, the appropriate anodisation current is 180 mA. The silicon atoms at the silicon/electrolyte interface are attacked by the fluoride ions in solution forming silicon hexafluoride. Silicon atoms are released from the wafer in the form of silicon hexafluoride. The etched silicon wafer is removed from the anodisation cell, rinsed in acetone, then pentane and allowed to air dry. The porous silicon that results from this first etch step is bi-layered, with an upper, microporous-mesoporous layer (with equivalent pore diameters mostly at about 10 to 50 nanometers) covering a lower, macroporous layer with diameters in the range of about 100 nanometers. The upper, microporous-mesoporous layer and the top portion of the lower layer (approximately the top 70 to 90 percent of the lower layer) are dissolved in 0.1M KOH, rinsed and dried under a stream of nitrogen. The remainder of the lower layer appears as relatively shallow “pits”. These remaining pits serve as defect sites for the initiation of a second electrochemical etch. The silicon is again immersed in an ethanolic hydrofluoric acid solution (HF:ethanol, 1(v):1(v)) in cell 48 and a constant electric current applied using the platinum electrodes. The silicon is again anodized at 180 mA (current density=181.8 mA/cm2) for 30 seconds, rinsed in acetone and finally in pentane to prevent collapsing of the pore walls due to high interfacial surface tension during drying of the porous silicon. The samples are blown dry under an inert stream of nitrogen gas and stored in a dessicator for further surface modification.


The result of the above process is a silicon wafer part with a very uniform, single, macroporous layer as shown in the scanning electron microscope (SEM) images displayed in FIGS. 7C, 7D and 7E. The pores are about two microns deep with good symmetry throughout the depth of the pores and very little (less than about 10 percent) variation in depth. The pores are roughly circular but can have final shapes similar to squares, pentagons and hexagons (with narrow walls). About 90 percent of the wafer surface is covered with pores that have “diameters” in the range of about 50 nm to 250 nm but most of the pores have equivalent pore diameters in the range of 100+/−50 nm.



FIG. 7D is an inverted side cross section SEM image before a gold coating is applied and FIG. 7E is a tilted top view SEM image after gold coating. FIG. 7D confirms the uniformity of pore width as a function of pore depth.


Varying the Pore Diameter and the Depth

The distribution of pore diameters and the depth of the pores may be controlled by adjusting current density and anodisation duration. Typical average pore features for preferred embodiments produce average equivalent pore diameter distributions of about 50 to 250 nanometers and pore depths of about 2000 to 3000 nanometers. The current densities, J, applied to produce the samples varied from J=162 mA/cm2 to J=404 mA/cm2. The pore diameters increase with increasing current density with J=162 mA/cm2 creating pores with diameters averaging about 40 nm and J=404 mA/cm2 producing pores with diameters averaging about 250 nm. The depth of the pores is very uniform. This high uniformity of the etching process provides the two optically flat interfaces; the top surface of the porous silicon, and the interface between the bottom of the porous silicon region and the non-porous, or bulk, silicon. The pore depth is controlled by the duration of etch.


Surface Modification of Porous Silicon

In preferred embodiments, the porous silicon surface may be modified for particular applications. In one application the porous silicon is utilized in a molecular sensor to anchor molecules for the purpose of monitoring molecular interactions. For this embodiment, after the porous silicon layer has been produced on the silicon wafer as explained above, a protective layer is applied to prevent or minimize oxidation and contamination with particulates from ambient air. Preferably the wafers are immediately surface modified or stored under a blanket of inert nitrogen gas in a controlled humidity environment to be surface modified later. Surface modifications with biological coatings can be achieved using a variety of techniques including wet chemistry and molecular vapor deposition (MVD). Applicants' first preferred embodiment for surface modification relies on MVD technology. MVD overcomes many limitations associated with wet chemistry including cost, process complexity and surface coverage. The process consists of pre-cleaning using argon or oxygen plasma followed by tunable deposition of a monolayer film under sub-atmospheric pressure.


A wide variety of chemicals can be deposited on the surface depending upon the ultimate application. For a preferred embodiment in which the porous silicon dies are to be used as a molecular sensor for measuring binding interactions, Applicants describe below the deposition of 10-(carbomethoxy)decydimethylchlorosilane (Gelest, Inc.) using a molecular vapor deposition unit Model MVD-100 available from Applied Microstructures Inc. with offices in San Jose, Calif. Post-etching, samples were placed in the MVD-100 and cleaned of any organic contamination by an oxygen plasma treatment, in this case, for 90 seconds with a chamber pressure of 0.5 Torr and RF power in the range of 100-300 watts. The plasma treatment serves a dual purpose, not only eliminating the etched surface of contaminants, but also uniformly hydroxylating the silicon surface with OH-groups for subsequent silanization. The organic linker [10-(carbomethoxy)decyldimethylchlorosilane] (Gelest, Inc.) was vaporized before metered delivery of approximately 2.0-3.0 microliters to the reaction chamber where it reacted with the hydroxylated silicon surface in the presence of trace amounts of water, resulting in the release of a negligible amount of HCl gas and the functionalized silicon surface. In this case, the vapor was allowed to react for 25-30 minutes. The dies can be used, as is, to couple proteins via standard amine coupling techniques or further modified with different bioconjugates to increase hydrophilicity and/or create specific functionalized surfaces. Using this preferred embodiment, Applicants and their fellow workers have coupled Amino-dPEG12™-t-butyl ester (Quanta Biodesign) to the surface by first activating the carbomethoxy group of the silicon surface with 200 mM EDC [1-Ethyl-3-(3-Dimethylaminopropyl)carbodiimide Hydrochloride] (Pierce Biotechnology) and 50 mM NHS [N-Hydroxysuccinimide] (Pierce Biotechnology) in water for 10 minutes. The activated surface is then allowed to react with 1 mg/ml of Amino-dPEG12™-t-butyl ester for 30 minutes and any remaining NHS esters are capped with 1M ethanolamine, pH 8.0 for 10 minutes. The surface is rinsed in ultra pure water, pure ethanol and dried under a stream of inert nitrogen gas. The final product is a pegylated, porous silicon surface with a protected carboxylic acid functional group. The functional group may be deprotected by exposure to 25% trifluoroacetic acid (TFA) in ice cold methylene chloride (CH2Cl2) for 5 hrs and used for immobilization with standard amine coupling techniques. Alternatively, the deprotection step may be avoided by coupling the Amino-dPEG12™ acid (Quanta Biodesign) instead of the Amino-dPEG12™-t-butyl ester. In this case, the end user can proceed with activation and immobilization of the target using EDC/NHS and standard amine coupling. The end product is a functionalized, hydrophilic porous silicon die with cylindrical, straw-like pores with widths mostly in the range of about 50 nm to 150 nm and 2 micron depths and two optically flat, parallel surfaces resulting from the top (air/porous silicon) and bottom (porous silicon/bulk silicon) surfaces of the porous silicon matrix. The structural morphology of the dies provides a convenient two-beam interferometer while the high surface area and adaptable surface chemistry provide the platform for numerous protein and DNA sensing applications.


Additional details relating to this process are contained in U.S. patent application Ser. No. 11/180,394, filed Jul. 13, 2005 that has been incorporated herein by reference. Other details about porous silicon fabrication techniques are contained in U.S. Pat. No. 6,248,539 which also has been incorporated herein by reference.


For use in the present invention forty four porous silicon regions having dimensions of 2 mm×11 mm are etched into each 100 mm silicon wafer. The wafer is then diced up into forty four individual die having dimensions of 10 mm×13 mm, each referred to as a porous silicon die part 43. Flow channels about 2 mm wide are produced across the top of the porous silicon regions 202 with a machined plastic window 207 which is attached with epoxy to the silicon die 43. A transparent plastic window 207 forms the top of the flow channels. Four flow channels 20A, 20B, 20C and 20D are thus created on each die part 43 and each die part 43 is incorporated into a plastic fluidics cartridge 42 containing elaborate microfluidic channels and pinch valves, all as shown in FIG. 2 and FIG. 2A. Molecular interactions that occur in the porous silicon regions 202 at the bottom of the flow channels are observable through the transparent plastic window 207. We will refer in this specification to these regions of molecular interaction as interaction regions in some places and as observation regions in some cases.



FIG. 2 shows the four observation regions 20A, B, C, and D and flow channels for delivering sample fluids and buffer fluids to the four observation regions and for exhausting waste fluids. The fluidics cartridge includes 11 pneumatically controlled pinch valves 1-5, 7, 8 and 10-13 shown in FIG. 2. FIG. 2A is a top prospective view of cartridge 42. The cartridge comprises the female portions of small tubing couplings 44. In this particular cartridge only five of the couplings on the bottom of the cartridge are utilized as shown with dotted lines at 46, 48, 52, and 54. In this embodiment, couplings are automatically connected to mating sample, waste and buffer fluid channels in parts of the biosensor unit when the cartridge is inserted into its operating position in enclosure 45. These fluid channels include three waste channels connected to female coupling parts 54 and 48, a sample channel in flow communication with coupling part 46 and a buffer flow channel in flow communication with coupling part 52. FIG. 2B shows pneumatics 53 for operation of the cartridge valves and pneumatics 55 for pressing glueless die part 43 against a gasket to seal the flow channels. FIG. 2C shows features of the cartridge including a space for a bar code to permit the user to keep track of the cartridge. FIGS. 2D and 2E show additional features of the cartridge. As shown in FIG. 3 the unit includes a one-half liter buffer tank 60 (shown as 60A and 60B in FIG. 1) containing buffer solution and a first fluid pump 58, called the buffer pump, with valves 58A, 58B and 58C providing controlled buffer fluid flow at any flow rate between 1 to 100 microliters per minute. A preferred pump is a positive displacement piston pump available from Sapphire Engineering a division of Scivex Inc., with offices in Waltham, Mass. Buffer flow from this pump enters the cartridge at location 52. The unit also includes a second fluid pump 56, called the sample pump, which like pump 58 is a positive displacement pump for providing both sample and buffer fluid flow into the fluidics cartridge at sample port 46. This pump 56 comprises valves 56A, 56B and 56C.


Fluid Flow


FIGS. 2, 3, 4 and 5 can be referred to in order to understand some of the typical automated steps for introducing both ligand and analyte into the observation regions (for example observation region 20A shown in FIG. 2). As explained above observation regions 20A, B, C and D include flow channels with the porous silicon regions forming the bottom of the flow channels. The observation regions each provides an optically observable region for immobilizing particular ligands which in turn bind to particular analytes which diffuse into and out of the porous silicon regions from a buffer solution flowing over the porous silicon regions. The objective of many experiments is to monitor this binding action and also in many cases a subsequent disassociation of the analyte from the ligand.


Portions of cartridge 42 may be flushed using buffer pump 58. Buffer solution can be pulled by pump 58 from tank 60 by closing valves 58B and C and opening valve 58A. The solution can then be pumped into cartridge 42 through port 52 to flush regions of the cartridge. Regions to be flushed are chosen by opening or closing various combinations of pinch valves 1-5, 7, 8 and 10-13 as shown in FIG. 2. Other portions of the cartridge can be flushed using sample pump 56. To do this, as shown in FIG. 3, computer controls are used to position robotic arm 62 so that sample needle 64 is inserted firmly into injection port 66 which is connected by tubing 68 to cartridge sample port 46. Similarly as above, pump 56 can pump buffer solution through flexible tubing 70, needle 64 and tubing 68 into sample port 46. As above, regions to be flushed are selected by appropriate combination of open and closed pinch valves 1-12 of cartridge 42. A preferred automated robotic liquid handling system is Gilson Model 223 available from Gibson, Inc. with offices in Middleton, Wis.


Ligands and analytes may be flowed through observation regions 20A, B, C and D using sample pump 56 with computer controlled robotic arm 62. Ligands and analytes are located in sample vials in pre-selected locations as shown at 55 in FIG. 1. A few of these vials are also shown in FIG. 3 at 55A. A sample such as a ligand or an analyte is drawn from one of the vials 55A into needle 64 by closing valves 56A and 56B and opening valve 56C. Needle 64 is then moved by robotic arm 62 to port 66 and the sample is injected into cartridge 42 through port 46. Preferably, needle 64 is loaded with air bubbles on both sides of a useful slug of sample as shown at 72 in FIG. 5. This prevents diffusion in the needle and flow channels of sample and buffer. A portion of the sample along with the air bubbles and some buffer is disposed as waste by appropriate valve control using valves 1-5, 7, 8 and 10-13 in cartridge 42.


Kinetic Molecular Binding Measurements

In preferred applications of the present invention protein molecules diluted in a buffer fluid are delivered to observation region 20A, B, C and D in order to set the initial conditions for kinetic binding measurements. The protein molecules bind to the pore walls at selected surface concentrations (in the range of picograms/mm2, or 10−12 gm/mm2) via special linker molecules. These protein molecules then function as ligands in a binding interaction to be monitored. Then, analyte molecules are delivered to the region in time sequences in order to provide real-time, kinetic binding measurements. Disposable microfluidics cartridge 42, displayed in FIG. 2, is a key component of the fluid delivery subsystem. As described above, cartridge 42 contains microfluidic channels 74A, approximately 25-75 microns tall (about the width of a human hair) and 400 microns wide, and microfluidic channels 74B, approximately 400 microns tall and 400 wide and pinch valves 1-5, 7, 8 and 10-13 to provide flow control. Silicon die 43, containing four observation regions 20A, B, C and D is incorporated in cartridge 42. An optical window 207 (shown in FIGS. 6A and 6B) covers four observation regions and forms the top of four flow channels through the observation region. There is space of about 50 microns between the top of the porous silicon and the bottom of the window. Valves 1-5, 7, 8 and 10-13 along with pumps 56 and 58 are utilized as described above and are computer controlled to provide buffer solution, ligands, and analyte flow through the observation regions 20A, B, C, and D in order to perform desired binding analysis. Temperature equilibration regions 76 and 78 provide heat transfer for each upstream flow path in order that buffer, ligand and analyte fluid samples are delivered at a precisely controlled temperature.



FIGS. 6A and 6B show the integration of the optical and fluid delivery systems. The disposable fluidics cartridge 42 is thermally mounted on thermal block 82 in order to provide thermal control of both thermal equilibration regions 76 and 78 and the observation regions 20A, B, C, and D. A Peltier thermoelectric device 84 and a thermocouple temperature monitor 86 provide active temperature control of thermal block 82. Each of the four observation regions incorporates a separate optical measurement subsystem, as shown in FIGS. 6A and 6B. Four point white light sources are produced by white light lamp 222 as shown in FIG. 1. Light from the lamp is collected into a single optical fiber and this fiber feeds the light into four separate optical fibers 236, A, B, C, and D shown in FIGS. 6A and B. Light reflected from the four observation regions is collected in optical fibers 240 A, B, C and D as shown in FIGS. 6A and 6B and delivered by the fibers to spectrometers 71 A, B, C and D as shown in FIG. 1. As shown in FIG. 6C for each of the four optical systems (A B C and D), a lens 241 collimated the light from input fiber 236 and directs it at a slight angle to its respective observation region. Reflected light from the region is focused by the same lens into output fiber 240 which carries the reflected light to the respective spectrometer 71 (A B C or D).


For measurement of kinetic binding reactions, the concentration of analyte molecules [A]o in the observation regions (such as observation region 20A) should preferably remain as constant as feasible throughout the observation region during the measurement. This experimental condition is preferably achieved by (1) providing a continuous flow rate of analyte molecules through flow channel 61 directly above porous silicon region 202 or 150 and (2) allowing the basic diffusion mechanism to transport the analyte molecules into and out of the pores 90. FIG. 8 shows the basic geometry of the fluid flow in flow channel 61 above the porous silicon. The ideal flow sequence involved in a kinetic binding measurement features a blunt fluid interface, at time t=to, between the buffer and analyte/buffer solutions directly upstream of observation region 20A. The analyte/buffer solution is located to the left of the t=to interface profile as shown in FIG. 8 and the buffer solution is located to the right of the t=to interface profile. Before t=to, the buffer solution fills the pores 90 of observation region 20A, thus setting the baseline optical path differences of region 20A. At time t=to, the flow system starts the flow of analyte/buffer solution via operation of the piston pump 56. FIG. 8 shows the parabolic fluid interface profiles between analyte/buffer and buffer solutions for successive times t=t1 through t=t5 that are a direct result of the parabolic-shaped fluid velocity profiles and the boundary condition that the velocity profiles terminate at zero velocity at the top and bottom walls of flow channel 61. Fluid flow prevents any significant quantity of the analyte/buffer solution to directly reach the surface of porous silicon observation region 20A, however, the parabolic fluid interface becomes infinitesimally closer to the surface of the region as time progresses. The basic diffusion mechanism enables the transport of analyte and buffer molecules across the fluid flow lines and into the porous silicon observation region. For some rough simplified calculations, to estimate the time for analytes to diffuse down into the pores 90, we will refer to this distance between the bottom of the flow region and the mid region of the porous silicon interaction region 111 as a distance Δx. The average time τ that diffusion will transport an analyte molecule a distance Δx is roughly estimated by:





τ=(Δx)2/D  Eq. (47)


where D [in units of (cm)2/sec] is the diffusion constant for a particular molecule. Diffusion constants for large biomolecules are typically in the D=2 to 5×10−7 cm2/sec range. The design of flow channel 61 as shown in FIG. 8 provides a flow channel with a top to bottom width w of about 36 μm and the average flow velocities in the range of 1 to 5 cm/sec. The analyte/buffer solution should be introduced, into the flow channel 61 quite close (such as 3-5 mm) to the porous silicon observation region. For example, an analyte molecule flowed to a location that is 6 μm on the average from ligand molecules immobilized within pores in the porous region of porous silicon die part 43, will diffuse to the ligands in a time τ of about (6 μm)2/(5×10−7 cm2/sec)=0.7 sec. The average kinetic binding time constants are approximately 30-90 seconds or larger, so the diffusion time roughly calculated according to equation (47) will have negligible effect on the measurement of these binding constants.


Three-Format Molecular Sensor

A second preferred embodiment of the present invention is a modular system providing three important formats for label-free study of protein interactions with porous silicon biochips uses. These are a micro-well based format, a single flow cell format and a multiple flow cell format. These three formats are summarized briefly below:


Micro-Well Based Format

In the micro-well format designed by Applicants, the porous silicon surface lies in the bottom of a standard micro-well to allow for integration into existing liquid handling and assay automation systems and optical monitoring from through the bottom of the micro-wells. In these units the fluid delivery is provided by an overhead liquid handling system or reagent pipettor. These units may be preferred to maximize assay throughput and to minimize costs per assay. These units can be in custom formats or can follow industry standard formats (e.g. formats established and maintained by the Society for Biomolecular Screening). This permits integration into other liquid handling and assay automation systems. Such formats include 96-well, 384-well and 1536-well layouts. A standard 96-well plate is shown in FIG. 33. These standard micro-well plates are available from many suppliers such as Corning, Inc.


Principle advantages of a micro-well format as compared to the flow cell format discussed above are as follows:

    • elimination of micro-fluidic channels and valves which reduces the costs of the assay disposables
    • parallel processing of large numbers of samples which significantly improves assay throughput
    • compatibility with existing instrumentation and robotic equipment which permits integration with existing sample handling and preparation methods such as drug development libraries and clinical samples.


Binding experiments and binding assays in the micro-wells are conducted in a manner similar to that used in cartridge-based flow-systems described above except that a liquid handling system is used to transfer fluids and the fluids are not flowed across the biochips FIGS. 32A and 32B show cross-sections of micro-wells of micro-well porous silicon biosensor plates. FIG. 32A shows a porous silicon surface 300 etched into silicon plate 302 forming the bottom 304 of a well 306. A fluid sample is shown at 308. In FIG. 32B a porous silicon plate 310 is inserted at the bottom of a well made of any of a variety of materials. The fluid sample is also shown as 308. Molecular interactions take place within the pores of the porous silicon in each case which changes the index of refraction of the porous silicon layer. In preferred embodiments, as explained in detail elsewhere in this disclosure, broadband light from above reflected from the bottom and top of the porous silicon layer produces interference fringes which is monitored to determine characteristics of the molecular interactions.


Single Flow Cell Format

In the single flow cell format a single porous silicon chip is positioned within a removable cartridge that is positioned above a spectrometer based optical system. To study molecular binding interactions a micro-fluid system is provided that routes reference fluids and sample fluids across two portions of the single porous silicon chip. The optical system monitors in parallel through the bottom of the tray two portions of the chip, one portion is a region of the chip over which the sample fluids are flowing and the other portion is the region of the chip over which the reference fluids are flowing. The flow cell interfaces to the fluidics unit through the side by using a clamp type interface. A computer processor calculates a difference signal based the spectral information from the sample fluid to the reference fluid.


Multiple Flow Cell Format

In the multiple flow cell format up to 24 flow cells each with their own chip in strips of 6 flow cells. These are positioned within a removable plate that is positioned above a spectrometer based optical system. Like with the single unit, to study molecular binding interactions a micro-fluid system is provided that pumps reference fluids and sample fluids over two portions of a single porous silicon chip in each of the flow cells. The mechanics of the fluidic interface between the flow cell and the fluidics unit is also different than in the single flow cell setup. In this case a robot (called the AutoHandler) is used to bring the two inlets and outlets to the top of each of the flow cells. These flow cells are used in serially, one at a time. To start the acquisition at a particular flow cell, the optical head is brought directly below the flow cell and the AutoHandler robot is used to bring the fluid entry and exit directly above the flow cell where it makes a fluidic seal. After these two steps the flow cell currently measured is then used as a single flow cell instrument. The prior art requires user intervention when switching between several flow cells.



FIG. 34 is drawing of the complete three format molecular sensor system. It can be utilized for study of samples in standard 96-well micro-titer plates. It can be used to study kinetic reactions in a special flow cell designed by Applicants. And it can be used for study with multiple flow cells also designed by Applicants. This system consists of six modules: a base module 700, an autosampler 702, a fluidics unit 704, an autohandler 706, a buffer holder 708 and a computer processor 710 not shown. The modules are combined in ways which allow users to measure biomolecular interactions in flow cells or in well plates as well as allows for different levels of automation. The modules will be described in part and then as combined.


Base Module

The base module 700 includes an embedded controller, an optical subsystem, temperature subsystem, motion subsystem, and an exchangeable format tray. This module is present in all configurations of this embodiment. It is powered directly from wall plug AC power.


Controller

The embedded controller shown at 712 in FIG. 34H includes two circuit boards, a first board computer 711 running embedded linux and a second circuit board 713 used to communicate with other subsystems of the module. (The single board computer in this preferred embodiment may also be programmed in the graphical language LabView.) The program running on the embedded computer contains a running server which is always passively awaiting commands before it reports status or performs any actions. Outside communication from the base is via a TCP/IP, and the base has two ports for this. One port is used to communicate with the controlling computer. The other port is used to communicate with the fluidics unit which also has an embedded controller of the same type.


Optical Subsystem

The base also consists of an optical subsystem used to monitor the binding event within the poSi biochips. This subsystem is mounted on the bottom of the top base plate and is shown in the FIG. 34H which is a view looking up at the bottom of this top plate. Important components of the optical subsystem is white light lamp 714 which is a quartz tungsten halogen lamp supplied by Ocean Optics with offices in Dunedin, Florida. Specifically this subsystem includes a visible white light source used to irradiate the poSi (though a single wavelength CW laser could also be used). In a preferred mode of operation, the light from the source is bifurcated into two fibers that are routed to a target test region of a porous silicon chip and a reference region of a porous silicon chip where it is focused to 200 μm diameter using a single lens. The light reflected from the reference portion and the test portion is then collected through the same optical fiber bundle and routed to separate spectrometers shown at 716 and 718 in FIG. 34H(1) and 34H(2). FIG. 34H(2) shows the optical fiber bundle routing used in the base module. Here the lamp is sent to an optical fiber bundle which is bifurcated into sample and reference arms. Each of these then goes though a single fiber in a one surrounded by six type bundle scheme (see inset). These 7 fibers are position at the poSi chip (one 7 fiber bundle per poSi chip) with illumination being carried through the central fiber. The outer six fibers then collect the light and route it to the spectrometer where again there is one spectrometer for the sample and another spectrometer for the reference. The spectrometers are grating based spectrometers (Zeiss Model No. MMS1) with a 256 pixel linear NMOS array detector. The data from the spectrometers are then read out at fixed intervals using the single board computer and custom circuit board at 16 bits resolution. In this preferred mode of operation the processor reports difference information from the test region and the reference region virtually eliminating instrument noise. Also shown on FIG. 34H(1) is 24 volt, 10 A power supply 720.


The optical system also includes a motion subsystem 722 including an X-Y robot 724 used to raster the two channel probe head 726 of the optical subsystem as shown in FIG. 34I. The head is moved so that the optical spots are directly underneath the region of the porous silicon chips to be interrogated. As stated above these chips could porous silicon chips in a flow cell or porous silicon chips in a well plate. This robot includes two direct current servo motors and under closed loop position control. Controllers are H-Bridge drive DPS controlled stand along controllers (Model MC-DC 3003 from Faulhaber) which are each controlled through a separate RS-232 communication link to the host processor.


Temperature Control

The temperature control system is used to control the temperature of the porous silicon biochips and is on board the base unit. In this preferred embodiment temperature can be controlled between 10.0 degrees 60.0 degrees centigrade in 0.1 degree increments. Components of the temperature control system are shown in FIG. 34B. These include four thermoelectric modules (not shown) in thermal contact with the exchangeable format tray 722 on one side and with heat sink fins 724 on the other. These thermoelectric units are driven by a 24V H-bridge circuit located at 726 as shown on FIG. 34H which provides up to 3 amperes of current to the units. The H-bridge is under analog control through the circuit board 713 shown in FIG. 34H which implements a closed loop proportional integral algorithm. Temperature monitoring is done on the H-Bridge board (for safety) via thermistors located on the exchangeable format tray 722 and the heat sink fins 724. When the heat sinks warm, fans (not shown) underneath them are turned on until the heat sinks return to the temperature required for accurate thermal control.


Exchangable Format Tray

Preferred embodiments of the present invention includes the exchangeable format tray 722 referred to above which is part of the base module and this exchangeable format tray holds the sample or samples (one or many flow cells or a micro-well plate) in a temperature controlled environment over the optical subsystem. The samples are optically monitored from the bottom. The tray permits a switch between a well plate format and a flow cell format in less than two minutes. Prior art optical sensors for molecular monitoring are dedicated to a single format such as: single flow cell, multiple flow cells or well plates, but not all of the above. The format tray is unique to the particular configuration but when changing between configurations only the format tray needs to changed. This anodized aluminum tray slides in place on the base unit and is held in place by spring plungers (not shown). This tray exists to accommodate a single flow cell, a sensor plate consisting of up to 24 flow cells (available in strips of 6) or a single, standard 96-well micro-titer plate.


Single Flow Cell

An exchangeable format tray adapted for single flow cell measurements in shown in FIGS. 34J and 34K with the elements of a disposable cartridge shown as a blow-up. The disposable cartridge 760 contains a 7×3.5 mm porous silicon chip 762. Other elements of the disposable cartridge include cartridge housing 764 with a transparent bottom, compressor element 766, clamp 768, bottom gasket 770 and top gasket 772. FIG. 34L is an enlarged view of bottom gasket 770. Bottom gasket 9 is positioned under the porous silicon chip which sits above the gasket with its porous side against the bottom gasket.



FIG. 34M is a drawing of the porous silicon chip 762 looking at it through the bottom gasket 770 as the illumination elements does. Hole 774 in the gasket is provided to center it in relations to other components in the device. Sample fluid flows onto the porous silicon chip from the bottom through tubes 776 and 778 and reference fluid flows from the bottom through tubes 780 and 782. The fluid is trapped within the pores of the porous silicon chip 762 within regions 784 and 786 between the solid part of the porous silicon chip and a transparent bottom plate not shown. The porous silicon with the trapped fluid is illuminated from the bottom over region 788 for the sample and 790 for the reference. Reflections from two surfaces of the porous silicon are detected by the optical system to produce two interference patterns, one for the sample and one for the reference. Substantially these interference patterns are fit separately giving an OPD measurement for the sample and for the reference. The difference of these values is the differential signal which is used to characterize the extent of the biomolecular interaction. Applicants estimate that taking providing these differential patterns improves the resolution of these interference patterns by a factor of 8.


Multiple Flow Cells

The exchangeable format tray is adapted for multiple flow cells by having slots for up to four, six flow cell strips. A drawing of one six flow cell strip is shown in FIG. 34N with a blow-up of one of the cells. The tray has 48 holes in the bottom for the light to shine through. In the blow-up in FIG. 34N the porous silicon chip is shown at 792, a bottom gasket is shown at 794 and the inlet and outlet ports for the sample and the reference fluids is shown at 796. The flow cell strips, when placed down, have no fluidic interface to the fluidics unit. This interface is formed by the AutoHandler carrying two inlets and two outlets. A flow chart for the multiple cell format is shown in FIG. 34O.


Micro-Well Plate


FIG. 34F shows the multiple format tray adapted for use with a standard 96-well micro-well plate. As shown in FIGS. 32A and 32B, porous silicon chips 300 are located at the bottom of each well and fluids are examined through the bottom of each well with the optical system as explained above.


Autosampler

In this preferred embodiment fluid samples are provided automatically by a module that Applicants call their autosampler shown at 702 in FIG. 34. This unit is basically an off-the-shelf sampling unit used primarily in high performance liquid chromatography applications. The autosampler module is a customized version of the Alias Autosampler sold by Spark Holland in Emmen, Netherlands. This is a refrigerated two tray, closed frame autosampler that holds trays for either 48 vial trays, 96 well microtiter plates, or 384 well microtiter plates at between ambient temperature and 4 degrees Celsius. In chromatography application the autosampler is used with an internal valve for sample injections. Applicants have modified the unit to supply the sample loops of the fluidics unit. The autosampler has been fitted with a valve suitable for selection instead of one for injection. This allows a single autosampler to service three separate instruments for label free binding studies.


The autosampler has a movable tray holder, driven by a stepper motor based belt system which moves in the X direction. Aspiration is performed by a glass coated steel needle located on a gantry. The gantry is moved via a stepper motor driven lead screw in the Y-direction and by a stepper motor in the Z-direction. To address the several parts of the trays, the tray holder is moved in X, the gantry is moved in Y and the syringe goes down in Z the necessary amount. Aspiration and dispensing is performed with a stepper motor driven syringe pump connected to a 1 of three valve. In this valve the selection port is connected directly to the syringe, one of the ports is connected to a wash solvent bottle, one is connected to transfer tubing and the other is left unconnected.


The transfer tubing (which is two times the volume of the syringe needle) connects the syringe pump with a PEEK 1 of 6 selection valve internal to the autosampler. The incorporation of this valve is a customization not seen on the standard unit. This one of six valve has its selection port connected to the syringe pump via the transfer tubing has one port connected to the needle, one port connected to the sample injection valve on the Fluidics Unit, one port connected to the reference injection valve on the Fluidics Unit and the other three ports unused.


During a standard injection the syringe is routed to the proper tray position. The 1 of 3 valve on the syringe pump connects the syringe to the transfer tubing and the 1 of 6 valve connects the transfer tubing to the aspiration needle. The syringe pump then aspirates fluid through the needle and 1 of 6 valve to put fluid in the transfer tubing. The 1 of 6 valve then switches to route the sample in any direction needed (for instance to the sample or reference loops) and the syringe pump then switches to dispense mode.


The customization allows for truly differential behavior in the flow cell cartridge configuration. and the base unit. The autosampler is controlled using a universal serial bus (USB) interfaces to the fluidics unit. The unit is powered directly from wall plug AC power.


Fluidics Unit

The fluidics unit is shown a 704 in FIG. 34. Flow paths are shown on FIG. 34A. The unit contains an embedded controller, solvent delivery system and injection control and is mounted on the base unit to perform automated flow cell measurements. The unit is powered from 24V DC power available from the base unit or from the AC/DC converting power supply 720.


The embedded controller 711 is a single board computer running embedded linux and a custom circuit board 713 used to send instructions to the solvent delivery system and injection control subsystems. The controller connects to the outside world through TCP/IP using a control program which acts as a server. The server is always running awaiting commands from a client which in the preferred embodiment is the base unit. The controller passes commands in the extensible markup language (xml) to the fluidics unit and the fluidics unit sends xml based responses back to the controller.


The control system in this preferred embodiment permits simultaneous measurement of a sample and reference channel in the flow cell modes. This differs from the prior art in which multiple flow cells are measured “in sequence” as opposed to “in parallel”. In the preferred embodiment the fluidics unit 704 contains a continuous pump 738 operating at flow rates between 1 μL/min and 250 μL/min with 100 psi pressure capability. Pump 738 pulls buffer through a buffer selection system consisting of 5 vacuum degassing chambers 740. The buffer to be used is determined by the position on a six port selection valve integrated into the fluidics unit. Five of the six buffer storage tubes is shown in FIG. 34E at 741; the other is used without degassing. In a typical operation five storage tubes shown at 734 in FIG. 34E are loaded with sample fluids (which may include fluids such as water, pH 4.5 acetate, pH 7.5 phosphate buffered saline (PBS), 0.1 M ethanolamine, other aqueous buffers at a variety of pH and ionic strength, regeneration solution such as H3PO4, and cleaning solutions like dilute bleach.


As shown at 742 in FIG. 34A, the output of pump 738 is split into two equal flow paths using a passive y-configuration and sent to two, two position injection valves 744 and 746 each fitted with 50 μL volume sample loops contained in the fluidics unit. The above components are connected with 1/16″ Teflon tubing from the buffers to the degassing chambers, from these to the selection valve, and from this to the passive Y. From the passive Y to the injection valves and to the flow cell the tubing is then 1/32″ PEEKsiI with 75 μm diameter as dispersion needs to be minimized between the injection valves and the flow cell.


The fluidics unit is factory configurable with regard to numbers and types of pumps and valves. The description for the specific configuration exists on the fluidics unit in an xml form. This configuration is passed to the controlling computer which then draws a picture of the fluidics system on a graphical user interface (GUI). This picture is then used to graphically control the instrument through the GUI. Having the physical hardware described as xml permits the hardware to be controlled by many different software programs giving unparalleled flexibility in the realm of label-free interaction analysis.


AutoHandler

While the autosampler module picks samples (answering the question: What should be used?) the autohandler robot, shown at 706 in FIG. 34, routes these samples or fluids to the appropriate place for analysis (answering the question: Where should it go?) The addition of this second robot in the system permits the system to handle multiple flow cells and multiple wells in a plate. The addition of the autohandler permits complete, partial, or no automation depending on the needs for the system. This preferred embodiment permits up to 24 flow cells (available in modules of six) to be placed at the instrument at the same time and addressed individually. The autohandler is powered from 24V from the base unit for from a AC/DC transforming power supply.


The autohandler interfaces with the base unit through a USB connection. The autohandler robot is shown separately in FIG. 34G and contains four stepper motors and motor controllers. These form an X,Y,Z,Θ motion system. The X-rail is shown at 750; the Y-rail is shown at 752 and the Z lead screw is shown at 754. A dispensing syringe needle is shown at 756. The X and Y motors align to the flow cell or well in X and Y and then lowers the gantry in the Z direction. The theta movement switches between the fluidic interface and a simple dispensing needle. All motors on the autohandler are used in closed loop mode.


Buffer Holder

A buffer holder connects to the base through a single USB connection and is powered through that connection. This holder is used to hold and monitor the buffers used for the interaction analysis. The buffer level is monitored through weight. The buffer holder, holds up to 6 buffers each stored in 50 mL centrifuge tubes. Buffer monitoring ensures that when long evaluations are started, that there is enough buffer to complete the run.


Control Computer

In this preferred embodiment a control computer handles method programming, data acquisition and data analysis for the instrument system. This computer exists on the same network as the base instrument and communicates with the base module. In this preferred embodiment the control computer always interacts to everything via the base module through a single TCP/IP connection.


Communication Protocol

Preferred embodiments of the present invention include a communication protocol never before utilized for this type of optical sensor. The protocol provides biomolecular interaction researchers with an easy to understand xml format for inter-module communication. The communication protocol consists of three main parts. Two of these are the schema describing the possible commands the instrument system understands and the schema describing the possible responses of the system. The third part of the protocol is based on a scheme used to describe the actual configuration of the fluidics module as described above. Using these schema, communication is validated in both directions.


For instance consider the command to turn on the pump in the fluidics unit. This command goes from the client computer through TCP/IP to the base unit. It might look like this:

















<SKCommand>



  <PumpSet>



    <direction>forward</direction>



    <rate>20</rate>



  </PumpSet>



</SKCommand>










After the command is generated, it is validated against the schema (SKCommand.xsd) client side to see if the command is in fact a valid one. After it is shown that it is valid the command it is sent to the base unit through TCP/IP. The base unit recognizes that this command is part of the fluidics schema. Given that, the base will not act on the command. Rather the command is passed from the base to the fluidics box. The fluidics box then generates the response to this:

















<SKResponse>



  <Pump>



    <direction>forward</direction>



    <rate>20</rate>



  </Pump>



</SKResponse>










This is then passed from the fluidics box to the base and the base passes this through to the client. The client then validates the response against the response schema (SKResponse.xsd). XML used to form the heart of the communication protocol for a modular label free binding instrument system is not known in the art.


As schema can be written for each module the base can be programmed to easily pass through the commands from the client computer to the appropriate module. That is, the base need not understand how to process commands for the fluidics box as it can simply pass them through.


The schema files describe the Command and Response vocabulary in such a way that an arbitrary number of commands may be passed in any packet. For instance the pump may be set the same time as the temperature—only a single TCP/IP step is necessary.

















<SKCommand>



  <PumpSet>



    <direction>forward</direction>



    <rate>20</rate>



  </PumpSet>



  <TempSet>37.0</TempSet>



</SKCommand>










In which case the <PumpSet> command is routed to the fluidics box where it is handled while, at the same time the temperature command is handled directly in the base. Here the response will be.

















<SKResponse>



  <Pump>



    <direction>forward</direction>



    <rate>20</rate>



  </Pump>



  <TempSetpoint>37.0</TempSetpoint>



</SKResponse>










The new scheme for modular instrumentation control presented here eases the programming for a multimodule instrument system and allows for thorough validation on the instrument and response side. Significantly, the applicants have devised a schema using XML to automate the testing of the command and response vocabulary.


For the commands above there is a schema for both the command and the response. In the case of the command the command schema describes the syntax of the elements <PumpSet> and <TempSet> and in the case of the response this describes the syntax of the elements <Pump> and <TempSetpoint>. In order to automate the testing of these functions, an xml file called (ResponseToCommand.xml) exists. This file documents the relationship between the given command and the expected response. In the case above it would be.

















<ResponseToCommand>



  <Relationship ind=”1”>



    <Command>PumpSet</Command>



    <Response>Pump</Response>



  </Relationship>



  <Relationship ind=”2”>



    <Command>TempSet</Command>



    <Response>TempSetpoint</Response>



  </Relationship>



</ResponseToCommand>










Using this file a series of tests may be automatically generated to test the firmware on the modular system. For example, it is clear that <PumpSet> is a valid command per the command schema. However, per the response schema, the response <Pump> may or may not be there. If <PumpSet> were not sent with the command packet then <Pump> would not need to be there in the response.


However, it is clear that the client does expect a response to <PumpSet> (namely the <Pump> element). To test the vitality of the firmware the ResponseToCommand shows that relationship. Now, using this file the test for the <PumpSet> to <Pump> relationship is formed. This test takes the form of two xml files. One is the command itself where the values of <direction> and <rate> are chosen based on the datatype described in the command schema:

















<SKCommand>



  <PumpSet>



    <direction>forward</direction>



    <rate>20</rate>



  </PumpSet>



</SKCommand>










The second file generated is a separate schema file:














<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”


xml:lang=“en-us” version=“1.0”>


 <xs:element name=“SKResponse” type=“SKResponseType” />


 <xs:complexType name=“SKResponseType”>


  <xs:all>


   <xs:element name=“Pump” type=“PumpType” minOccurs=“1” />


  </xs:all>


 </xs:complexType>


 <xs:complexType name=“PumpType”>


  <xs:all>


   <xs:element name=“direction” type=“directionType”


   minOccurs=“1” />


   <xs:element name=“rate” type=“rateType” minOccurs=“1” />


  </xs:all>


 </xs:complexType>


 <xs:simpleType name=“rateType”>


     <xs:restriction base=“xs:unsignedInt”>


      <xs:minInclusive value=“20”/>


      <xs:maxInclusive value=“20”/>


     </xs:restriction>


 </xs:simpleType>


 <xs:simpleType name=“directionType”>


     <xs:restriction base=“xs:string”>


      <xs:enumeration value=“forward” />


     </xs:restriction>


 </xs:simpleType>


</xs:schema>









Also, the readability of xml—as compared to binary or other proprietary forms of instrument communication—allows users of the instrument set to readily develop custom routines not foreseen in the available instrument software running on the client PC. That is, as the schema are published for the users of the machine, those users may readily adopt the machine for their own use using existing xml tools.


Configurations

This preferred embodiment may be operated in a large number of configurations including: manual plate reader, fully automated plate reader, partially automated plate reader, manual single flow cell, automated single flow cell and automated multiple flow cells. These configurations are summarized below:


Manual Plate Reader Configuration

For the manual plate reader only the base and client computer are needed. In this case the well plate tray is used and fluids are introduced manually by pipetting. Here the motion subsystem of the base is used to raster the fiber optic bundles under the proper well plate to be addressed. The biochips are held into place using injection molded polycarbonate well strips which are strips of eight that fit into the microtiter plates. These well strips are manually placed into the well strip as needed.


Fully Automated Plate Reader Configuration

For an automated plate reader solution, the manual plate reader configuration is augmented by the autosampler and autohandler. In this case the autosampler is used to aspirate and dispense samples as appropriate. It answers the question what is needed. The autohandler then routes these samples to the appropriate well. It answers the question, where do the samples go. The autohandler is also used to pick and place the well strips used to hold the biochips. In this way for a binding experiment, the prepared chips are submerged in fluid that sets the initial time=0 of the experiment.


Partially Automated Plate Reader Configuration

In this case the base, client computer and autohandler are used. For this instrument configuration, the user uses offline equipment to perform the liquid handling necessary to prepare a 96 well plate with see through bottom. The prepared plate is put on the instrument and biochips are introduced into the appropriate wells by the autohandler. As before readout is from the bottom of the plate using the motion subsystem on the base.


Manual Single Flow Cell Configuration

For the partially automated flow cell, the base (using the flow cartridge exchangeable plate), fluidics unit and client computer are used. Here a user will manually fill the injection loops on the fluidics unit. By following a program setup in the client computer, the fluidics unit will then proceed to perform the binding experiment while the base reads out the data through the bottom of the flow cell. In this case the motion subsystem of the base unit is not necessary to move. The buffer storage unit may also be added to this configuration. In this case buffers levels are monitored in real time.


Automated Single Flow Cell Configuration

For the fully automated single flow cell configuration the base the autosampler is added to the manual single flow cell configuration. Here instead of manually filling and washing the sample loops of the fluidics unit, the autosampler will do this. In this case many samples may be entered into the autosampler and run sequentially in an unattended manner. The buffer storage unit may also be added to this configuration.


Automated Multiple Flow Cell Configuration

In this case the base is fitted with the multiple flow cell tray that holds either 6, 12, 18 or 24 differential flow cells—to form a so called sensor plate. To this base is added the autosampler, the autohandler, the fluidics unit and the client computer. The autohandler has the role of forming a fluidics connection to the several flow cells as they are used.


In this case the X and Y axes of the autohandler are used to align to the proper position on the sensor plate. The Z-axis brings the fluidic connection down to the sensor plate. As before with the Automated Single Flow Cell configuration, the autosampler is used to load and wash the sample loops on the Fluidics Module. The fluidics unit pumps the fluid as needed and handles buffer changes and sample loading and injection.


The motion subsystem of the base unit is used to bring the optical probe under the flow cell currently being addressed. In this way, after instrument setup, the instrument can take a large amount of data on many systems sequentially. The buffer storage unit may also be added to this configuration.


Example Demonstrating Chemical Features of Preferred Embodiments

In addition to providing the key component for the optical measurement subsystem, the porous section observation regions 20A, B, C and D also serve as three-dimensional scaffolds to immobilize specific molecules. The regions provide a very large surface area in the form of cylindrical walls of pores 90. Ligand molecules are attached, or bound, to the pore walls 90 by the use of specific linker molecules. The linker molecules are attached to the pore walls by the use of surface chemistry, and the ligand molecules are then attached to the linker molecules.



FIGS. 9A-9F show a specific set of molecular interactions involved in an example of an application of the present invention. FIGS. 9A and 9B show steps a) and b) of a preferred method for immobilizing ligand protein molecules to the walls of pores 90. Steps a) and b) preferably are performed in a laboratory independent of the device shown in FIG. 1 and steps 9C-9F take place within the FIG. 1 device. The immobilization procedure is given here:


a) Hydrosilation of Porous Silicon Surface

The walls 102 of pores 90 of freshly etched porous silicon consists of hydride (Si—H) terminated silicon atoms as shown at 500 in FIG. 9A. The first step (step a) involves the hydrosilation of the hydride terminated porous silicon surface to produce a carboxylic acid functionalized (RCOOH) surface as shown at 502 in FIG. 9A. The preferred hydrosilation method involves exposing the hydride-terminated surface 500 to undecylenic acid 501 for two hours at an elevated temperature of 120 to 130 degrees Celsius.


b) Link Amino-dPEG4 T-Butyl Ester to Carboxylated Terminated Porous Silicon Surface

Amino-dPEG4 t-butyl ester (NH2-dPEG4-t-butyl ester) is a commercially available linker molecule (available from Quanta Biodesign Ltd. with offices in Powell, Ohio) that consists of a polyethylene glycol molecule 104 (called PEG) with an amine (NH2) group 503 attached to one end and a tert-butyloxycarbonyl (t-boc) group 106 attached to the other end of the PEG molecule 104, all as shown in FIG. 9B. The PEG molecule 104 consists of a plurality of PEG monomers, defined as (—CH2—CH2-O—)x. The preferred length of the PEG molecule 104 is four PEG monomers; equivalent to a total length of about 19.2 angstroms (1.92 nm). The t-boc group 106 acts as a non-reactive cap that serves as a protecting group for the carboxylic acid on the molecule. It is not removed until an acid deprotection step that occurs within cartridge 42 after it is mounted in the FIG. 1 device. The NH2-dPEG4-t-butyl ester compound is dissolved in methylene chloride and the carboxylated terminated porous silicon die 43 is placed in a flask containing the NH2-dPEa4-t-butyl ester-methylene chloride solution. N,N′-dicyclohexylcarbodiimide (DCC) shown at 505 is added to the NH2-dPEG4-t-butyl ester-methylene chloride solution. DCC is used to facilitate the amide bond formation between the carboxylic acid terminated porous silicon surface 504 and the NH2-dePEG4-t-butyl ester compound. For twelve hours under an inert atmosphere, such as nitrogen, the reaction enables the amine terminated end 503 of the NH2-dePEG4-t-butyl ester compound to attach to the carboxylic acid terminated walls pores. The preferred method involves the linking of NH2-dePEG4-t-butyl ester molecules to the entire surface area of the pores 90 in the porous silicon observation regions 202. After this step, the porous silicon die 43 is incorporated in the microfluidics cartridge 42 as shown in FIGS. 2 and 2A and cartridge 42 is installed in the FIG. 1 optical biosensor device.


c) Create Reactive Carboxylic Acid Terminated Surface in Microfluidic Cartridge

The microfluidics cartridge 42 now containing the NH2-dPEG4-t-butyl ester prepared silicon die 43 is placed in FIG. 1 device for the remaining steps. Trifluoroacetic acid is flowed through a flow channel 61 (such as 20A). The acid diffuses into the pores 90; this removes the t-boc group 106, leaving a reactive carboxylic acid group (COOH) as shown at 506 in FIG. 9C. A solution of 1-(3-dimethylaminopropyl-3-ethylcarbodiimide) (EDC) molecules 110 and sulfo-N-hydroxysuccinimide (sulfo-NHS) ester molecules 112 is then flowed through flow channel 61 (as shown in FIG. 8). The advantage of adding sulfo-NHS to EDC reactions is that they are highly efficient and create stable intermediates that will eventually react with the amine of interest. EDC reacts with the carboxylate group on the deprotected NH2-dPEG4-t-butyl ester, creating an active O-acylisourea leaving group. Forming a sulfo-NHS ester intermediate by reacting the hydroxyl group on the sulfo-NHS with the O-acylisourea extends the half-life of the activated carboxylate to hours from seconds. The resulting surface is a NHS reactive binding site available for protein type conjugation via primary amines.


d) Immobilize Ligand Molecules to NHS Surface

In this preferred embodiment, the NHS modified surface will attach to free amine (R—NH2) groups 120 located on the amino acid lysine which is one of many amino acids that comprise a protein molecules 122. Lysine, has a free amine group 120 that will attach to the surface via an amide bond. The molecules designated as 122 in FIG. 9D will be treated as ligands in the following discussion concerning kinetic binding measurements. Preferably, the surface concentration of ligand molecules 122 as shown in FIG. 10 is low enough to allow ample space between receptor molecules. The space enables analyte molecules 124 to interact, or bind with ligand molecules 122 without any residual interaction with neighboring ligand molecules 122. The surface concentration of ligand molecules 122 is controlled by providing a low concentration of ligand molecules 122 in the buffer solution flowing through flow channel 61, and by measuring the optical path difference in real-time in order to provide information regarding the time to terminate the ligand molecule 122 immobilization process. After the ligand molecules 122 are immobilized, the remaining reactive binding sites 506 are capped, or rendered unreactive, by flowing a concentration of a small molecule such as ethanolamine or Tris to block any reactive NHS groups, so that binding of analyte molecules 124 will only occur with ligand molecules.


e) Binding Step

The chemistry associated with the actual binding step is demonstrated cartoon-like in FIG. 9E. Analyte molecules 124 diffusing down from continuous flow are attracted to ligands 122 as indicated at 126 in FIG. 9E and is bound as shown at 127.


f) Disassociation Step

For many binding reactions the binding is weak and temporary and after the analyte flow has been replaced with buffer flow the analyte molecules will disassociate from the ligand molecules. The amount of time necessary to remove analyte molecules completely from the surface depends on the binding strength of the biomolecular interaction between the ligand and the analyte. Ligand/analyte pairs that have a weak interaction can disassociate from each other very quickly and a buffer rinse may remove all the analyte present during a five-minute rinse step. A strong ligand/analyte interaction can disassociate at a very slow rate and by introducing a buffer step only a few analyte molecules are rinsed off during a five-minute rinse step.


g) Regeneration Step

The disassociation step can be and often is accelerated by a regeneration step in which a weak acid solution is flowed over the observation region. The weak acid decreases the pH of the solution and protonates (i.e. adds a proton to) the binding site between the ligand and analyte thus removing the analyte from the ligand. The regeneration step is typically followed by a buffer rinse of the surface to bring the solution within the observation region back to a neutral pH.


Optical Path Differences


FIG. 4 is a graph providing a qualitative description of changes in optical path differences that may be measured using the equipment and techniques described above. Specifically this chart corresponds to Steps c-g with reference to FIGS. 9C-9F as described in the proceeding section. The first two steps (a and b) are performed separately from the FIG. 1 device. When cartridge 42 is installed in unit 13 and buffer flow is initiated the measured optical path difference OPD would appear as shown at 600 in FIG. 4.


Additions of Trifluoroacetic acid (TFA) to remove the protective t-boc group 106 as shown in FIG. 9C will increase the index of refraction in the observation region and show up as an increase in the apparent OPD as shown at 602 but once the flow of buffer removes the TFA from the observation region, the OPD will decrease as shown at 604. The attachment of ligands, explained in step d and FIG. 9D appears as a gradual increase in the OPD (as shown at 606) as the ligands are covalently attached. When a sufficient quantity of ligands has been immobilized to the surface via the linker molecules the flow of ligands is stopped and replaced by a buffer flow resulting in a slight decrease in the OPD 608 as unattached ligand molecules flow out of the observation region with the buffer flow. The most important steps of the process then begin with the addition of the analyte as shown in FIG. 9E and as the analytes become bound to the ligands the measured OPD will increase as indicated at 610 in FIG. 4. The rate of increase and the equilibrium condition of the reaction are both important parameters with respect to a very large number of binding reactions that can be monitored with the present invention. Typically, after sufficient time has passed for the OPD to approach equilibrium as shown in FIG. 4, the analyte flow is replaced with buffer flow and the disassociation rate is monitored as shown at 612. After sufficient data has been collected to determine the disassociation rate, the unit can be ‘regenerated” as described in the previous section with a weak acid solution with the effect shown at 614 in FIG. 4. Then restoration of the buffer flow restores the observation region to the condition shown at 606 as shown at 608. The unit is then ready for another experiment.


Ligand
Analyte Binding Experiments for Device Demonstration

The embodiment of the present invention shown in FIG. 1 may be used to test binding reactions of a very large number of molecules covering a wide range of reaction rates. Applicants have provided below four examples of ligand—analyte combinations that may be used to test the performance of this embodiment and to assure that it is functioning properly.


Weak Interaction
DNSA/CAII

For a weak interaction providing kinetics and equilibrium data, a good test is to use 5-dimethyl-amino-1-naphthalene-sulfonamide (DNSA) as the ligand and carbonic anhydrase isozyme II (CAII) as the analyte. Both proteins are available from Sigma Chemical with offices in St. Louis, Mo.


Fast On Rate, Moderate Off Rate
GFP/mAb

For a fast on rate and a moderate off rate, a good test set would be to use green fluorescent protein (GFP) as the ligand and monoclonal antibody (mAb) as the analyte. Both of these molecules are also available from Sigma Chemical.


Moderate On Rate, Slow Off Rate
DNA/DNA

A good test for proteins with a moderate on rate and a slow off rate is to use DNA for both ligand and analyte. Reaction rates of these molecules are very well known. These molecules can be obtained from Sigma-Genosys, offices in The Woodlands, Tex.


Sensitivity of Analyte Assay
Anti-IgH/Human IgG

To determine the effectiveness of the device at checking the sensitivity of the analyte assay a good ligand analyte combination is Anti Immunoglobulin G (Anti-IgG) for the ligand and Human Immunoglobulin G (Human IgG) for the analyte. Both can be purchased from Pierce Chemical, with offices in Rockford, Ill.


TSH, Anti-TSH

Another ligand-analyte example is the Human Thyroid Stimulating Hormone (TSH) and the anti-TSH antibody. This example is described in detail in a subsequent reactor of this specification.


Software Control and Analysis

The preferred embodiment shown in FIG. 1 includes a software control and analysis subsystem that automatically controls the timing sequence of fluid delivery of ligand and analyte molecules, monitors and/or records spectral patterns versus optical wavelength, computes optical path difference (OPD) measurements from the spectral patterns, and stores in a personal computer the OPD data as a function time. This data represents kinetic binding data. Further analysis software calculates binding rate constants, kon and koff, from groups of measured kinetic binding data. This software is based on a kinetic binding measurement model described below.


Mathematical Model


FIG. 6 is a sketch showing interferometric features of the present invention which will be referred to in order to explain some of the concepts on which this invention is based. (Some of these concepts are also explained at pages 295-309 in Optics by Eugene Hecht and Alfred Zajac, Addison Wesley.) Light beam (wavelength λ) from point source 222 is incident on a porous silicon interaction volume 202 in silicon substrate 204 at incident angle θi. The amplitude of electric field Eo(λ) of beam 212 is split at the first interface 208 at the top of porous silicon region 202 into two beams 214 and 216. The second beam 216 travels the path AB, is partially reflected at the second interface 210 at the bottom of region 202, and travels the path BC to point C. The first beam 214 travels the path AD and recombines as a linear superposition with the second 216 along the constant phase wavefront DC232. The optical path difference (OPD) of the interferometer is defined as





OPD=nr(ps)[(AB)+( BC)]−nr(buffer)( AD)  (1)


The corresponding optical phase difference associated with the OPD is given by









δ
=




4

π





L

λ




(



n
r
2



(

p





s

)


-



n
r
2



(
buffer
)




sin
2



θ
i



)


1
/
2



+

δ
o






(
2
)







where δo is a phase shift that occurs upon reflection of the second beam 216 at the second interface 210. The combined reflected beam 214 and 216 are subject to constructive or destructive interference that depends on the optical phase difference δ. (As described below, white light is used in preferred embodiments, which is equivalent to a very large number of overlapping monochromatic beams.) Total constructive interference of beams 214 and 216 occurs when





δ=2πm  (3)


where m is an integer. Thus, the interaction volume 202 functions as a porous silicon interferometer. The OPD can be expressed as









OPD
=


2



L


(



n
r
2



(

p





s

)


-



n
r
2



(
buffer
)




sin
2



θ
i



)



1
/
2



+



δ
o


λ


2

π







(
4
)







The key optical features of the porous silicon interferometer are 1) the optical quality, partially reflective interfaces 208 and 210, and 2) the high degree of parallelism between the interfaces. The optical quality of the porous silicon optical interferometer 200 is determined primarily by the relatively small pore diameters (80-120 nm) compared to the wavelengths k of the incident light (450-900 nm). The high degree of parallelism between interfaces 208 and 210 occurs as a natural spatial uniformity in the depth L of porous silicon interaction volume 202, as a result of the etching process.


Optical Detector


FIGS. 6A, 6B, and 6C display a preferred optical measurement layout. White light (450-900 nm) from a tungsten halogen lamp (preferably Ocean Optics Model LS-LL-1, shown at 222 in FIG. 1) is used to generate a simultaneous plurality of monochromatic light beams. The white light from lamp 222 is directed via a first fiber optic to an optical manifold where the light is divided into four optical fibers 236. One of these fibers is shown in FIG. 6C. Light from these four optical fibers is directed by lens 241 through optical window 207 as shown in FIG. 6A on to incident on the porous silicon interaction volume 202 at angle of incidence θi as shown in FIG. 15A. For each of the four beams, light reflected from the interfaces 208 and 210 is directed back through lens 241 and through a second 400 micron diameter fiberoptic 240 as shown in FIG. 6C to spectrometer 71 (preferably Tech5Helma Model MMS-1). FIG. 16 is a graphical representation of a mathematical model for a typical interference pattern 246 produced by the porous silicon interferometer that is measured as a function of light intensity versus optical wavelength λ by a linear photodiode array (preferably Hamamatsu Model 3904) incorporated at the optical output of the spectrometer. The interference pattern is unique for a given optical path difference. In preferred embodiments a change in the refractive index nr(ps) of the porous silicon interaction volume 202 results in a change in the optical path difference that is measured as a change of the entire interference pattern 243 versus wavelength λ, as displayed in FIG. 16. It is assumed, in preferred embodiments that the optical path length corresponding to path AD remains constant, thus acting as the reference path of the optical interferometer.


The mathematical model for the porous silicon interaction volume 202, displayed in FIGS. 15A and 15B and consists of a plurality of cylindrical pores, or holes, 90 with pore diameter d and pore depth L. The actual interaction region 202 consists of a distribution of pore diameters centered around an average pore diameter d. The typical full width half maximum of the pore diameter distribution is approximately d/4. However, the actual pore depth distribution is tightly centered around the average depth L with the full width half maximum of the pore depth distribution approximately equal to the pore radius d/2. At the start of each experiment, the pores 90 are typically filled with buffer solution with index of refraction nr(buffer).


The complex index of refraction n(ps)=nr(ps)+ini(ps) of the interaction volume 202 (for this mathematical model) includes real and imaginary components. The imaginary component ni(ps) is related to absorption of light and the real component nr(ps) is related to changes in the speed of light, in the porous silicon interaction volume 202. The preferred embodiment of the optical biosensor exploits the measurement of changes in the real part nr(ps) of the index of refraction of the interaction volume 202, which is modeled, using the effective medium approximation, as a volumetric average of the real part of the index of refraction nr(silicon) of the bulk silicon and the real part of the index of refraction nr(med) of the material, or medium, filling the pores 50,






n
r(ps)=(1−P)nr(silicon)+Pnr(med)  Eq. (5)


The porosity P is defined as the volume of the pores 90 divided by the total volume of the interaction volume 202. The pore diameter d, pore depth L, and porosity P are achieved by control of the porous silicon etching parameters including etching current density, etching time, hydrofluoric acid concentration, and conductivity of the bulk silicon. Typical porosities P=0.80-0.95 are used for protein binding measurements. If we use parameters nr(silicon)=3.7, nr(med)=nr(buffer)=1.33, and P=0.80, then equation (5) gives nr(ps)=1.804.


In the preferred embodiment, the invention is used to measure the surface concentration of a monolayer 93 of molecules (ligands and analytes) that are attached to the cylindrical walls of pores 90. We will sometimes in this analysis refer to this monolayer of molecules as a monolayer of proteins. The index of refraction nr(med) of pores 90 changes slightly due to attachment, via linker chemistry, of ligand molecules B to the walls of pores 90. The index of refraction nr(med) of pores 90 also changes slightly due to the binding of analyte molecules 124 to the ligand molecules 122 attached to the walls of pores 90. The change in the index of refraction nr(med) of pores 90 results in a change in the index of refraction nr(ps) of the PS interaction volume as described by equation (5). The index of refraction nr(med) of the medium filling the pores is modeled, using the effective medium approximation, as a volumetric average of the index of refraction nr(buffer) of the buffer solution and the index of refraction nr(protein) of the protein monolayer 93 on the walls of pores 90,











n
r



(
med
)


=




V
buff


V
med





n
r



(
buffer
)



+



V
prot


V
med






n
r



(
protein
)


.







Eq
.





(
6
)








where







V
med

=



π






d
2


L

4

=


V
buff

+

V

prot












is the total volume of a single pore 90.


The volume of the protein monolayer layer 93, displayed in FIG. 4, is modeled as










V
prot

=


[



π






d
2


L

4

-




π


(

d
-

2

ρ


)


2


L

4


]



F
.






Eq
.





(
7
)








where ρ is the thickness of the protein monolayer 93. The variable F (0<F<1) accounts for the fractional surface coverage of the protein monolayer 93. Also, the model assumes that the volumetric coverage of the bottom of pore 90 is negligible compared to the volumetric coverage of the cylindrical pore wall. The volume of the buffer is then










V
buff

=



V
med

-

V
prot


=



π






d
2


L

4

-


[



π






d
2


L

4

-



π


(

d
-

2

ρ


)


2

4


]


F







Eq
.





(
8
)








Inserting equations (6) through (8) into equation (5) gives











n
r



(

p





s

)


=



(

1
-
P

)




n
r



(
silicon
)



+


Pn
r



(
buffer
)


+

P







4

ρ

d



(

1
-

ρ
d


)


Δ






n
r


F






Eq
.





(
9
)








where Δnr=nr(protein)−nr(buffer). The typical index of refraction for a 50,000 to 150,000 Dalton protein is nr(protein)=1.42. For a typical protein monolayer thickness ρ and pore diameter d, we can approximate







1
-

ρ
d



1.




If we use parameters nr(silicon)=3.7, nr(buffer)=1.33, and P=0.80, d=100 nm, then equation (9) gives






n
r(ps)=1.804+(0.00288 nm−1)  Eq. (10)



FIG. 17A displays nr(ps) versus fractional surface coverage F for 150,000 Dalton protein molecules (ρ=8 nm).


The invention measures changes in OPD, given by equation (4), due to changes in the index of refraction nr(ps) of the interaction volume 202. Combining equation (9) with equation (4) gives









OPD
=


2



L


[






(







1
-
P

)




n
r



(
silicon
)



+








Pn
r



(
buffer
)


+






P







4

Δ






n
r


d



(

1
-

ρ
d


)


F





ρ




)

2

-








n
r
2



(
buffer
)




sin
2



θ
i





]



1
/
2



+



δ
o


λ


2

π







Eq
.





(
11
)








The fractional surface coverage F is related to the surface concentration (dimensions pg/mm2) of proteins on the pore walls. A protein of mass M is modeled as a cylinder with diameter ρ and height ρ, given by









ρ
=




ρ
o



(

M

M
o


)



1
/
3


.





Eq
.





(
12
)








where ρo=8 nm and Mo=150,000 Daltons. Equation (12), plotted in FIG. 17B, shows that for the diameters of the majority of proteins examined in kinetic binding experiments (typically 30,000 to 150,000 Daltons) are in the ρ=5-8 nm range.



FIG. 18 displays a model for the surface coverage of ligands 122 on the walls of pores 90. The surface concentration of proteins ligands is given by





σ=M/Ax2 (units pg/mm2)  Eq. (13)


where M is the molecular weight of the protein (Daltons or g/mol), and A=6.022×1023 (molecules/mol) is Avogadro's number. Although the proteins 122 are distributed somewhat randomly on the pore walls, the average distance between each protein molecules is x. The model assumes that the proteins 122 are arranged in a regular grid pattern, as displayed in FIG. 18. The fractional surface coverage F is then given by






F=(ρ/x)2,  Eq. (14)


defined so that F=1 when ρ=x. By combining equations (9), (12)-(14), we can relate the OPD to the surface concentration density σ (units pg/mm2) as









OPD
=


2



L


[






(







1
-
P

)




n
r



(
silicon
)



+








Pn
r



(
buffer
)


+






P







4

Δ






n
r


d



(

1
-

ρ
d


)




ρ
o


M
o



A





σ




)

2

-








n
r
2



(
buffer
)




sin
2



θ
i





]



1
/
2



+



δ
o


λ


2

π







Eq
.





(
15
)








For the preferred operational parameters listed previously, equation (15) gives









OPD
=


2



L


[






(

1.804
+


(


5.92

E

-

6







mm
2

pg



)


σ


)

2

-






1.769


sin
2



θ
i





]



1
/
2



+




δ
o


λ


2

π


.






Eq
.





(
16
)








The resolution of the optical measurement is a key feature of the invention. The present prototype has a 1 part per million resolution in the measurement of OPD, defined as the root mean squared (rms) variation in the baseline OPD divided by the measured OPD. A typical OPD is approximately 6000 nanometers, so the resolution of the device is approximately ΔOPD=(10−6)(6000 nanometers)=0.006 nanometers or 6 picometers. The high degree of resolution is provided by two key factors, 1) the use of very high optical signal averaging to increase the signal-to-noise ratio (SNR) of the measured interference fringe patterns, and 2) the use of novel computational fringe fitting algorithms that most accurately computes the OPD from the interference fringe patterns 246.


The optical signal averaging is accomplished by the use of a very deep well linear photodiode array (Hamamatsu 3904; 256 pixels, 156 million photoelectrons full well capacity) for the linear detector in the spectrometer. In addition, very fast frame rate acquisition methods are used that currently record one hundred frames of interference fringe data every second and sum the one hundred frames pixel-by-pixel to provide an interference fringe pattern versus wavelength every second with a very high SNR. For example, each pixel value in the very high SNR interference fringe pattern represents approximately (156 million photoelectrons/2)(100)=8×109 electrons. The primary noise source for this measurement is photoelectron shot noise; the rms value for this noise is the square root of the signal, √{square root over (8×109 electrons)}=9×104 electrons. The SNR of the fringe pattern is then 8×109 electrons/9×104 electrons=90,000.


Correlation Method

The preferred embodiment uses a special correlation method for calculation of OPD from the measured interference fringe patterns, as described here. The model for the measured interference fringe pattern is given by





Ir(λ)=Iro(λ)[1−M cos(2πOPD/λ)]  Eq. (17)


where M is the modulation index and











I
ro



(
λ
)


=


1



2

π



σ




exp


(



-


(

λ
-

λ
o


)

2


/
2







β
2


)







Eq
.





(
18
)








is a normalized Gaussian envelope function. The actual envelope function is determined by the spectral bandwidth of the light source, spectrometer, and linear photodiode array, as well as the wavelength dependent reflection properties of the interaction volume 202. FIG. 16 shows equations (17) and (18) (246 and 248) with operational parameters OPD=7216 nm, λo=660 nm, β=100 nm, and M=0.2. The measured interference fringe pattern is correlated to a test fringe pattern






I
T(X;λ)=Iro(λ)[1−M cos(2πX/λ)]  Eq. (19)


where X is a varying test optical thickness, using the correlation integral










C


(
X
)


=


1
M






-








λ



{



I
T



(

X
;
λ

)


-


I
ro



(
λ
)



}



{



I
r



(
λ
)


-


I
ro



(
λ
)



}








Eq
.





(
20
)









FIG. 19 shows the correlation integral C(X) versus X for the model of a typical interference fringe pattern 246 given by equation (17). The OPD is calculated from the equation (20) as the value of X corresponding to the peak 258 of C(X). This value of X is precisely determined by the locating the zero crossing of the first derivative of C(X) with respect to X, or C′(X).


The exact procedure for the acquisition of the interference fringe patterns and calculation of the OPD is given here:


1) Acquire reference pattern—FIG. 20 displays a typical reference pattern 260 versus optical wavelength that is acquired from the invention. This pattern is acquired by replacing the interaction volume 202 with a non-porous silicon chip in order to accurately record the envelope optical response function (i.e. without interference fringes), modeled by equation (18), of the light source, spectrometer, and linear photodiode array.


The data {λ[i], RawRef[i]}; (i=1=0, Nlambda) in FIG. 20 represents a summation of multiple frames of pixel data in order to provide greater signal-to-noise by signal averaging the shot noise of the incident photons. The reference data displayed in FIG. 20 is acquired once and is stored in a look-up table for use in the calculation of the OPD.


2) Acquire interference fringe pattern—FIG. 21 displays a typical interference fringe pattern versus optical wavelength 262 that is acquired from the interaction volume 202. Each data point in FIG. 21 represents a summation of a plurality of frames, typically one hundred, of pixel data in order to provide greater a signal-to-noise by signal averaging the shot noise of the incident photons. The data {λ[i], RawSig[i]}; (i=0, Nlambda) displayed in FIG. 21 is a summation of one hundred frames, summed together, every second. The value Nlambda=256 is the number of pixels in the photodiode detector array.


3) Normalize interference fringe pattern and reference pattern—The acquired data is normalized as such:











Sig


[
i
]


=



(




i
=
0

Nlambda



Δ






λ


[
i
]




RawSig


[
i
]




)


-
1




RawSig


[
i
]









and




(
21
)







Ref


[
i
]


=



(




i
=
0

Nlambda



Δ






λ


[
i
]




RawRef


[
i
]




)


-
1




RawRef


[
i
]







(
22
)







4) Calculate correlation function—The correlation function given in equation (20) is calculated using the experimental data













I
r



(
λ
)


-


I
ro



(
λ
)



=


Sig


[
i
]


-

Ref


[
i
]










to





give





Eq
.





(
23
)








C


(

X


[
j
]


)


=

-




i
=
0

NLambda



Δ






λ


[
i
]




(





Sig


[
i
]


-






Ref


[
i
]





)



Ref


[
i
]





cos


(


2

π






X


[
j
]




λ


[
i
]



)


.








Eq
.





(
24
)








where the value Δλ[i]=λ[i]−λ[i−1] and NTransform≦j≦NTransform. The preferred calculation method determines the approximate optical path length X[jmax]=OPDapprox by using a simple numerical search for the maximum value C(X[jmax])=max value in the range







NTransform
3

<

j
max

<



2

NTransform

3

.





The method then uses an interpolation method to find the true peak Xpk=OPD in the neighborhood of the first determination X[jmax]=OPDapprox. This method iterates to find the zero of the first derivative of the correlation function













F


(
X
)


=




1

2

π







C


(
X
)





X









=



-




i
=
0

NLambda





Δ






λ


[
i
]




λ


[
i
]





(





Sig


[
i
]


-






Ref


[
i
]





)



Ref


[
i
]




sin


(


2

π





X


λ


[
i
]



)












Eq
.





(
25
)








using the Newton-Raphson method. This method provides a sequence of values {Xn}; (n=0, 1, 2, 3, . . . ) that provide successively more accurate approximations to the root F(Xn)=0, using the formula










X
n

=



X

n
-
1


+

Δ






X
n



=


X

n
-
1


+


F


(

X
n

)


*

{



X
n

-

X

n
-
1





F


(

X

n
-
1


)


-

F


(

X
n

)




}








Eq
.





(
26
)








and the initial starting points X1=X[jmax], X0=X[jmax]−dX, F(X0)=F(X[jmax]−dX), and F(X1)=F(X[jmax]). The initial value dX is chosen so that the value X[jmax]−dX is close to the peak of the correlation function, typically






dX
=



X


[

j
max

]


1000

.





The iteration procedure continues until a desired level of resolution is reached; the higher the level of resolution, the more iterations are required to reach this resolution. However, the stochastic noise in the signal and reference data will ultimately limit the convergence process. We have found that the limit





|F(Xn)|<C(X[jmax])*10−9  Eq. (27)


provides adequate resolution. This limit is reached in approximately n=5-10 iterations with relatively smooth functions such as a typical F(X). FIG. 22 shows a computational flow chart for determining the OPD from the interference fringe data.


Alternate embodiments for the fringe-fitting algorithm include the cosine transform method and the Fourier transform method. These methods calculate the derivative of the cosine transform, or the derivative of the Fourier transform, of the normalized data given in equations (21) and (22), and then locate the zero crossing of the cosine transform, or the Fourier transform, using the Newton-Raphson method.


Dependence of Instrument Resolution on Interferometer Length and Modulation Index

The resolution in the calculation of the OPD from the measured fringe pattern 246 is related to the both the OPD and the modulation index M of the fringe pattern. The resolution becomes smaller, or better, as both the OPD increases and the modulation index M increases, as described here. If we add a stochastic noise term to the model, equation 17 is given by






I
r(λ)=Iro(λ)[1−M(2πOPD/λ)]+N(λ)  Eq. (28)


and N(λ) is the noise on the spectral fringe pattern. The noise is primarily a combination of photoelectron shot noise and electronic readout noise. The correlation integral C(X) has a well defined peak at the value of Xpk≈OT. Equation 28 is combined with equations (17) and (20) to give










C


(
X
)


=


M





-








λ








I
ro
2



(
λ
)




cos


(

2

π






X
/
λ


)




cos


(

2

π






OPD
/
λ


)





-




-








λ








I
ro



(
λ
)




cos


(

2

π






X
/
λ


)




N


(
λ
)









Eq
.





(
29
)








To find the peak where Xpk≈OPD, we look for the value of X where the derivative of C(X) is equal to zero.

















C


(
X
)





X






X
=

X

p





k





=


0







=




-
M






-








λ








I
ro
2



(
λ
)






















2

π

λ



sin


(


2

π






X

p





k



λ

)




cos


(


2

π





OPD

λ

)



+













-








λ








I
ro



(
λ
)









2

π

λ


sin






(


2

π






X

p





k



λ

)



N


(
λ
)











Eq
.





(
30
)








By using the trigonometric relationship sin α cos β= 1/2[sin(α+β)+sin(α−β)], equation 30 can be expressed as










M





-








λ








I
ro
2



(
λ
)





2

π

λ



1
2



{





sin


[



2

π

λ



(


X

p





k


+
OPD

)


]


+






sin


[




2

π






λ



(


X






p





k



-
OPD

)


]





}




=




-








λ








I
ro



(
λ
)





2

π

λ



sin


(


2

π





X

λ

)





N


(
λ
)


.







Eq
.





(
31
)








The peak of the correlation function is at Xpk≈OPD; so







sin


[




2

π






λ



(


X

p





k


-
OPD

)


]






2

π

λ




(


X

p





k


-
OPD

)

.






Equation 31 can then be written as










X

p





k


=

OPD
+





-








λ










I
ro



(
λ
)



λ



N


(
λ
)




sin


(


2

π






X

p





k



λ

)





π





M





-








λ










I
ro
2



(
λ
)




λ
2






-





-








λ










I
ro
2



(
λ
)



λ



sin


[




2

π






λ



(


X

p





k


+
OPD

)


]





2

π









-








λ









I
ro



(
λ
)



λ
2











Eq
.





(
32
)











or





















X

p





k


=

OPD
+

ɛ
1

+


ɛ
2

.







Eq
.





(
33
)








The second term










ɛ
2

=

-






-








λ










I
ro
2



(
λ
)



λ



sin


[




2

π






λ



(


X

p





k


+
OPD

)


]





2

π









-








λ









I
ro



(
λ
)



λ
2






.






Eq
.





(
34
)








is quite small because the term






sin


[



2

π

λ



(


X

p





k


+
OPD

)


]





oscillates rapidly between −1 and +1 and the integral will average to nearly zero. More importantly, this term does not depend on the measurement noise at all, so it will be constant during the kinetic binding curve measurement and will not affect the measurement data since this data is derived from differences of the OPD during the total measurement time.


The magnitude and sign of the first term










ɛ
1

=





-








λ









I
ro



(
λ
)


λ



N


(
λ
)




sin


(


2

π






X

p





k



λ

)





π





M





-








λ










I
ro
2



(
λ
)




λ
2










Eq
.





(
35
)








will vary from measurement to measurement as the noise N(X) varies randomly.


The resolution of the measurement device can be measured by acquiring a number of independent measurements of the OPD Xi (i=1, . . . , p) while keeping the OPD constant. The resolution is defined as










Δ






r

l





i





m



=






Δ





X



2




X







Eq
.





(
36
)








where








X


=



1
p






i
=
1

p



X
i



=

OPD
+

ɛ
2







is the average value of the measurements, and













Δ





X



2

=



1
p






i
=
1

p




(


X
i

-


X



)

2



=



1
p






i
=
1

p




[


ɛ
1



(
i
)


]

1



=



e
1
2









Eq
.





(
37
)








is the variance of the measurements. The resolution is then calculated by combining equations (35)-(38)










Δ






r
lim


=









1

π





MOPD




[




-












λ





I
ro
2



(
λ
)



λ
2




]



-
1




[




[







-








λ





I
ro



(
λ
)


λ



N


(
λ
)









sin


(


2

π





OPD

λ

)





]

2



]



1
2






Eq
.





(
38
)








The integrals in equation (38) are physically realized as sums over the pixels in the photodiode array of the spectrometer. The square of equation (38) can then be expressed as










(

Δ






r
lim


)

=









(





1

π





MOPD


)

2



[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2















[







i
=
1

R



Δλ




I
ro



(

λ
i

)



λ
i










N


(

λ
i

)



sin






(


2

π





OPD


λ
i


)




]

2












Eq
.





(
39
)








where R is the number of pixels in the photodiode array. The expectation value in equation (39) can also be turned into a sum as shown in equation (37).











(

Δ






r
lim


)

2

=









(





1

π





MOPD


)

2



[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2




1
p






j
=
1

p





[







i
=
1

R



Δλ




I
ro



(

λ
i

)



λ
i





N
j



(

λ
i

)









sin


(


2

π





OPD


λ
i


)





]

2

.







Eq
.





(
40
)








The three sums in equation 40 can be manipulated to give











(

Δ






r
lim


)

2

=








1


(

π





MOPD

)

2




[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2




1
p






j
=
1

R



{








i
=
1

R




(




Δ





λ




I
ro



(

λ
i

)



λ
i





N
j



(

λ
i

)



sin






(


2

π





OPD


λ
i


)




)

2


+









m
=
1

R






n
=
1

R



Δ






λ
2





I
ro



(

λ
m

)



λ
m






I
ro



(

λ
n

)



λ
n





N
j



(

λ
m

)





N
j



(

λ
n

)










sin


(


2

π





OPD


λ
m


)



sin


(


2

π





OPD


λ
n


)






}







Eq
.





(
41
)








where the second sum includes all terms except when m=n. The primary noise source for the optical biosensor is the shot noise of the photoelectrons incident in the pixels of the linear detector. In this case, the photoelectrons incident on different pixels are uncorrelated and the second sum in equation (41) averages to zero. The shot noise at each pixel is given by Poisson statistics as














N
2



(

λ
i

)



Δ






λ
2




=





j
=
1

p





N
j
2



(

λ
i

)




Δλ
2











=




I
ro



(

λ
i

)




[

1
-

M






cos


(

2

π






OPD
/

λ
i



)




]




Δλ
.







Eq
.





(
42
)








Combining equations (41) and (42) gives











(

Δ






r
lim


)

2

=





(

1

π





MOPD


)

2



[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2







i
=
1

R



Δλ





I
ro
3



(

λ
i

)



λ
i
2




[

1
-

M






cos


(

2

π






OPD
/

λ
i



)




]





sin
2



(


2

π





OPD


λ
i


)









Eq
.





(
43
)








Finally, the resolution can be expressed as a function of both the OPD and the modulation index M as










Δ






r
lim


=



1
OPD



[


A

M
2


-

B
M


]



1
/
2






Eq
.





(
44
)








with constants A and B given by










A
=




1

π
2




[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2







i
=
1

R



Δλ




I
ro
3



(

λ
i

)



λ
i
2





sin
2



(


2

π





OPD


λ
i


)











and




Eq
.





(
45
)







B
=




1

π
2




[




i
=
1

R



Δλ




I
ro
2



(

λ
i

)



λ
i
2




]



-
2







i
=
1

R



Δλ




I
ro
3



(

λ
i

)



λ
i
2




cos


(

2

π






OPD
/

λ
i



)






sin
2



(


2

π





OPD


λ
i


)


.








Eq
.





(
46
)








From equations (44)-(46), the resolution becomes smaller, or better, as the optical thickness OPD becomes larger. In addition, the resolution becomes smaller, or better, as the modulation index M becomes larger.


The observed modulation index is related to the diameter d of pores 90 in the interaction volume 202. Smaller pore diameters provide a higher modulation index due to less wavefront distortion of the incident optical beam. The pore diameters, however, need to be large enough to provide space for the molecular interactions to occur, and for unimpeded diffusion of the analyte molecules in and out of the PS interaction volume. In addition, the OPD is linearly related to the depth L of the interaction volume 202, so larger depths L can provide better resolution.


The modulation index M can effectively distinguish between the realm in which larger pore diameters optimizes kinetic binding assays and another realm of smaller pore diameters that is optimal for on/off capture assays because of the better resolution. The mass transport effect can be larger for the on/off capture assays because this technique is not concerned with the temporal dynamics of the binding process. The capture assays are concerned only with the presence or absence of binding.


Kinetic Binding Measurement Model

The basic kinetic binding model, displayed in FIG. 10, assumes that a finite collection of ligand molecules 122, at concentration [B]o (units pg/mm2), are immobilized, or spatially fixed, on the wall of pores 90 of the porous silicon interaction volume 202. This model assumes as shown in FIGS. 10 and 11 that at time t=0, a concentration [A]o (units M or mol/L) of analyte molecules 124 in buffer solution, are flowed at velocity v through flow channel 61 and are transported into interaction volume 202 by the diffusion process. The total number of analyte molecules 124, and the velocity v, are both large enough so that the concentration [A]o of unbound analyte molecules 124 remains constant in interaction volume 202 during the binding measurement time. The analyte molecules 124 bind, or associate, with the ligand molecules 122, at a characteristic rate [A]kon (units sec−1), to form bound, immobilized molecules AB 127. The bound molecules AB 127 also unbind, or disassociate, at characteristic rate koff (units sec−1) into the mobile analyte molecules 124 and the immobilized receptor molecules 122. At the time t=tstop, the concentration of analyte molecules 124 is abruptly reduced to zero by the researcher so that only buffer solution is flowing through flow channel 61. The bound molecules AB 127 dissociate at characteristic rate koff (units sec−1), and the resulting unbound analyte molecules 124 diffuse out of interaction volume 202 into flow channel 61, and are flowed to the waste outlet port 48, 50, or 54.


The differential rate equations that describe the binding and unbinding process are given by:














[
AB
]




t


=





k
on



[
A
]




[
B
]


-



k
off



[
AB
]






[
B
]


=



[
B
]

o

-

[
AB
]















[
B
]

o




t


=
0





Eqs
.





(
49
)








with boundary conditions





[A](t)=0 and [AB](t)=0 for t<0


(the initiation time period)





[A](t)=[A]o for 0<t<tstop (the association time period)  Eqs. (50)






[A](t)=0 for t>to (the dissociation time period).


The boundary conditions for the analyte molecules A given by equations 41 are displayed in FIG. 11.


An important constraint to note is that the concentration of available receptor molecules 122 [B](t) is initially set by the experimenter at [B](t)=[B]o at time t=0, but decreases as the concentration of bound molecules [AB](t) increases. The concentration of available analyte molecules 124 is controlled to be constant at [A](t)=[A]o during the association time period 0<t<to 130 due to the continual flow of new analyte molecules 124 to the interaction volume. Also, the concentration of available analyte molecules 124 is controlled by the researcher to be constant at [A](t)=0 for the initiation time period t<0 128, and the dissociation time period t>tstop 132 due to a continual flow of buffer solution (i.e. zero concentration of analyte molecules 126) during this time periods.


The set of equations (49) are combined as














[
AB
]




(
t
)




t


=




k
on



[
A
]




(
t
)



{



[
B
]

o

-


[
AB
]



(
t
)



}


-



k
off



[
AB
]




(
t
)







Eq
.





(
51
)








Equation 51 is solved as











[
AB
]



(
t
)


=



0





t

<


0




[




AB
]







(
t
)



=











[
B
]

o



{

1
-

exp


(


-

(

1
+



[
A
]

o

/

K
D



)




k
off


t

)



}



1
+


K
D



[
A
]

o









0

<




t
<







t
o





[
AB
]



(
t
)



=





[
AB
]



(

t
o

)



exp


(


-

k
off



t

)




1
+


K
D



[
A
]

o





t

>

t
o








Eq
.





(
52
)








where KD=koff/kon (units M). (KD)−1 is called the affinity and is indicative of the strength of interaction between analyte molecules A and ligand molecules B. FIG. 12 displays equations 52 [AB](t)/[B]o versus time t for three different concentrations [A]o; [A]o=5KD, [A]o=KD, and [A]o=KD/5. There are several important features of equation 52. The concentration [AB](t) of bound molecules AB reaches equilibrium











[
AB
]

eq

=



[
B
]

o


1
+


K
D



[
A
]

o








Eq
.





(
53
)








during the association time period in a time scale








τ
assoc




[




[
A
]

o


K
D




k
off


]


-
1



,




and decreases to zero during the dissociation time period in a time scale τdissoc=koff−1 during the dissociation time period. The parameter KD sets the scale of the equilibrium concentration [AB]eq of the bound molecules AB. If the experimenter sets the concentration of analyte molecules [A]o=KD, then the equilibrium concentration [AB]eq=[B]o/2 where [B]o, the concentration of the receptor molecules B, is a parameter that the experimenter also initially sets. For higher concentrations [A]o=10KD, the equilibrium concentration of bound molecules AB saturates to [AB]eq=[B]o. For lower concentrations [A]o<0.5 KD, the equilibrium concentration decreases as [AB]eq≈([A]o/KD)[B]o.


Example of a Kinetic Binding Measurement

This section demonstrates a typical kinetic binding experiment of a typical protein-protein interaction. The ligand molecule 122 is a monoclonal antibody-Anti TSH (thyroid stimulating hormone), with a 150 kDa molar mass and two binding sites per ligand molecule 122. The analyte molecule 124 is a TSH protein, with a 28 kDa molar mass. The experimentally derived kinetic binding data for this interaction are kon=2×105 (M−1 s−1), koff=2×10−3 (s−1), and KD=10 nM. These proteins can be used to perform tests on the FIG. 1 device to confirm that the FIG. 1 device produces results consistent with the known binding rates.


A typical binding experiment attempts to determine the values of kon, koff, and KD, by measuring the binding data of the type displayed in FIG. 12 for one ligand concentration [B]o and the several (e.g. three to ten) different analyte concentration [A]o such as three different concentrations (136, 140 and 142) as shown in FIG. 12. The approximate range that [A]o is varied is typically from [A]o=0.1 KD to [A]o=10 KD. The concentrations [A]o, as well as the actual timescale t of the binding experiments, should be measured with care because these values are used in the analysis of the binding curve data to calculate the final values of kon, koff, and KD. The analysis assumes that the value of [B]o is held constant over the entire series of binding experiments. The preferred device shown in FIG. 1 can perform four measurements simultaneously.



FIGS. 12 and 14 displays simulated results of a kinetic binding experiment for anti-TSH/TSH system based on Equation 52. They are the same except that FIG. 14 includes simulated noise. The parameters of the porous silicon interaction volume are L=2000 nm, d=120 nm, P=0.80. The simulated device noise is 1 part per million of the measured optical thickness. The surface concentration of the TSH-antibody was set at F=0.1. Equation (4) shows that the initial OPD for this experiment is approximately OPD=2(2000 nm)(1.804)=7216 nanometers, or nm. Preparation of the pores with ligand molecules (F=0.1) results in a change in OPD by ΔOPD=2(2000 nm)(0.0115)(0.1)=4.6 nm. Ligands are immobilized in the pores 90 using the feature of the FIG. 1 device which permits an operator to monitor the immobilization process in interaction region 202 so the experimenter can stop the ligand molecule 122 coverage when the OPD increases from OPD=7216 nm to OPD=7216 nm+4.6 nm=7220.6 nm. The TSH molecules are introduced to the interaction volume 202 at three different concentrations, [A]o=25 nM, [A]o=5 nM, and [A]o=1 nM (144, 146 and 148, respectively). For each experiment, after a 5 minute binding, or association, time period, the concentration of TSH molecules is switched to [A]o=0, and the dissociation time period is measured for another 5 minutes.


If we measure the concentration of receptor molecules [B]o and the concentration of bound molecules [AB](t) in OPD units (nm), then the maximum, or saturation, value of the bound molecules,











[
AB
]

max

=



(


2


M
A



M
B


)



[
B
]


o





Eq
.





(
54
)








where MA=28 kDa, MB KDa, and the factor of 2 accounts for two binding sites per analyte molecule for this particular interaction. This gives [AB]max=1.7 nm.


Alternate Embodiments
Alternate Embodiment for Porous Silicon Optical Interferometer

Equation 1 shows that the porous silicon optical interferometer measures the optical path difference (OPD) between the optical path nr(ps)( AB+ BC) and the optical path nr(buffer)( AD). The preferred embodiment utilizes the optical path nr(ps)( AB+ BC) as the signal path and the optical path nr(buffer)( AD) as the reference path and assumes that the reference path does not change during the measurement period. FIG. 15B shows an alternate embodiment of the porous silicon interferometer that utilizes the interferometer path nr(buffer)( AD) as the signal path and the interferometer path nr(ps)( AB+ BC) as the reference path. This embodiment incorporates a substantial amount of the operational features discussed above. However, the path length AD30 is given by










AD
_

=



2







Ln
r



(
buffer
)




sin
2



θ
i





n
r



(
ps
)





1
-

(




n
r



(
buffer
)




n
r



(
ps
)





sin
2



θ
i


)





.





Eq
.





(
56
)








For θi=10 degrees, equation (56) gives AD=0.0499 L; thus a porous silicon depth L=4000 nm gives AD=180 nm. For this embodiment, protein receptor molecules immobilized in the top interaction volume 150 interact with analyte molecules flowing through flow channel 61 and diffusing into top interaction volume 150. The optical path difference defined by equation (4) changes due to binding interactions of analyte molecules with receptor molecules and the optical path difference changes are measured in the same manner as described for the preferred embodiment. The major difference between this embodiment and the preferred embodiment the optical path length corresponding to path AB+ BC remains constant, thus acting as the reference path of the optical interferometer. The reference path is realized by fabricating the porous silicon volume 152 so that the index of refraction nr(ps) remains constant. The preferred method for the fabrication of the porous silicon reference volume 152 involve the etching of very small pore diameters 90, on the order of 5 nm, so that large protein molecules cannot diffuse into the pores 90. Another fabrication method involves the filling of the pores 50 with a polymer so that neither proteins nor buffer solution will enter the pores 50. Another fabrication method involves the use of a thin film non-porous volume 152 that acts as the reference path. This alternate embodiment enables the immobilization of receptor molecules in a cellular membrane that comprises the interaction volume 150. Measurement of analyte molecules interacting with the receptor molecules in the cellular membrane permits the study of protein interactions in a more natural environment.


Alternate Embodiments for Low Cost, High Throughput Porous Silicon Optical Interferometers

The preferred embodiment described above; including the white light source, input fiber, output fibers, spectrometers, and linear photodiode arrays; is moderately expensive per measurement channel, and becomes prohibitively expensive for a biosensor instrument with over four measurement channels. An alternate embodiment displayed in FIG. 23 and FIG. 24, provides a relatively inexpensive apparatus and method to permit the simultaneous real-time measurement of interference fringe patterns from approximately four to one hundred or more porous silicon interaction regions. FIGS. 23 and 24 show this embodiment for eight measurement channels. White light delivered via fiber-optic 300 is directed to eight separate regions 318 on porous silicon die 308 by cylindrical lens 304 and a row 302 of eight circular apertures. Each of the eight porous silicon regions 318 can incorporate a separate fluid flow channel and separate ligand molecule attachment, for example. A single analyte containing solution is then flowed over the eight channels in a serial fashion, thus producing a separate change in the OPD of each region 318. The reflected white light 311 from each of the eight regions 318 is directed via beam splitter 306 to a spectrometer 310 (Santa Barbara Instruments Group SGS Spectrograph, for example). The reflected light 311 is split into light intensity versus optical wavelength by the spectrograph 310 by focusing the reflected light 311 via lens 312 onto an 18 micron x 2 millimeter slit 313, and then directing the light onto diffraction grating 314 and second lens to produce eight separate images 322 (as shown in FIG. 24) of the eight separate interference fringe patterns on a two-dimensional charge-coupled device (CCD) array 316 (Santa Barbara Instrument Group ST-7E camera with 765×510 pixel CCD array, for example). Each of the eight images 322 of the fringe patterns spans approximately 50 rows by 765 columns of the CCD array 316. The eight images 322 of the separate interference fringe patterns are recorded in real-time in a computer and each image 322 is summed pixel-by-pixel in the row dimension to provide signal averaging. The OPD versus time of each porous silicon region 318 is calculated using the computational methods previously described. This method can be extended to approximately one hundred measurement channels by incorporating a row 302 of one hundred apertures, thus providing one hundred separate images 322 of the interference fringe patterns of one hundred separate porous silicon regions 318. Each image 322 spans 5 rows by 765 columns of the CCD array 316. Additional measurement channels can also be added by sequentially measuring the eight channels 318 and then scanning the entire assembly to another row of eight channels 318.


A second alternate embodiment for the optical layout involves the use of a novel micro-interferometer, displayed in FIG. 25 and FIG. 26. Monochromatic light 325 (wavelength λ), from a laser diode, for example, is directed through a circularly symmetric dual index of refraction region 328 that comprises an outer index of refraction region 326 and an inner index of refraction region 330. This produces a circularly symmetric phase pattern 332 in the light beam 325 with the phase φ1 of the inner portion of the beam lagging or advancing the phase φ2 of the outer part of the beam, depending on the relative difference of the index of refractions n1 and n2. Lens 334 focuses the phase pattern onto plane 336, thus producing a circularly symmetric intensity pattern that is related to the phase difference φ12.


The mathematical solution for this micro-interferometer is described here. The electric field of the initial light wave 325 is described by






U(ρ,ψ)=Aexp(1) 0<ρ<a






U(ρ,ψ)=Aexp(2) a<ρ<b  Eq. (60)






U(ρ,ψ)=0 ρρ>b


In equation (60), a is the radius of inner region 330, b is the radius of outer region 326, and j denotes the imaginary axis. The electric field pattern at image plane 336 is given in the Fraunhofer approximation as






U
image(r,θ)=(jλf)−1exp(jkr2/2f)∫U(ρ,ψ)exp(−jkrρ/f)cos(θ−ψ)ρdρpdψ  Eq. (61)


where f is the focal length of lens 334, and k=2π/π. Equation (61) can be solved as






U
image(r,θ)=(kA/jf)exp(jkr2/2f){(kra/f)−1a2(exp[1]−exp[2])J1(kra/f)+b2exp[2](krb/f)−1Jkrb/f}  Eq. (62)


The intensity pattern at image plane 336 is given by the square of modulus of the electric field given in equation (62)






I
image(r,θ)=|Uimage(r,θ)|2=(kAb2/f)2{4 sin2(Δφ/2)[(a/b)4(kra/f)−2J12(kra/f)−(a/b)2(kra/f)−1J1(kra/f)(krb/f)−1J1(krb/f)]+(krb/f)−2J12(krb/f)}  Eq. (63)



FIG. 27 displays equation (63) plotted for three different relative phases Δφ=φ1−φ2. These intensity patterns repeat themselves every time the relative phase increases or decreases by a factor of 2π. The contrast of the intensity modulation maximizes when the areas of inner region 330 and outer region 326 are equal, or when b=a√{square root over (2)}.



FIG. 28 displays a preferred embodiment for the actual micro-interferometer used to measure the change in the OPD of a porous silicon interaction region 354. Infrared light 347 from laser diode 346 (λ=1.55 microns) is collimated by lens 348 and directed through a silicon wafer 350. The silicon wafer is transparent to the infrared light at this wavelength. Porous silicon region 354 is etched as a cylindrical region with radius a in silicon wafer 350. The cylindrically symmetric light beam with radius b passes through both the porous silicon region 354 and an outer index region 356 that is comprises of bulk silicon, thus acting as the unchanging reference path of the micro-interferometer. The light 347 then is focused by lens 358 onto a detector 360 that measures the intensity pattern of light 347. Index of refraction changes in porous silicon region 354 are measured as changes in the intensity pattern as given by equation 63 and FIG. 27. Detector 360 can be a single element detector that measures the integrated intensity pattern (i.e. light power), a linear photodiode array that spatially measures the intensity pattern, or an areal photodiode array that spatially measures the intensity pattern. Computational methods are applied to calculate the phase difference Δφ from the measured intensity patterns. FIGS. 29 A, B and C display experimental data from a micro-interferometer built and tested by the applicants.


A cost efficient high-throughput biosensor can be fabricated using an array of micro-interferometers (32×32 measurement channels, for example). Different ligand molecules are attached to each measurement channel, and an analyte containing solution is flowed over all of the measurement channels that provide simultaneous real-time measurements of the OPD changes in each measurement channel.


Alternate Embodiment of Porous Silicon Optical Interferometer as a Gaseous Chemical Detector

Another embodiment of the porous silicon interferometer involves highly sensitive measurements of gaseous chemical species, such as G-type nerve agents or volatile organic chemicals (VOCs), for example. The modifications of the above-described embodiment primarily involve modifications of the pore etching parameters, modifications of the chemical preparation of the pores 50, and the modification to a gaseous delivery subsystem. For example, typical gaseous chemical molecules are much smaller than large protein molecules, so the diameters and depths of pores 50, for this embodiment, are in the 5-15 nm and 10-50 micron range, respectively. As an example of alternate chemical preparation steps, the G-type nerve agents feature a phosphate (R—PO42−) molecular backbone complex and a phosphorous fluorine (P—F) molecular complex. The P—F bond can be cleaved with the use of a copper catalyst with hydrofluoric acid released as a by-product. The hydrofluoric acid further etches the porous structure, thereby resulting in a measurable change in the OPD. These gaseous embodiments can be very useful for detection of hazardous substances and could be useful in searches for biological weapons and for detection of their use.


Variations

Pores of a sample-receiving interaction zone that are of a porous material typically have nominal pore diameter distributions of about 150 nanometer (nm)±50 nm, and pore depths of about 2000 to 10,000 nm, although the pores may be somewhat irregular in shape. The nominal pore diameters may be from about 2 nm to about 2000 nm. Pore diameters from about 10 nm to about 200 nm are preferred for visible light, e.g., white light, pore diameters from about 2 nm to about 50 nm are preferred for ultraviolet light, and pore diameters from about 100 nm to about 2000 nm are preferred for infrared light. In some embodiments, a random distribution of 50-100 nm diameter cylindrical pores, which serve as sample-receiving interaction zones, are formed in the sample plate material by a chemical etching process for purposes of performing kinetic binding measurements. Greater porosity may be preferable for on/off and other capture assays that do not require kinetic binding measurements.


When a sample-receiving interaction zone is fabricated from a porous material such as porous silicon, the porous sample-receiving interaction zone typically has a depth or thickness from about 0.5 μm to about 30 μm. Thicknesses from about 1 μm to about 10 μm are preferred for visible light, e.g., white light, thicknesses from about 0.5 μm to about 5 μm are preferred for ultraviolet light, and thicknesses from about 5 μm to about 30 μm are preferred for infrared light.


A sample plate may be constructed of any suitable material(s) capable of producing interference upon exposure to electromagnetic radiation. Preferably, the sample plate material is a material capable of being formed into a porous material. Sample plate materials include, but are not limited to, silicon, silicon alloys, germanium, aluminum, aluminum oxide, stainless steel, glass, and combinations thereof. Silicon and silicon alloys are preferred sample plate materials.


Silicon and silicon alloy materials include p-doped silicon, n-doped silicon, and intrinsic (un-doped) silicon. In other embodiments, silicon materials having up to about 10% by weight germanium therein can be used. Further sample plate materials and dopants are described in U.S. Pat. No. 6,248,539 B1. The sample plate can include different layers of varying density and material composition.



FIGS. 30A and B show scanning electron microscope views of porous silicon suitable for use in various embodiments. FIG. 30A shows a scanning electron micrograph image of the top surface of p++-type porous silicon etched at about 330 mA/cm2. FIG. 30B shows a scanning electron micrograph image of the top surface of p++-type porous silicon etched at about 600 mA/cm2. A cross-sectional region of porous silicon was etched to form a portion of a sample receiving interaction zone. A scanning electron microscope cross-sectional image of p++-type porous silicon etched at about 330 mA/cm2 provided a pore depth of about 5 μm. As previously described, these pores serve as interferometric cavities and were formed using an etching process.


More specifically, porous silicon is a high surface area network of silicon nano-crystallites. Porous silicon can be produced by an anodic electrochemical etch of bulk crystalline silicon. Porous silicon tends to etch as a distribution of long nano-tubes or pores. The distribution of pore diameters and the depth of the pores is very controllable by adjusting the current density and the etching time. For example, an initial silicon material may be a heavily doped crystalline silicon wafer, e.g., commercially available wafers used for semiconductor manufacturing purposes. Typical wafer specifications include p++-type silicon (0.6-1.0 Ω-cm resistivity) with about 100 crystal orientation. In one process, the appropriate silicon wafer is immersed in an ethanolic hydrogen fluoride solution (HF:ethanol, 1:1). A constant electric current is applied to the silicon wafer using a platinum electrode. The silicon atoms at the silicon/electrolyte interface become polarized, making them susceptible to attack by the fluoride ions in solution. Silicon is released in the form of silicon hexafluoride and hydrogen gas is evolved in this process.


Techniques for selectively etching porous silicon are known in the art and include selectively illuminating the silicon wafer during the etching process. Depending on the dopant type of silicon used, light incident on the wafer during etching inhibits the etching process. A simple light mask of an array of 1 mm diameter opaque spots, for example, will produce an array of 1 mm diameter porous silicon areas surrounded by non-porous silicon. This selective etching can be accomplished without the use of photo-mask technology. Sample material will tend to coat both the porous and non-porous areas. However, the greatly enhanced surface area of the porous silicon will lead to much higher index changes for the porous silicon areas.


In embodiments that employ combinations of visible and non-visible electromagnetic radiation, an appropriate detector is selected based on the wavelengths of incident light, e.g. a multi-spectral camera. For example, a single Photoconductor on Active Pixel™ (POAP) detector may be used. See, e.g., U.S. Pat. Nos. 5,528,043; 5,886,353; 5,998,794; and 6,163,030. Alternatively, multiple detectors may be used, e.g., each detecting a different range of wavelengths of incident light.


In certain embodiments, the apparatus of the invention includes a mass spectrometer that is appropriately interfaced with the sample plate to permit mass analysis of molecules in a sample-receiving interaction zone. In particular, when immobilized molecules or ligands capture an analyte, mass analysis of the captured analyte often can assist in characterizing and identifying the analyte. The combination of the interferometric techniques of the invention with mass spectrometry offers a powerful tool for the sensitive, rapid and accurate analysis and characterization of chemical and molecular interactions, e.g., ligand fishing, identification and quantification, and multiplex diagnostic assays. In particular, when the sample-receiving interaction zones are porous silicon and the apparatus includes a mass spectrometer, the apparatus and associated techniques are known as Poroferometry-MS™.


Proof of Principle Test Set-Up and Test Data


FIGS. 29 and 29A, B and C show a test set-up and results related to preferred embodiments of the present invention. Here, as shown in FIG. 29 a HeNe laser beam is collimated and directed through a cube beam splitter 400 to stationary mirror 402 having a small 2 mm square hole in the center. A portion of the light is reflected from mirror 402 and an approximately equal portion is reflected from moving mirror 404. The combined reflected beam is focused by lens 406 on to CCD camera 408 producing an airy disc like pattern. FIG. 29A is a copy of the pattern when the reflected beams are out of phase and FIG. 29B is a copy of the pattern when the beams are in phase. FIG. 29C are graphs through the center of the pattern for in-phase, out of phase and in between. These data show the extreme sensitivity of this set-up. We are dealing with wavelengths of a few microns to fractions of a micron so that one-half wave (i.e., the difference between in phase and out of phase) is in the range of a few hundred nanometers. A preferred wavelength for this application is 1.5 microns. Applicants have demonstrated at least 10 percent transmission through about 100-micron thickness of doped silicon. In preferred embodiments the porous silicon replaces the moving mirror and the light reflects from the bottom of the porous region. A mirror with a small hole may be used for the stationary mirror (as in the demonstration) or in some cases the top surface of the silicon may provide the first reflection. Molecular interactions take place in the pores of the porous silicon region and those interaction are monitored by observing changes in the interference patterns like those shown in FIGS. 29A and B.


As shown in FIG. 31A, a mass spectrometer 900 may be integral with an interferometric measurement apparatus 902 and adapted to be in vacuum communication with a sample plate 904 so that mass analysis can occur directly from the sample plate 904 without intervening processing required. For example, as shown in FIG. 31A, a second source of electromagnetic radiation 906, e.g., a laser, directly strikes a sample-receiving interaction zone (not shown) with electromagnetic radiation 908 within an ion source region 910 (region within upper horizontal and right-hand side vertical dotted lines and corresponding lower horizontal and left-hand side vertical solid lines) to desorb and ionize any molecule(s) within the sample-receiving interaction zone. The desorbed ions 912 then can be directly introduced into the mass spectrometer 900 to be mass analyzed. It should be understood that depending upon the particular application and design of the apparatus, an ion source region according to the invention may be independent of the mass spectrometer, e.g., an ion source chamber as shown in FIG. 31A, or may be a region within the mass spectrometer.


In an alternative embodiment shown in FIG. 31B, a mass spectrometer 900′ is separate from, but associated with, an interferometric measurement apparatus 902′. In this embodiment, the sample-receiving interaction zones (not shown) of a sample plate 904′ undergo interferometric analysis within the interferometric measurement apparatus 902′ then the sample plate 904′ is transported via the appropriate transportation mechanism(s) or devices (not shown), e.g., a probe or mechanical arm particularly designed to hold a sample plate, into the mass spectrometer 900′. To increase throughput, the mass spectrometer typically is kept under vacuum so that when the sample plate 904′ is transported along the horizontal, arrowed dotted line in FIG. 31B, the sample plate 904′ passes through suitable valves, seal(s), and/or lock(s) 914 to maintain an appropriate vacuum in the mass spectrotheter 900′. After the sample plate 904′ is within the mass spectrometer 900′ and an appropriate reduced pressure is achieved, a second source of electromagnetic radiation 906′ strikes a sample-receiving interaction zone (not shown) with electromagnetic radiation 908′ to desorb and ionize any molecule(s) within the sample-receiving interaction zone to permit their mass analysis.


Other designs for associating a mass spectrometer with an interferometric measurement apparatus of the invention would be known by a skilled artisan. For example, if maintaining a vacuum in the mass spectrometer and/or an ion source region is not essential, then a sample plate can be transported or placed in a mass spectrometer and/or an ion source region at atmospheric pressure. Subsequently, a reduced pressure can be established in the mass spectrometer and/or ion source region to permit ionization and/or desorption and mass analysis to occur. As will be appreciated by skilled artisans, there are numerous techniques for moving sample plates within a mass spectrometer and for conducting the mass analysis. All of these techniques and their associated apparatus and structure are included within the scope of this invention.


For example, suitable mass spectrometers include, but are not limited to, a magnetic sector mass spectrometer, a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, a quadrapole (rods or ion trap) mass spectrometer, a time of flight (TOF) mass spectrometer, a matrix-assisted laser desorption ionization (MALDI) mass spectrometer, and combinations thereof, e.g., a MALDI-TOF mass spectrometer.


If the mass spectrometer uses MALDI, a captured analyte typically is contacted with an appropriate MALDI matrix. The MALDI matrix may be applied to a sample-receiving interaction zone subsequent to interferometric analysis. For example, a matrix applicator, e.g., an “ink-jet”-type of applicator, can be associated with a sample plate and deliver an appropriate amount of the MALDI matrix to the sample-receiving interaction zones to be mass analyzed. MALDI matrix materials are known to skilled artisans and include, but are not limited to, derivatives of cinnamic acid such as α-cyano-4-hydroxycinnamic acid and sinapinic acid.


All of the above apparatus and devices may be operated manually in a step-wise fashion. Full automation, however, is preferred. As appreciated by a skilled artisan, automation preferably includes a microprocessor and/or computer, which controls various aspects of the apparatus and methods of the invention. For example, an interferometric measurement apparatus also may include one or more auxiliary controllers such as any suitable microprocessor based programmable logic controller, personal computer controller, or the like for process control. A suitable auxiliary controller includes features such as programmability, reliability, flexibility, and durability.


The auxiliary controller typically includes various input/output ports used to provide connections to regulate various structure and components of the interferometric measurement apparatus, including, but not limited to, the source of electromagnetic radiation; a microfluidics system including its components; and a mass spectrometer including its components. An auxiliary controller may assist in the collection, characterization, analysis, and display of information and data from the detector or any other component of an apparatus of the invention where information of interest may be generated. The auxiliary controller also may control the movement and/or alignment of various structure(s) such as the len(s), beam splitter(s), dispersion element(s), detector(s), sample plate(s); valve(s), seal(s) and/or lock(s); as well as control the environmental conditions within the apparatus, such as temperature and pressure. The auxiliary controller also includes sufficient memory to store process recipes for desired application. Of course, the type of controller used depends upon the particular application.


The second preferred embodiment of an instrument used for the label-free study of protein interactions with porous silicon biochips uses a modular system. This system consists of six modules: the base, the autosampler, the fluidics unit, the autohandler, the buffer holder and the computer used to drive the system. The modules are combined in ways which allow users to measure biomolecular interactions in flow cells or in well plates as well as allows for different levels of automation. The modules will be described in part and then in their reasonable combinations.


A modular system capable of measuring flow cells and well plates with the same system is not known in the art in the field of biomolecular interaction analysis in spite of this field being over 20 years old. Instruments that measure biomolecular interaction without labels are known in their flow cell flavor, in their plate reader flavor and in a protein microarray flavor, however the first combination instrument system is described here.


The system also consists of a communication protocol that is xml based allowing for extension and validation of each command passing between the units.


Base:

The base consists of an embedded controller, optical subsystem, temperature subsystem, motion subsystem, and an exchangeable format tray. This module is present in all configurations of this embodiment. It is powered directly from wall plug AC power.


The embedded controller consists of a single board computer running embedded linux and a custom circuit board used to send 10 from the controller to the other subsystems of the module.


The single board computer may be programmed in a graphical language (using for instance lab view) in a higher level language like C or an object oriented language like C++ of Java. The program running on the embedded computer contains a running server which is always passively awaiting commands before it reports status or performs any actions. The base communicates using TCP/IP and has two ports for this. One port is used to communicate with the controlling computer. The other port is used to communicate with the fluidics unit which also has an embedded controller of the same type.


The base also consists of an optical subsystem used to monitor the binding event within the poSi biochips. Specifically this subsystem includes a visible white light source used to irradiate the poSi (through a single wavelength CW laser could also be used). The light from the source is bifurcated and then routed using fiber optics to several regions on the poSi biochip onto which it is focused to 200 μm diameter using a single lens. The light reflected from the biochip is then collected through the same optical fiber bundle and routed to separate spectrometers for each of the several regions of the poSi chip (though a single spectrometer and optical switch scheme could also be used). The data from the spectrometers are then read out at fixed intervals using the single board computer and custom circuit board.


The temperature control system is used to control the temperature of the poSi biochips and is on board the base unit. This temperature control allows for label free interaction measurement between 10.0-60.0° in 0.1° increments. The subsystem itself consists of four thermoelectric cooler units in thermal contact with the exchangeable format tray on one side and with heat sink fins on the other. These TEC units are driven by a 24V H-bridge circuit which provides up to 3 A of current to the TEC units. The H-bridge is under analog control using the custom circuit board which implements a closed loop proportional integral algorithm. Temperature monitoring is done on the H-Bridge board (for safety), in thermal contact with the exchangeable format tray, and on the heat sink fins. When the heat sinks warm, fans underneath of them are turned on until the heat sinks return to the temperature required for accurate thermal control.


The motion subsystem consists of an X, Y robot used to raster the two channel probe head of the optical subsystem. The head is moved so that the optical spots are directly underneath the region of the poSi to be interrogated, be that poSi in a flow cell or poSi in a well plate. This robot consists of two DC servo motors under closed loop position control.


Autosampler:

The autosampler module is loaded with sample to be used with the poSi biochips. This module is known in the art in the context of high performance liquid chromatography applications. In the HPLC application the autosampler is used with an internal valve for sample injections. In the context of label free binding here the autosampler has been modified to direct sampler to sample loops on the fluidics unit. Therefore the autosampler has been fitted with a valve suitable for selection instead of one for injection. This allows a single autosampler to service three separate instruments for label free binding studies. The autosampler is controlled using a USB interface to the either the fluidics unit or the base unit. The unit is powered directly from wall plug AC power.


Fluidics Unit:

The fluidics unit contains an embedded controller, solvent delivery system and injection control and is added to the base unit to perform automated flow cell measurements. The unit is powered from 24V DC power available from the base unit or (if desired) from an AC/DC converting power supply.


The embedded controller consists of a single board computer running embedded linux and a custom circuit board used to send 10 from the controller to the solvent delivery system and injection control subsystems. The controller connects to the outside world through TCP/IP using a control program which acts as a server. The server is always running awaiting commands from a client which in the preferred embodiment is the base unit. The base unit passes xml based commands to the fluidics unit and the fluidics unit sends xml based responses to the base.


It allows for fully differential measurement of a sample and reference channel in a flow cell cartridge as it contains two discreet flow paths. This differs from the prior art in which multiple flow cells are measured in sequence as opposed to in parallel. In the preferred embodiment the fluidics unit contains a continuous pump operating at between 1-250 μL/min flow rate with 100 psi pressure capability. The pump pulls buffer through a buffer selection system consisting of 5 vacuum degassing chambers. The buffer to be used is determined by the position on a six port selection valve integrated into the fluidics unit.


This pump is then split into two equal flow paths using a passive y-configuration and sent to two, two position injection valves fitted with 50 μL volume sample loops contained on the fluidics unit. The components are connected with 1/16″ Teflon tubing from the buffers to the degassing chambers, from these to the selection valve, and from this to the passive Y. From the passive Y to the injection valves and to the flow cell the tubing is then 1/32″ PEEKsil with 75 μm diameter as dispersion needs to be minimized between the injection valves and the flow cell.


The fluidics unit is factory configurable with regard to numbers and types of pumps and valves. The description for the specific configuration exists on the fluidics unit in an xml form. This configuration is passed to the controlling computer which then draws a picture of the fluidics system on the graphical user interface. This picture is then used to graphically control the instrument through the GUI. Having the physical hardware described as xml allows the hardware to be controlled by many different software programs giving unparalleled flexibility in the realm of label-free interaction analysis.


AutoHandler:

While the autosampler module picks samples (answering the question: What should be used?) the autohandler robot routes these samples to the appropriate place for analysis (answering the question: Where should it go?) The addition of this second robot in the system is novel and allows the system to handle multiple flow cells and multiple wells in a plate. By adding the autohandler a flexible instrument system has been invented which allows complete, partial, or no automation depending on the needs for the system. No system known in the art allows generally for this type of automation and specifically for multiple, separate flow cells. The invention here allows 24 flow cells (available in modulo 6) to be placed at the instrument at the same time and addressed individually. The autohandler is powered from 24V from the base unit for from a AC/DC transforming power supply.


The autohandler interfaces with the base unit through a USB connection and contains four stepper motors and motor controllers. These form an X,Y,Z,Θ motion system. The motor aligns to the flow cell or well in X and Y and then lowers the gantry in the Z direction. The theta movement switches between the fluidic interface and a simple dispensing needle. All motors on the autohandler are used in closed loop mode.


Buffer Holder:

The holder connect to the base through a single USB connection and is powered through that connection. This holder is used to hold and monitor the buffers used for the interaction analysis. The buffer level is monitored through weight. The holder, holds up to 6 buffers each stored in 50 mL centrifuge tubes. The buffer monitoring ensures that when long evaluations are started, that there is enough buffer to complete the run.


Exchangable Format Tray:

An exchangeable format tray on the base holds the sample (one or many flow cells or the well plate) in a temperature controlled environment over the optical subsystem. The tray differs from anything else known in the art as it allows a switch between a well plate a flow cell in less than two minutes. Inventions known in the art are either dedicated flow cell, well plate, or protein micro-array measurement tools. The format tray is unique to the particular configuration but when changing between configurations only the format tray needs to change. This anodized aluminum tray slides in place on the base unit and is held in place by spring plungers. This tray exists to accommodate a single flow cell, a sensor plate consisting of up to 24 flow cells (modulo 6) or a single, standard, micro-titer plate.


Control Computer:

In the preferred embodiment a control computer handles method programming, data acquisition and data analysis for the instrument system. This computer exists on the same network as the base instrument and this computer communicates with the base module. Though there are many possible configurations to the system, this computer always interacts to everything via the base module through a single TCP/IP connection.


Communication Protocal:

The modular system invented here presents the biomolecular interaction researcher with unparalleled opportunities for research. Given this an open, easy to understand xml format was invented for inter-module communication. No application of xml to biomolecular interaction analysis exists in the art.


The communication protocol consists of three main parts. Two of these are the schema describing the possible commands the instrument system understands and the schema describing the possible responses of the system. The third protocol is based on a scheme used to describe the actual configuration of the fluidics module (see above). Using these schema communication is validated in both directions. Furthermore, in a design implementation not known in the art, a third xml file exists which relates the Response to the Command schema. This ‘relationship file’ is not used in instrument communication. However, this allows for an automated generation of tests, which can be used for the firmware.


These tests consist of two xml files. One is a command file, which is validated by the command schema. The other is a schema file (which is a subset of the response schema) used to see if the elicited response, is in fact the proper response. By using the various xml commands in this fashion a very thorough series of tests may be generated for the firmware.


Also, the readability of xml—as compared to binary or other proprietary forms of instrument communication—allows users of the instrument set to readily develop custom routines not foreseen in the available instrument software running on the client PC.


Each of the patent documents and scientific publications disclosed hereinabove is incorporated by reference herein.


While the present invention is described in terms of preferred embodiments, the reader should understand that these are merely examples and that many other embodiments are changes to the above embodiments will be obvious to persons skilled in this art. Although preferred embodiments utilize visible light, readers should understand that light at other wavelengths such as ultraviolet light and infrared light could be utilized in other embodiments of the present invention, and the term “light” as used in the claims includes electromagnetic radiation at any wavelength unless otherwise limited. For example, the size, shape and number of pores in the porous silicon regions could vary greatly depending on the particular application of the present invention. In most cases the number of pores in each region will be far more than 1000. The porosity of the regions may vary greatly with the application. In preferred embodiments Applicants have chosen porosity values of the porous silicon region to produce an index of refraction for the water-filled porous silicon region of n=1.8 as compared to an n=3.7 for silicon and n=1.3 for the water. However, in many cases many other porosity values could be utilized. Many and various chemistries can be utilized in the porous silicon reaction chambers other than the ones specifically disclosed. The porous silicon regions can utilized to act as alternate capture mechanisms. For example, rows of reaction chambers can be created with a different chemistry in each row. With such a setup, it is possible to create interaction zones with a first chemistry that permits separation of certain kinds of molecules from a larger “soup” of molecules. Then a capture mechanism can be used that more selectively binds with molecules of interest with higher resolution than would otherwise be measurable in the presence of a higher abundance of molecules. Also various optical detection methods can be used other than the ones specifically described. For example, it is known that Raman spectroscopy is of considerably value in determining molecular structure and chemical analysis. Therefore, Raman spectroscopy techniques can be adapted for use with the porous silicon observation regions and micro fluidic sample control techniques of present invention. Quad cell detection is an additional optical detection technique that could be utilized to detect changes in molecular activity in the observation regions described in the specification. In addition, other optical observation techniques may be adaptable for use in connection with the present invention. In some cases it may be desirable to utilize mass spectrometry detection techniques along with the optical detection techniques described herein to more precisely define molecular components and their activity. Therefore, the scope of the invention should be determined by the claims and their legal equivalents.

Claims
  • 1. An optical sensor for monitoring molecular binding interactions said sensor comprising: A) at least one porous silicon chip comprising more than 1,000 pores, each pore having a nominal width and a nominal depth at least 10 times larger than said nominal width with the depth of each pore being approximately equal to the depth of at least most of the other pores in said porous silicon region, said porous silicon region defining a top surface and a bottom surface, said bottom surface being parallel or approximately parallel to said top surface;B) at least one buffer-sample fluid flow channel located above said at least one porous silicon region providing a fluid flow passage across said porous silicon region;C) at least one light source for illuminating said at least one porous silicon region;D) at least one spectral monitor for monitoring light reflected from said top surface and said bottom surface of said at least one porous silicon region;E) a fluid flow control system for producing controlled flow of buffer solutions, ligand containing solution and analyte containing solutions through said at least one fluid flow channel; andF) a computer processor programmed with a computer program for making molecular binding measurements based on changes in spectral interference patterns monitored by at least one spectral monitor while analytes bind with and disassociate from ligands attached to surfaces of said pores.
  • 2. The optical sensor as in claim 1 wherein said at least one porous silicon region is a plurality of porous silicon regions, said at least one buffer-sample fluid flow channel is a plurality of fluid flow channels, said at least one light source is a plurality of light sources and said at least one spectral monitor is a plurality of spectral monitors.
  • 3. The optical sensor as in claim 2 wherein said plurality of porous silicon regions is at least four porous silicon regions.
  • 4. The optical sensor as in claim 1 wherein said molecular binding measurements are kinetic molecular binding measurements.
  • 5. The optical sensor as in claim 1 wherein said at least one spectral monitor is at least one spectrometer.
  • 6. The optical sensor as in claim 1 wherein said at one spectral monitor comprises at least one photo diode array.
  • 7. The optical sensor as in claim 7 wherein said silicon substrate is p++-type silicon with a <100> crystalline configuration.
  • 8. The optical sensor as in claim 7 wherein said porous silicon region is incorporated into a fluidics cartridge comprising fluid flow channels and a plurality of flow control valves, said fluid flow channels being in flow communication with said at least one buffer-sample fluid flow channel.
  • 9. The optical sensor as in claim 9 wherein said valves are pneumatically operated pinch valves.
  • 10. The optical sensor as in claim 10 wherein said pinch valves are computer controlled.
  • 11. The optical sensor as in claim 1 wherein said nominal widths of said pores are within the range of about 80 to 120 nanometers and said nominal depths of said pores are within a range of about 1000 to 3000 nanometers.
  • 12. The optical sensor as in claim 9 and also comprising a fluidics enclosure in which said fluidics cartridge is removably installed.
  • 13. The optical sensor as in claim 13 and also comprising robotic equipment for injecting ligand containing samples and analyte-containing samples into said fluidics enclosure.
  • 14. The optical sensor as in claim 1 and also comprising sample trays, at least one buffer fluid tank, at least one waste tank, a sample pump, a buffer pump and pneumatic controls, firmware and software for automated real-time measurement of kinetic binding reactions.
  • 15. The optical sensor as in claim 14 and also comprising sample trays, at least one buffer fluid tank, at least one waste tank, a sample pump, a buffer pump and pneumatic controls, firmware and software for automated real-time measurement of kinetic binding reactions.
  • 16. The optical sensor as in claim 1 wherein said at least one light source comprises a white light source or an approximately white light source.
  • 17. The optical sensor as in claim 1 wherein said at least one light source comprises a narrowband light source.
  • 18. The optical sensor as in claim 1 wherein said sensor is a multiple format label-free porous silicon based optical sensor providing three formats of operation, i.e., a single flow cell format, a multiple flow cell format and a micro-well format, said system comprising: A) a base unit comprising a spectrometer based optical system comprising at least one light source and two spectrometers,B) a single porous silicon flow cell unit,C) a multiple porous silicon flow cell unit,D) a micro-well plate adapted to hold a porous silicon chip in a plurality of micro wells,E) one or more exchangeable format trays adapted to position said single porous silicon flow cell unit, said multiple porous silicon cell unit and said micro-well plate serially within said base unit,F) a plurality of fluid systems adapted to provide fluids containing buffer solutions, ligand containing solutions, and analyte containing solutions to said single flow cell, said multiple flow cell unit and said micro-well plate,G) a control system comprising a computer processor adapted to provide automatic optical analysis serially of molecular interactions within the porous silicon chips in said single flow cell, said multiple flow cell or said micro-well plate, depending on which of the three formats is being.
Parent Case Info

This application claims the benefit of provisional patent application Ser. Nos. 60/962,652, 60/962,616, 60/962,664, 60/962,756, 60/962,675, 60/962,669 and 60/962,644 all filed Jul. 30, 2007 and provisional patent application Ser. No. 61/127,910, filed May 15, 2008 and is a continuation in part of Ser. No. 11/180,349 filed Jul. 13, 2005, Ser. No. 10/631,592 filed Jul. 30, 2003 and Ser. No. 10/616,251 filed Jul. 8, 2003. This invention relates to optical sensors and in particular to optical biosensors.

Provisional Applications (8)
Number Date Country
60962652 Jul 2007 US
60962616 Jul 2007 US
60962664 Jul 2007 US
60962756 Jul 2007 US
60962675 Jul 2007 US
60962669 Jul 2007 US
60962644 Jul 2007 US
61127910 May 2008 US
Continuation in Parts (3)
Number Date Country
Parent 11180349 Jul 2005 US
Child 12221119 US
Parent 10631592 Jul 2003 US
Child 11180349 US
Parent 10616251 Jul 2003 US
Child 10631592 US