Optical sensor including disposable and reusable elements

Information

  • Patent Grant
  • 10463284
  • Patent Number
    10,463,284
  • Date Filed
    Monday, December 4, 2017
    7 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
An embodiment of the present disclosure provides a noninvasive optical sensor or probe including disposable and reusable components. The assembly of the disposable and reusable components is straightforward, along with the disassembly thereof. During application to a measurement site, the assembled sensor is advantageously secured together while the componentry is advantageously properly positioned.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to noninvasive optical sensors capable of detecting light attenuated by body tissue. More specifically, the disclosure relates to the combination of reusable and disposable components of such sensors.


BACKGROUND OF THE DISCLOSURE

Early detection of low blood oxygen is important in a wide range of applications, including patient monitoring, the fitness industry, home care and the like. Noninvasive oximetry was developed to study and to measure, among other things, the oxygen status of blood. Pulse oximetry—a noninvasive, widely accepted form of oximetry—relies on a sensor attached externally to a patient to output signals indicative of various physiological parameters, such as a patient's blood oxygen saturation.


A pulse oximeter sensor generally includes one or more energy emission devices, such as specific wavelength emitting LEDs, and one or more energy detection devices. The sensor is generally attached to a measurement site such as a patient's finger, ear, ankle, or the like, using an attachment mechanism such as a disposable tape, reusable housing, a plastic or hook-and-loop fastening strap, or the like. The attachment mechanism positions the emitters and detector proximal to the measurement site such that the emitters project energy into the blood vessels and capillaries of the measurement site, which in turn attenuate the energy. The detector then detects that attenuated energy. The detector communicates at least one signal indicative of the detected attenuated energy to a signal processing device such as an oximeter. The oximeter generally calculates, among other things, one or more physiological parameters of the measurement site.


High fidelity pulse oximeters capable of reading through motion induced noise are disclosed in U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are assigned to Masimo Corporation (“Masimo”) and are incorporated by reference herein. Advanced physiological monitoring systems may incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet) and total hemoglobin (Hbt), total Hematocrit (Hct), oxygen concentrations and glucose concentrations, as a few examples. Advanced physiological monitors and corresponding multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, assigned to Masimo Laboratories, Inc. and incorporated by reference herein. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and HbMet, among other parameters, are also available from Masimo.


Noninvasive oximetry sensors can be disposable, reusable, or some combination thereof. Reusable sensors offer advantages of superior cost savings. However, reusable sensors are often available in a limited number of sizes even though patient measurement sites, such as fingers or toes, can have a much larger size distribution. Therefore, sometimes reusable sensors do not readily conform to each patient's attachment site. Disposable sensors on the other hand offer superior conformance to the measurement area. However, disposable sensors are generally more costly due to limited use of the relatively expensive sensor components which could otherwise last for repeated uses.


Faced with the drawbacks of reusable and disposable sensors, manufacturers began designing a number of middle-ground sensors. For example, some manufacturers offer a reusable detector portion that couples to a disposable emitter portion. After a single use, the disposable emitter portion is detached from the reusable detector portion and discarded. While this design reuses some of the expensive electronic components, others are still discarded.


Another example of a middle-ground sensor includes a reusable “Y” type sensor, where a reusable emitter portion connects to one branch of the “Y” while a reusable detector portion connects to the other branch. A disposable tape positions the two branches on a measurement site. In this design, the electronics are reusable; however, the multiple wires tend to be somewhat difficult to properly attach, especially with a moving patient.


Other examples of middle-ground sensors include a disposable tape sandwich where a reusable flexible circuit housing an emitter portion and a detector portion, are “sandwiched” between adhesive layers. Separation of such disposable tape sandwiches can be cumbersome. In yet another example of a middle-ground sensor, the Assignee of the present application disclosed a reusable flexible circuit is snapped into a disposable tape. In an embodiment of that disclosure, small pegs on the flexible circuit snap into mechanically mating elements on the disposable tape. Grooves allow some longitudinal travel between the reusable portion and the disposable portion, thereby allowing for some self adjustment between components to account for differences in radial attachment requirements.


SUMMARY OF THE DISCLOSURE

However, even with the advances discussed in the foregoing, there continues to be a need for a commercially viable, straightforward, middle-ground solution that offers reusability of expensive electronic components while maintaining some of the advantages of disposable attachment.


Accordingly, one aspect of an embodiment of the present disclosure is to provide a sensor having reusable and disposable components. In an embodiment, the sensor advantageously includes a disposable component structured to provide a locking feature capable of reducing a chance that the disposable and reusable components can separate when attached or otherwise in close proximity to the body. In an embodiment, a locking mechanism takes advantage of longitudinal displacement to engage when the reusable and disposable portions of the sensor are curved around the measurement site (such as a finger). Separation of the reusable portion from the disposable portion is then advantageously complicated until the sensor is removed from the patient and the displacement is reversed.


A further aspect of an embodiment of this disclosure is that the a portion of the reusable sensor component, such as, for example, the front portion or casing of the reusable sensor component can be attached to and released from a corresponding front housing component on the disposable component substantially vertically, substantially horizontally, or angularly. As such, for example, the front casing of the reusable sensor can attach to and release from the disposable component via the underside of the front casing (e.g., due to upward pulling by the patient or medical personnel), the front of the casing (e.g., due to lateral pulling) or angularly through a portion of both the underside and the front of the casing. This configuration allows for efficient, straightforward mating and separation of the reusable and disposable sensor components. Moreover, strain on the connection between the front portion of the reusable sensor component and the front housing of the disposable component, such as strain due to pulling by the patient or medical personnel, is also advantageously reduced.


In a further embodiment, a memory device or information element is provided as part of the disposable housing. An electrical contact is made between the memory device and the reusable components to, for example, ensure quality control in the disposable housing, provide information to the patient monitor about the type of sensor, type of patient, type of attachment mechanism or attachment position, information about operating characteristics of the sensor, product manufacture or sale history, distributor history, amount of use, combinations of the same or the like.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the disclosure have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIG. 1 illustrates an exemplary block diagram of an oximeter system including a sensor and a monitoring instrument, according to embodiments of the disclosure.



FIG. 2 illustrates a perspective view of the sensor of FIG. 1, where reusable and disposable components of the sensor are separated according to an embodiment of the disclosure.



FIGS. 3A-3B illustrate perspective views of the sensor of FIG. 2, where the components are connected in an assembly/disassembly position, according to an embodiment of the disclosure.



FIG. 4 illustrates a perspective side view of the sensor of FIG. 2, where the components are in an attached position, according to an embodiment of the disclosure.



FIG. 5A-5B illustrate top and bottom perspective views of a detector casing or housing of the reusable component, according to an embodiment of the disclosure.



FIG. 5C illustrates a front view of a detector casing or housing of the reusable component, according to an embodiment of the disclosure.



FIG. 6A-6B illustrate top and bottom perspective views of an emitter casing or housing of the reusable component, according to an embodiment of the disclosure.



FIG. 7 illustrates a perspective view of a front holding clip of the disposable component, the clip being capable of mechanically mating with the detector casing of FIG. 5, according to an embodiment of the disclosure.



FIG. 8 illustrates a perspective view of the assembly/disassembly clip of the disposable component, the clip being capable of mechanically mating with the emitter casing of FIG. 6, according to an embodiment of the disclosure.



FIG. 9 illustrates a top planar view of the disposable component including the front holding clip and the assembly/disassembly clip of FIGS. 7-8, according to an embodiment of the disclosure.



FIG. 10A illustrates an exploded view of the disposable component, according to an embodiment of the disclosure.



FIG. 10B illustrates an exploded view of the reusable component, according to an embodiment of the disclosure.



FIG. 11 illustrates top planar and side views of component placement of conventional sensors.



FIG. 12 illustrates top planar and side views of component placement according to an embodiment of the disclosure.



FIG. 13 illustrates a top down planar view of a disposable sensor, according to an embodiment of the disclosure.





DETAILED DESCRIPTION

An embodiment of the present disclosure is a sensor with a reusable component and a disposable component. The reusable component generally includes reusable relatively expensive electronic components of a sensor, including, for example, the emitters and detector(s). In an embodiment, the emitters and the detector(s) are located in respective casings connected by a short flexible circuit. In an embodiment, a disposable component includes mechanically matable portions adapted to mechanically mate with the casings of the reusable component. In an embodiment, the casings of the reusable component mate with the disposable component in a manner that provides an assembly/disassembly state, and an attached state. During the assembly/disassembly state, a caregiver can readily and straightforwardly assemble the sensor by aligning the casings on the reusable component and the mechanical housings of the disposable component and snapping or sliding them together. In an embodiment, the forward casing of the reusable component is aligned with the forward clip on the disposable component and snapping occurs by lightly pressing on the components vertically, horizontally, or at an angle while on a flat surface or supported from underneath by, for example, the hand of the assembler. In an embodiment, the rearward housing generally vertically accepts the rearward casing in such a way that the rearward casing can move horizontally with respect to the rearward housing; however, one of the housings, such as, for example, the forward housing or clip accepts the casing in such a way as to keep the forward casing generally immobile, in a fixed position with respect to the housing, during use.


Disassembly is also relatively straightforward, as the caregiver may advantageously laterally pull on the reusable component, and the rearward casing extracts from the mechanically mated housing of the disposable element. Continual lifting and/or lateral pulling then similarly extracts the forward casing from the mechanically mated housing of the disposable element. In an embodiment, the forward casing includes at least one opening which receives and generally snaps onto at least one electrical contact of the forward housing. Moreover, each of the openings can extend along a portion of the underside of the casing and along a portion of the front of the casing. As such, the electrical contacts of the housing can attach to and release from the openings via the underside of the casing (e.g., due to upward pulling by the patient or medical personnel), the front of casing (e.g., due to lateral pulling) or angularly, through a portion of the underside and a portion of the front. The at least one opening of certain embodiments is configured to receive at least one prong of the disposable attachment such that the at least one prong is slidable within the opening during mating of the disposable attachment and the second casing. For example, the at least one opening may comprise a channel extending along one or more surfaces of the second casing, such as along a portion of a bottom surface of the second casing and a portion of the front surface of the second casing. The configurations described above thereby allow for efficient, straightforward attachment and release of the forward casing. Moreover, the risk of strain being placed on the sensor components such as strain to due lateral and/or upward pulling by the patient or medical personnel is advantageously reduced. In an embodiment, the flexible circuit between the forward and rearward casing may be reinforced in order to withstand multiple disassembly stresses or forces occurring from the lifting of the reusable wire. In an embodiment, pressing the disposable portion onto a flat surface while lifting the reusable portion aids in the disassembly process.


disposable portion includes structures designed to attach the sensor to a measurement site. In an embodiment, the disposable portion comprises a flexible tape having an adhesive side capable of removably adhering to the measurement site. In an embodiment where the disposable portion wraps around a measurement site, the act of bending the flexible circuit advantageously causes the assembly/disassembly clip to recess into the mechanically mated portion of the disposable housing, thereby reducing the likelihood of disassembly during application to a measurement site. In an embodiment, the sensor components are locked together through the longitudinal displacement of the clip with respect to the disposable housing. In such an embodiment, a stop diminishes the capacity of the clip to move vertically, thereby locking it into place. In this embodiment, removing the adhesive from the measurement site and straightening the sensor components unlocks the reusable and disposable components.


In an embodiment, the assembly also electrically connects electronic components of the disposable portion with those of the reusable portion. In an embodiment, the disposable portion includes an information element or memory device, such as, for example, a resistor, a single wire addressable memory device, such as those EPROMs or EEPROMs commercially available from Dallas Semiconductor, other memory or processing devices, combinations of the same, or the like. The information element may include data accessibly by an attached patient monitor to accomplish quality control, monitor configuration, sensor use monitoring, combinations of the same, or the like.


Still other advantages of embodiments of the present disclosure include proportionally positioning of the mechanically mating housings to provide for optical alignment between the emitters and detector. Moreover, in embodiments including the disposable tape, the tape may advantageously be scored to assist the caregiver in proper alignment with the body tissue at the measurement site.


To facilitate a complete understanding of the disclosure, the remainder of the detailed description describes the disclosure with reference to the drawings. Corresponding parts refer to corresponding elements and the leading digit indicates the figure in which that element first appears.


General Design



FIG. 1 presents an exemplary block diagram of the components generally found in an oximeter sensor, according to an embodiment. For example, FIG. 1 shows as oximeter system 100 including sensor 102, cable 170, and monitor 172. The sensor 102 includes one or more emitters 174 for irradiating body tissue with light, and one or more detectors 176 capable of detecting the light after attenuation by the tissue. The sensor 102 also includes an information element 136 such as an EPROM. The sensor 102 also includes a plurality of conductors communicating signals; including emitter drive signal conductors 180, detector composite signal conductors 182, and EPROM conductors 184. According to an embodiment, the sensor conductors 180, 182, 184 communicate their signals to and from the monitor 172 through cable 170.


Although disclosed with reference to the cable 170, a skilled artisan will recognize from the disclosure herein that the communication to and from the sensor 106 may advantageously include a wide variety of cables, cable designs, public or private communication networks or computing systems, wired or wireless communications, combinations of the same, or the like.


The information element 136 may comprise an EPROM, an EEPROM, combinations of the same, or the like. In general, the information element 136 may include a read-only device or a read and write device. The information element may advantageously also comprise a resistor, an active network, or any combination of the foregoing. The remainder of the present disclosure will refer to such possibilities as simply an information element for ease of disclosure.


The information element 136 may advantageously store some or all of a wide variety of data and information, including, for example, information on the type or operation of the sensor 104, type of patient or body tissue, buyer or manufacturer information, sensor characteristics including the number of wavelengths capable of being emitted, emitter specifications, emitter drive requirements, demodulation data, calculation mode data, calibration data, software such as scripts, executable code, or the like, sensor electronic elements, sensor life data indicating whether some or all sensor components have expired and should be replaced, encryption information, or monitor or algorithm upgrade instructions or data. The information element 136 may advantageously configure or activate the monitor, monitor algorithms, monitor functionality, or the like based on some or all of the foregoing information. For example, without authorized data accessibly on the information element 136, quality control functions may inhibit functionality of the monitor. Likewise, particular data may activate certain functions while keeping others inactive. For example, the data may indicate a number of emitter wavelengths available, which in turn may dictate the number and/or type of physiological parameters that can be monitored or calculated.



FIG. 1 also shows the monitor 172 comprising one or more processing boards 186 communicating with one or more host instruments 188. According to an embodiment, the board 186 comprises processing circuitry arranged on one or more printed circuit boards capable of being installed in specialized monitoring equipment or distributed as an OEM component for a wide variety of patient monitoring equipment. As shown in FIG. 1, the board 186 includes a front end signal conditioner 190, a sensor controller 194, a digital signal processor or microcontroller 192, and a memory reader 1102. In an embodiment, the processor 192 instructs the sensor controller 194 to output one or more drive signals capable of causing the emitters 174 to activate. The front end 190 receives detector output indicating detection of light from the emitters 174 attenuated by body tissue of the measurement site. The front end 190 conditions the signal and outputs the signal and/or signal data to the processor 192. The processor 192 executes calculations adapted to determine values and/or indications or physiological parameters, trends of the parameters, alarms based on the parameters or the trends or combinations of trends and/or parameters, or the like. In addition, the reader 1102 is capable of retrieving information stored on information element 136. The reader 1102 or the processor 192 may advantageously decrypt such information to the extent desired.


In an embodiment, the host instrument 188, communicates with the processor 192 to receive signals indicative of the physiological parameter information calculated by the processor 192. The host instrument preferably includes one or more display devices 196 capable of providing indicia representative of the calculated physiological parameters of the tissue at the measurement site. Such display devices 196 may be controlled by a monitor controller 198 that accepts signals from processor 192. In an embodiment, monitor controller 198 may also accept signals from user interface 1100. Such signals may be indicative of various display options for configuring the output to display 196. In an embodiment, the host instrument 188 may advantageously be capable of displaying one or more of a pulse rate, plethysmograph data, perfusion quality, signal or measurement quality, values of blood constituents in body tissue, including for example, SpCO, functional or fractional SpO2, or the like. In other embodiments, the host instrument 188 is capable of displaying values for one or more of SpMet, HbO2, Hb, HbCO, HbMet, Hct, blood glucose, bilirubin, or the like. In still additional embodiments, the host instrument 188 is capable of displaying trending data for one or more of the foregoing measured or determined data. Moreover an artisan will realize from the disclosure herein many display options for the data are available.


In an embodiment, the host instrument 188 includes audio or visual alarms that alert caregivers that one or more physiological parameters are falling below predetermined safe thresholds, and may include indications of the confidence a caregiver should have in the displayed data. In further embodiments, the host instrument 188 may advantageously include circuitry capable of determining the expiration or overuse of components of the sensor 102, including for example, reusable elements, disposable elements, or combinations of the same.


Although disclosed with reference to particular embodiment, an artisan will recognize from the disclosure herein many variations of the instrument 172. For example, in a broad sense, the instrument 172 accepts data from the sensor 102, determines values for one or more parameters, trends, alarms or the like, and outputs them to an interface such as a display.


Sensor Configuration



FIG. 2 illustrates an embodiment of sensor 102, having reusable component 204 and disposable component 206. The components are shown detached. FIG. 3 shows a very similar perspective drawing, but with reusable component 204 and disposable component 206 in their attached, assembled state. Returning to FIG. 2, the reusable component 204 comprises an emitter casing 208, a detector casing 210, and a flexible circuit 212. The emitter casing 208 comprises one or more emission devices (not shown) operable to emit light at multiple wavelengths, such as red and infrared. Detector casing 210 houses one or more detectors (not shown), such as a photodiode detector. In an embodiment, a flexible circuit 212 connects the emitter casing 208 and detector casing 210. In a preferred embodiment, the flexible circuit 212 is housed in a protective cover and extends beyond the emitter casing 208. An artisan will understand from the disclosure herein that the emitter and detector electrical components may advantageously be housed in the casings disclosed or simply reversed from the foregoing disclosure. In an embodiment, the flexible circuit 212 and/or cabling extends significantly beyond the casings to advantageously remove any cable attachment mechanisms from the proximity of the tissue site.


The reusable component 204 of certain embodiments also includes a sensor connector 203 configured to mate with a monitor connector (not shown). The sensor connector 203 and monitor connector are advantageously configured to be straightforwardly and efficiently joined with and detached from one another. Embodiments of sensor and monitor connectors having similar connection mechanisms are described in U.S. patent application Ser. No. 12/248,856 (hereinafter referred to as “the '856 application”), filed on Oct. 9, 2008, and published as U.S. Patent Application Publication No. 2009/0099423, which is incorporated in its entirety by reference herein. For example, the sensor connector 203 includes a mating feature 213 which mates with a corresponding feature (not shown) on the monitor connector. The mating feature 213 may include a protrusion which engages in a snap fit with a recess on the monitor connector. In certain embodiments, the sensor connector 203 can be detached via one hand operation, for example. Examples of connection mechanisms which are incorporated by reference herein may be found specifically in paragraphs [0042], [0050], [0051], [0061]-[0068] and [0079], and with respect to FIGS. 8A-F, 13A-E, 19A-F, 23A-D and 24A-C of the '856 application, for example, which is part of the incorporated disclosure thereof. The sensor system 200 measures one or more physiological parameters of the patient, such as one of the physiological parameters described above.


In addition, the sensor connector 203 and monitor connector 209 may advantageously reduce the amount of unshielded area in and generally provide enhanced shielding of the electrical connection between the sensor and monitor in certain embodiments. Examples of such shielding mechanisms which are incorporated by reference herein are disclosed in the '856 application in paragraphs [0043]-[0053], [0060] and with respect to FIGS. 9A-C, 11A-E, 13A-E, 14A-B, 15A-C, and 16A-E, for example, which again is part of the incorporated disclosure thereof.



FIG. 2 also shows the disposable component 206 including a base 214, an assembly/disassembly clip 216 and a front holding clip 218, the clips each adapted to accept the emitter casing 208 and detector casing 210, respectively. In the preferred embodiment, front holding clip 218 includes a front stop 220. Front stop 220 is advantageous for a number of reasons. It helps reduce the likelihood that the reusable component 102, and in particular detector casing 210, will slide forward in the front holding clip 218 during assembly or use. In addition, in an embodiment where the stop 220 comprises plastic or other liquid resistant material, the stop 220 provides a liquid resistant connection between the detector casing 210 and front holding clip 218, reducing the likelihood of sensor contamination and electrical shorts. Rubber or a similar material may be used in an embodiment to compose such a front stop 220.



FIG. 3A shows detector casing 210 clipped or snapped into front holding clip 218. In an embodiment, a protrusion 211 (FIG. 5A) on a tip of the casing 210 mates with a corresponding recess (not shown) on the front stop 220. While shown as a circular protrusion 211 and a circular recess, the components may include a variety of shapes such as, for example, rectangular, square, triangular and the like. Moreover, in other embodiments, the components may be reversed and the holding clip 218 may include a protrusion 211 and the casing 210 may include the recess. An artisan will recognize from the disclosure provided herein that any mechanically mating or male-female like mechanical connection, or reversals thereof may assist in guiding the casing 210 into the clip 218. This allows the front stop 220 to reduce horizontal movement of the detector casing 210, and helps reduce vertical release of the detector casing unless pulled from, for example, the cable. In another embodiment, a tip of the casing 210 may slide below a portion of the front stop 220, such as, for example, a generally hooded portion (not shown) of the front stop 220. FIG. 3 also shows the front stop 220 with a generally rounded shape and including few, if any, sharp edges. Such an embodiment advantageously reduces damage to a patient or the sensor if the patient tries to scratch body tissue using the edges of the assembled sensor, or if the sensor is dropped, banged against something while worn, or the like. This is particularly useful when used with burn victims or other patients whose skin may damage easily.



FIG. 3B highlights the ease of assembly. The disposable portion 206 is set on a surface or held in the one hand. The caregiver then aligns a front tip of casing 210 and guides it into front holding clip 218. The casing 210 including rounded wings 531 (FIG. 5) that mechanically associate with rounded side walls 739 (FIG. 7). These mechanical structures allow the casing 210 to slide and/or snap into place. Once casing 210 is in place, casing 208 aligns vertically and simply slides down, with tabs 262 (FIG. 6) sliding into slots 222 (FIG. 8) on a side of assembly/disassembly clip 216. In an embodiment, the flexible circuit portion 212 between the casings 208 and 210 may bulge slightly.



FIG. 3B shows the emitter casing 208 after it has been slid onto assembly/disassembly clip 216. With the reusable sensor component 204 and the disposable sensor component 206 in a generally flat position and unattached position, the emitter casing 208 remains vertically mobile up through slots 222 of assembly/disassembly clip 216 and horizontally mobile through holding regions 224. When the sensor 102 is wrapped around a measurement site 426, such as a finger, as shown in FIG. 4, emitter casing 208 slides forward in assembly/disassembly clip 216 due to the tension from flexible circuit 212 and detector casing 210 being substantially immobile in front holding clip 218. Tabs 262 (FIG. 6) slide away from their original positions underneath slots 222 (FIG. 8) to positions within the holding regions 224 (FIG. 8). Holding regions 224 prevent emitter casing 208 from moving vertically or further forward by restricting tabs 262. As stated before, the tension from flexible circuit 212 when it is wrapped around a measurement site 426 prevents the emitter casing 208 from moving horizontally backwards when wrapped around a measurement site. The immobility of casing 210, combined with the tabs 262 sliding away from underneath the slots 222 to within the holding regions 224, effectively secure the reusable sensor component 204 with respect to disposable component 206, with the emitters appropriately position with respect to the detector. Thus, realignment through release of tension, i.e., removing the sensor from an attachment site and straightening it out, ensure straightforward disassembly of the sensor components. Although shown using tabs 262 and slots 222, a skilled artisan will recognize from the disclosure herein a wide variety of mechanical mechanisms that ensure reliable attachability when the sensor is applied to the tissue site and straightforward assembly/disassembly when the sensor is removed. For example, one or more detents that snap closed beyond a catch and are released through pinching could be used to secure the reusable portion 104 to the disposable portion 106.


As alluded to previously, FIG. 4 depicts sensor 102 as would be seen when in use on a measurement site 426. In this case, the measurement site is a finger, but other sites such as a toe, ear, wrist or ankle may also work. Disposable component 206 and reusable component 204 are attached, and reusable component 204 is in the assembled and attached position. Longitudinal tension on the flexible circuit 212 from the differing radius between the tape and the flex circuit has pulled the emitter casing 208 forward, placing tabs 262 within the holding regions 224. FIG. 4 shows that, in an embodiment, emitter casing 208 is rearward with respect to assembly/disassembly clip 216 when in the unattached position (FIG. 3B), but the front of emitter casing 208 is forward with respect to the assembly/disassembly clip 216 when in the attached position (FIG. 4).



FIGS. 5A-5C show close up top and bottom perspective and front views of an embodiment of the detector casing 210, respectively. The detector casing 210 includes bottom 540, front 541, top 542 and rear 543 surfaces. The detector casing 210 includes electrical contact acceptors 528. In an embodiment, electrical contact acceptors 528 extend along a portion of the bottom 540 and along a portion of the front 541 of the detector casing 210. The electrical contact acceptors 528 may also be referred to as openings 528 and include conductive material that can be connected to a wire in flexible circuit 212. As shown, the front portion 529 of the detector casing 210 may include a cutout such that front portion 529 sits on a raised step 733 portion of the front holding clip 218 (see FIG. 7). Buttons 530 found on a side of the detector casing 210 are, in the preferred embodiment, generally hemispherical protrusions adapted to sit in depressions or holes 738 found on front holding clip 218 (see FIG. 7). The detector casing 210 further includes opening 552 (FIG. 5B). The detector casing 210 can be configured to cooperate with opening 732 (FIG. 7) of the front sensor clip 218 to allow light attenuated by the patient's tissue to reach the detector electronics (not shown) housed by the detector casing 210. In various embodiments, the opening 552 can be substantially rectangular, as shown, or, alternatively, substantially circular, ovular, or some other shape.



FIG. 7 shows a close up perspective view of an embodiment of the front holding clip 218, again to show detail less easily seen in smaller figures. While most of the front sensor clip 218 may be made of plastic or some other rigid material, the preferred embodiment has front stop 220 made of plastic as has been discussed. Opening 732 is also shown here and may be a hole through front holding clip 218 or may include generally transparent material that will allow light from the LEDs to enter the tissue at the measurement site and allow light energy to be read by the photodiode. Having window 732 be transparent material will allow the sensor to obtain readings while keeping the LEDs and photodiode from becoming contaminated. Other optical filters or the like could also be housed in window 732. Additionally, in various embodiments, a transparent material, optical filter or other covering may be provided to one or more of the opening 552 of the detector casing 210, opening 662 of the emitter casing 208 and opening 842 of the rear sensor clip 216. In yet other embodiments, one or more of the various openings 552, 662, 742, 842 may comprise more than one opening.


Located inside front stop 220 are conducting prongs 734. Conducting prongs 734 are adapted to fit into electrical contact acceptors 528. In an embodiment, the conducting prongs 734 close the circuit with the information element 136. When the detector casing 210 clips into the front holding clip 218 and front stop 220, the conducting prongs 734 slide into electrical contact with acceptors 528. The completed circuit allows the sensor 102, and in turn an oximeter, to communicate with information element 136. In an embodiment, the openings 528 of the detector casing 210 receive and generally snap onto the conducting prongs 734 of the front holding clip 218. Moreover, because the openings 528 extend along a portion of the bottom 540 of the casing and along a portion of the front 541 of the casing 210, the conducting prongs 734 of the front stop 220 can attach to and release from the openings via the underside 540 of the casing 210 (e.g., due to upward pulling by the patient or medical personnel), the front 541 of casing 210 (e.g., due to lateral pulling) or angularly through both the underside 540 and the front 541 of the casing 210. Such configurations thereby allow for efficient, straightforward attachment and release of the forward casing 210. In addition, in certain embodiments, the at least one opening 528 of certain embodiments is configured to receive one or more of the prongs 734 such that the at least one prong 734 is slidable within the opening 528 during mating of the disposable attachment and the second casing 210. As shown, the at least one opening 528 may comprise a channel extending along one or more surfaces of the second casing 210, such as along a portion of a bottom surface 540 of the second casing 210 and a portion of the front surface 541 of the second casing 210. Depressions or holes 738 are located on the interior of front holding clip 218. They are preferably generally hemispherical depressions similar in size to buttons 530, so as to accept buttons 530, and hold detector casing 210 in a substantially immobile position relative to front holding clip 218. Thus, a straightforward snap-in snap-out friction fit is accomplished using buttons 530 and depressions 738.



FIGS. 6A-6B show close up top and bottom perspective views of emitter casing 208. Rear pegs 660 are located on a side of emitter casing 208. When tabs 262 slide down slots 222 of assembly/disassembly clip 216, rear alignment pegs 660 slide down behind assembly/disassembly clip 216. Rear pegs 660 provide structural support integrity once emitter casing 208 has slid into a locking position by coming into position underneath rear portions 840 in assembly/disassembly clip 216 (See FIG. 8). The emitter casing 208 further includes emitter casing opening 662 (FIG. 6B). The opening 662 of the emitter casing 208 can be configured to cooperate with opening 842 (FIG. 8) of the rear sensor clip 216 to allow light emitted from the emitter (not shown) housed within the emitter casing 210 to reach, for example, the patient's skin at the measurement site. In various embodiments, the opening 662 can be substantially rectangular, as shown, or, alternatively, substantially circular, ovular, or some other shape.



FIG. 8 illustrates a close-up perspective view of a assembly/disassembly clip 216 according to the preferred embodiment. As discussed emitter casing 208, slides down into assembly/disassembly clip 216 with tabs 262 passing through slots 222 and rear pegs 660 passing behind assembly/disassembly clip 216. As emitter casing 208 slides forward due to pull from application to a user, tabs 262 generally restrict over-forward movement or any vertical movement by abutting the surface of the clip 216 above holding regions 224. Assembly/disassembly clip 216 also has a window 842 that may be, for example, substantially similar to window 732 on the front holding clip 218.



FIG. 9 shows a top down view of the disposable sensor element. As shown in FIG. 9, the assembly/disassembly clip 216 and the slots 222 allow vertical entry of the tabs 262 and the emitter casing 208. Moreover, FIG. 9 shows windows 842 and 732 in assembly/disassembly clip 216 and front holding clip 218, respectively. FIG. 9 also shows windows 944 and 946. Windows 944, 946 are included in the base 214. Like the openings 732, 842, windows 944, 946 may be holes through base 214, or they may be of a material allowing free light transmission. Windows 944, 946 generally align with one or more of the openings 552, 662, 732 and 842 to provide optical access to the measurement site for the emitters and detectors of the sensor. FIG. 9 also shows the contact prongs 734 on the insides of front stop 220. The contact prongs of the illustrated embodiment are positioned on the raised step portion 733 of the holding clip 218. The contact prongs 734 connect the reusable sensor component 204 to the information element 136, which may be variously utilized such as for storing information relating to the sensor's manufacturer or the like.


Manufacture



FIG. 10A illustrates an exploded view of an embodiment of disposable sensor component 206. As shown in FIG. 10A, disposable sensor component 206 comprises a plurality of layers. For example, disposable sensor component 206 includes a base tape 1038. This base tape 1038 is preferably transparent polyethylene approximately 0.001 inches thick. Such material can be purchased from various sources, such as Product Number 3044 from Avery Dennison Medical of 7100 Lindsey Dr., Mentor, Ohio, 44060. As with all dimension recitations herein, an artisan will recognize from the disclosure herein that the dimensions of a particular layer may advantageously be redesigned according to various design desires or needs, and layers may be added or combined without departing from the scope of the present disclosure.


A second layer comprises a tape or web layer 1040. This layer is preferably white polypropylene also approximately 0.001 inches thick. One potential source for this material is Scapa North America, 540 North Oak Street, Inglewood, Calif., 90302, specifically product number P-341. Tape layer 1040 also has windows 1054 that allow light energy emanating from the sensor emitters to pass through this layer to the measurement site 426 and also allows the light to pass through to the detector. The windows 1054 may be holes, transparent material, optical filters, or the like. In the preferred embodiment, base tape 1038 does not have windows 1054. Base tape 1038 is preferably generally clear as discussed above. This allows light to pass through the tape from the sensor, while also generally reducing contamination of the sensor components. Disposable component 206 also includes clip 218 and assembly/disassembly clip 216. In an embodiment, a pair of polyester film segments 1042 sandwich the clips 216, 218 in place. In an embodiment the polyester film segments 1042 are generally clear and approximately 0.003 inches thick. Polyester film segments 1042 also include slots 1044 to allow the vertical elements of assembly/disassembly clip 216 and front holding clip 218 to protrude therefrom and to allow polyester film segments 1042 to sit relatively flatly against the bases of assembly/disassembly clip 216 and front holding clip 218. In other embodiments, the polyester film segments 1042 include one integral segment or more than two separate segments. Front stop 220 may be connected to the vertical elements of front holding clip 218 with polyester film segments 1042 therebetween. In an embodiment, information element 136 resides within front stop 220, preferably affixed in place by adhesives and/or mechanical structure. For example, the front stop 220 may house the information element 136 in a depression, slot or cavity of the front stop 220. Such a configuration may improve the tamper resistance so that the information element 136 is less likely to be disabled, damaged, replaced or removed, for example.


In certain embodiments, the disposable portion 206 includes a bottom liner layer (not shown). The bottom liner layer may be affixed to the underside of the base tape 1038, for example. In an embodiment, the base tape 1038 includes adhesive for attaching the disposable component 206 to the patient and the bottom liner layer is configured to peel off and expose the adhesive layer. In another embodiment, the bottom liner layer itself includes adhesive for attaching the disposable component 206 to the patient.


In other embodiments, the disposable portion 206 also includes one or more light-blocking layers. For example, the disposable portion 206 may include a first light-blocking layer preferably made of metalized polypropylene approximately 0.002 inches thick. This is a commercially available product available, for example, as Bioflex™ RX48P. The first light-blocking layer can include one or more cut-outs adapted to accept portions of the disposable portion 206 such as, for example, the assembly/disassembly clip 216 and front holding clip 218. The first light-blocking layer increases the likelihood of accurate readings by preventing the penetration to the measurement site of any ambient light energy (light blocking) and the acquisition of nonattenuated light from the emitters (light piping). In an embodiment, above the light blocking layer is an opaque branding layer also having cut-outs adapted to accept portions of the disposable portion 206 such as, for example, the assembly/disassembly clip 216 and the front holding clip 218. This branding layer may advantageously comprise manufacturer's logos, instructions or other markings. Disposable sensor component 206 also comprises face tape 1050. This face tape 1050 is preferably a clear film approximately 0.003 inches thick and may be obtained commercially through companies such as 3M (product number 1527ENP), located in St. Paul, Minn., 55144. Face tape 1050 includes cut-outs 1052 adapted to accept assembly/disassembly clip 216 and front holding clip 218. In an embodiment, branding information such as manufacturer's logos, instructions or other markings may be included on the face tape 1050 instead of or in addition to on the branding layer.



FIG. 10B illustrates an exploded view of a reusable component 204, according to an embodiment of the disclosure. Upper and lower portions of the emitter casing 208 mate about a portion 1020 of the reusable component 204 to enclose emitter electronics 1010. In addition, upper and lower portions of the detector casing 210 mate about a portion 1022 of the reusable component 204 to enclose detector electronics 1012. As will be appreciated by those of skill in the art from the disclosure provided herein, the emitter casing 208 and the detector casing 210 may house one or more other components such as one or more other electrical components as appropriate. For example, the detector casing 210 may include one or more wires. In another embodiment, the detector casing 210 houses one or more electrical shielding components which provide enhanced signal noise protection for the relatively sensitive detector signals.


Additional Advantages



FIG. 11 illustrates a disposable sensor highlighting issues relating to sensor positioning. Generally, when applying the sensor of FIG. 11, a caregivers will split the center portion between the emitter and detector around, for example, a finger or toe. This may not be ideal, because as shown, it places the emitter 174 and detector 176 in a position where the optical alignment may be slightly or significantly off.



FIG. 12 illustrates an embodiment of the disposable component 206 including scoring line 1258. Scoring line 1258 is particularly advantageous, because it aids in quick and proper placement of the sensor on a measurement site 426. Scoring line 1258 lines up with the tip of a fingernail or toenail in at least some embodiments, using those body parts as the measurement site. FIG. 12 also illustrates the disposable component 206 where the distance between the windows 944, 946 is purposefully off center. For example, in an embodiment, the clips 216 and 218 will position the sensor components off center by an approximate 40%-60% split. A scoring line 1258 preferably marks this split, having about 40% of the distance from window 946 to window 944 as the distance between window 946 and the scoring line 1258. This leaves the remaining approximately 60% of the distance between the two windows 944, 946 as the distance between scoring line 1258 and window 944.


Scoring line 1258 preferably lines up with the tip of the nail. The approximately 40% distance sits atop a measurement site 426, such as the figure shown in a generally flat configuration. The remaining approximately 60% of the distance, that from the scoring line 1258 to window 944, curves around the tip of the measurement site 426 and rests on the underside of the measurement site. This allows windows 944, 946—and thus in turn detector 176 and emitter 174—to optically align across measurement site 426. Scoring line 1258 aids in providing a quick and yet typically more precise guide in placing a sensor on a measurement site 426 than previously disclosed sensors. While disclosed with reference to a 40-60 split, the off center positioning may advantageously comprise some other range such as a range from an about 35-about 65% split to an about 45-about 55% split. In a more preferred embodiment, window 944 to scoring line 1258 would comprise a distance of between about 37.5% and about 42.5% of the total distance between window 944 and 946. In the most preferred embodiment, the distance between window 944 and scoring line 1258 would be approximately 40% of the total distance between window 944 and window 946, as is illustrated in FIG. 12. With a general 40%-60% split in this manner, the emitter and detector should align for optimal emission and detection of energy through the measurement site.



FIG. 13 illustrates a disposable sensor containing many of the features discussed in this disclosure such as emitter 1374 and detector 1376. Based on the disclosure herein, one of ordinary skill in the art may advantageously fix the components discussed herein to form a disposable sensor without moving beyond the scope of the present disclosure.


Referring again to FIG. 2, in certain circumstances, it may be desirable to replace one or more portions of the disposable 206 or reusable 204 components of the sensor 102. For example, it may be advantageous to remove the base 214 (e.g., adhesive tape) portion from the disposable component 206, and attach a second base portion to the remaining portions of the disposable portion, such as the first receptacle 216, the second receptacle, and/or the information element (not shown). Such techniques may allow the more durable and/or expensive portions of the disposable component to be reused, reducing costs.


As such, in certain embodiments, a method of assembling a disposable attachment component of a non-invasive optical sensor is provided. The method can include providing a disposable attachment component of a non-invasive optical sensor, the disposable attachment component comprising a first flexible tape portion and at least one receptacle supported by the first flexible tape portion and for receiving at least one housing of a reusable component of the sensor. The reusable component can include at least one energy emitter and at least one detector capable of detecting energy attenuated by body tissue and capable of outputting a signal usable to determine one or more physiological characteristics of the body tissue.


The method may further include separating the first flexible tape portion from the at least one receptacle. For example, referring to FIG. 2, the base portion 214 may be cut, peeled, or otherwise separated from the remaining portion or portions of the sensor 206, such as the receptacles 216, 220.


In some embodiments, the method includes attaching a second flexible tape portion to the at least one housing such that the first flexible tape portion supports the at least one housing of the reusable component in a manner substantially similar to the manner in which the first flexible tape portion supported the reusable component. For example, referring to FIG. 2, a second base portion (not shown) may be adhered to or otherwise coupled to the receptacles 216, 220. The second base portion may be substantially similar in structure and/or function to the base portion 214, for example. Such a technique provides a re-assembled disposable component of the sensor having one or more replaced components and one or more existing components.


The first and second flexible tape portions may comprise a first aperture and a second aperture, and the method can further comprise attaching the second flexible tape portion such that the energy emitted from the at least one energy emitter passes through the first aperture and energy attenuated by body tissue passes through the second aperture.


In embodiments including an information element, it may also be desirable to update and/or replace the information element in addition to replacing the tape portion. For example, the disposable attachment component may further comprise at least one information component, which may be any of the information elements discussed herein, and can store compatibility information, use information, and the like. The method can further include separating the first flexible tape portion from the at least one information element. In various embodiments, the information element resides in, or is otherwise physically associated with one or more of the receptacles (e.g., the receptacles 216, 220 of FIG. 2, or may alternatively be physically separate from the receptacles.


In embodiments where the information element is updated, and not replaced, for example, the method can further include attaching the second flexible tape portion to the at least one information element and modifying at least a portion of memory content of the information element. For example, memory locations storing use information, compatibility information, or the like, may be modified.


Where the information element is replaced, for example, the method can include determining at least a portion of memory contents of at least one first information element, separating the first flexible tape portion from the at least one first information element, and updating a portion of memory contents of at least one second information element in response to the at least a portion of the memory contents of the at least one first information element. For example, use or compatibility information may be transferred from the first information element to the second information element. The method can further include attaching the second flexible tape portion to the at least one second information element, producing a re-assembled disposable component.


Although the sensor disclosed herein with reference to preferred embodiments, the disclosure is not intended to be limited thereby. Rather, a skilled artisan will recognize from the disclosure herein a wide number of alternatives for the sensor. For example, the emitter and detector locations may be in the opposite housings from what was discussed here. It is also possible that the assembly/disassembly clip and sensor clip would be reversed in relation to the casings into which they clip. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present disclosure is not intended to be limited by the reaction of the preferred embodiments, but is to be defined by reference to the appended claims.


Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was explicitly incorporated.

Claims
  • 1. A reusable component of a noninvasive optical sensor, the reusable component comprising: a first housing that houses an emitter or a detector and includes a locking feature;a second housing that houses another of the emitter or the detector and includes an opening in a surface of the second housing that extends across at least a portion of the surface of the second housing;an electrical contact accessible through the opening in the surface of the second housing, wherein the electrical contact is configured to contact a prong extending from a disposable attachment component of the noninvasive optical sensor; anda flexible connector that connects the first housing to the second housing, wherein the flexible connector is configured, in response to mating the reusable component with the disposable attachment component and applying the noninvasive optical sensor to a tissue site of a patient, to cause the locking feature of the first housing to engage with a corresponding locking feature of the disposable attachment component by sliding of the first housing within a receptacle of the disposable attachment component.
  • 2. The reusable component of claim 1, wherein applying the noninvasive optical sensor to the tissue site of the patient comprises at least partially wrapping the noninvasive optical sensor around the tissue site of the patient and flexing the flexible connector.
  • 3. The reusable component of claim 2, wherein the flexible connector is further configured to cause the locking feature of the first housing to un-engage with the corresponding locking feature of the disposable attachment component in response to the noninvasive optical sensor being removed from the tissue site of the patient.
  • 4. The reusable component of claim 3, wherein the flexible connector is further configured to un-flex in response to the noninvasive optical sensor being removed from the tissue site.
  • 5. The reusable component of claim 4, wherein removing the noninvasive optical sensor from the tissue site of the patient comprises at least partially un-wrapping the noninvasive optical sensor from around the tissue site of the patient.
  • 6. The reusable component of claim 5, wherein the tissue site of the patient comprises a finger or toe of the patient.
  • 7. The reusable component of claim 1, wherein the flexible connector is further configured, further in response to applying the noninvasive optical sensor to the tissue site of the patient, to cause the disposable attachment component to align at least one of the emitter and the detector on opposing sides of the tissue site.
  • 8. The reusable component of claim 1, wherein the opening in the surface of the second housing extends across at least portions of a front surface and a bottom surface of the second housing.
  • 9. A method of using the reusable component of claim 1, comprising: mating the reusable component with the disposable attachment component;attaching the disposable attachment component having the first and second housings mated thereto to a patient such that the disposable attachment component is wrapped around a tissue site of the patient; andactivating the emitter to emit energy into the tissue site.
  • 10. A noninvasive optical sensor comprising: a reusable component including: a first housing that houses an emitter or a detector and includes a locking feature;a second housing that houses another of the emitter or the detector and includes an opening in a surface of the second housing that extends across at least a portion of the surface of the second housing;an electrical contact accessible through the opening in the surface of the second housing; anda flexible connector that connects the first housing to the second housing; anda disposable component including: a first receptacle configured to receive the first housing;a second receptacle configured to receive the second housing, wherein the second receptacle includes a prong configured to contact the electrical contact of the second housing through the opening in the surface of the second housing; anda corresponding locking feature, wherein the flexible connector of the reusable component is configured to engage the locking feature of the first housing with the corresponding locking feature via sliding of the first housing within the first receptacle in response to mating the reusable component with the disposable component and applying the noninvasive optical sensor to a tissue site of a patient.
  • 11. The noninvasive optical sensor of claim 10, wherein applying the noninvasive optical sensor to the tissue site of the patient comprises at least partially wrapping the noninvasive optical sensor around the tissue site of the patient and flexing the flexible connector.
  • 12. The noninvasive optical sensor of claim 11, wherein the flexible connector is further configured to un-engage the locking feature of the first housing with the corresponding locking feature of the disposable component in response to the noninvasive optical sensor being removed from the tissue site of the patient.
  • 13. The noninvasive optical sensor of claim 12, wherein the flexible connector is further configured to un-flex in response to the noninvasive optical sensor being removed from the tissue site.
  • 14. The noninvasive optical sensor of claim 13, wherein removing the noninvasive optical sensor from the tissue site of the patient comprises at least partially un-wrapping the noninvasive optical sensor from around the tissue site of the patient.
  • 15. The noninvasive optical sensor of claim 14, wherein the tissue site of the patient comprises a finger or toe of the patient.
  • 16. The noninvasive optical sensor of claim 10, wherein the flexible connector is further configured, further in response to applying the noninvasive optical sensor to the tissue site of the patient, to cause at least one of the first and second receptacles of the disposable component to align the emitter and the detector on opposing sides of the tissue site.
  • 17. The noninvasive optical sensor of claim 10, wherein the prong comprises an electrically conductive protrusion configured to extend at least partially into the opening in the surface of the second housing in response to engaging the second housing with the second receptacle.
  • 18. The noninvasive optical sensor of claim 10, wherein the opening in the surface of the second housing extends across at least portions of a front surface and a bottom surface of the second housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/828,784, filed Aug. 18, 2015, which is a continuation of U.S. patent application Ser. No. 14/066,529, filed Oct. 29, 2013, which is a continuation of U.S. patent application Ser. No. 12/829,276, filed Jul. 1, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/606,455, filed Nov. 29, 2006, and also claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/222,450, filed Jul. 1, 2009. The disclosures of each of the priority applications are incorporated by reference herein. Additionally, this application relates to U.S. Pat. No. 6,920,345, issued Jul. 19, 2005, U.S. Pat. No. 7,225,007, issued May 29, 2007, U.S. application Ser. No. 11/754,972, filed May 29, 2007, published as U.S. Patent Application Publication No. 2007/0244378, and U.S. application Ser. No. 11/606,455, filed Nov. 29, 2006, published as U.S. Patent Application Publication No. 2007/0123763, the disclosures of which are incorporated in their entirety by reference herein.

US Referenced Citations (908)
Number Name Date Kind
3229823 Hummer Jan 1966 A
3631821 Zachariou Jan 1972 A
4601247 Welch et al. Jul 1986 A
4621643 New, Jr. et al. Nov 1986 A
4685464 Goldberger et al. Aug 1987 A
4700708 New, Jr. et al. Oct 1987 A
4830014 Goodman et al. May 1989 A
4865038 Rich et al. Sep 1989 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5090410 Saper et al. Feb 1992 A
5094240 Muz Mar 1992 A
5158323 Yamamoto et al. Oct 1992 A
5163438 Gordon et al. Nov 1992 A
5170786 Thomas et al. Dec 1992 A
5209230 Swedlow et al. May 1993 A
5249576 Goldberger et al. Oct 1993 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
5437275 Amundsen et al. Aug 1995 A
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5507286 Solenberger Apr 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619992 Guthrie et al. Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5664270 Bell et al. Sep 1997 A
5673693 Solenberger Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5879373 Röper et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5910108 Solenberger Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6014576 Raley Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321000 King Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6381489 Ashibe Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6405910 Infanti et al. Jun 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6585287 Spaulding et al. Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7240803 Stitchick et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8712949 MacNeish, III et al. Apr 2014 B2
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10201298 Al-Ali et al. Feb 2019 B2
20010029325 Parker Oct 2001 A1
20010045532 Schulz et al. Nov 2001 A1
20020156353 Larson Oct 2002 A1
20030009092 Parker Jan 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20050145588 Stitchick et al. Jul 2005 A1
20050184895 Petersen et al. Aug 2005 A1
20060161054 Reuss et al. Jul 2006 A1
20070282478 Al-Ali et al. Dec 2007 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20110082711 Poeze et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130023743 Al-Ali Jan 2013 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060109 Besko et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140081175 Telfort Mar 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128699 Al-Ali May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
Foreign Referenced Citations (14)
Number Date Country
745306 Mar 2002 AU
2 346 639 Aug 2008 CA
2 366 493 Jan 2012 CA
1 222 894 Jul 2002 EP
1956968 Aug 2008 EP
2374407 Nov 2011 EP
2003-521985 Jul 2003 JP
2004-329406 Nov 2004 JP
5049289 Jul 2012 JP
5575181 Jul 2014 JP
WO 0021433 Apr 2000 WO
WO 0103574 Jan 2001 WO
WO 02089664 Nov 2002 WO
WO 2007064984 Jun 2007 WO
Non-Patent Literature Citations (20)
Entry
European Office Action dated Sep. 27, 2011 in EP Application No. 06 838 888.3.
Extended European Search Report dated Sep. 12, 2011 in EP Application No. 11169443.6.
International Search Report for PCT/US2006/007516, dated Jan. 11, 2007, in 4 pages.
International Search Report, App. No. PCT/US2006/046176 filed Nov. 29, 2006, in 4 pages.
Japanese Office Action dated Dec. 3, 2013 in JP Application No. 2012-120877.
Japanese Office Action dated Feb. 22, 2012 in JP Application No. 2008-543525.
PCT International Search Report, App. No. PCT/US 2006/046176, App. Date: Nov. 29, 2006, 4 pages.
Schmitt, Joseph M.; Zhou, Guan-Xiong; Miller, Justin, Measurement of Blood Hematocrit by Dual-wavelength Near-IR Photoplethysmography, published May 1992, Proc. SPIE vol. 1641, p. 150-161, Physiological Monitoring and Early Detection Diagnostic Methods, Thomas S. Mang; Ed. (SPIE homepage), in 12 pages.
U.S. Appl. No. 16/248,001, Noninvasive Oximetry Optical Sensor Including Disposable and Reusable elements, filed Jan. 15, 2019.
U.S. Pat. No. 6,920,345, Optical Sensor Including Disposable and Reusable Elements, filed Jul. 19, 2005.
U.S. Pat. No. 7,225,007, Optical Sensor Including Disposable and Reusable Elements, filed May 29, 2007.
U.S. Pat. No. 8,244,325, Noninvasive Oximetry Optical Sensor Including Disposable and Reusable Elements, filed Aug. 14, 2012.
U.S. Pat. No. 8,781,549, Noninvasive Oximetry Optical Sensor Including Disposable and Reusable Elements, filed Jul. 15, 2014.
U.S. Pat. No. 9,693,719, Noninvasive Oximetry Optical Sensor Including Disposable and Reusable Elements, filed Jul. 4, 2017.
U.S. Pat. No. 8,233,955, Optical Sensor Including Disposable and Reusable Elements, filed Jul. 31, 2012.
U.S. Pat. No. 8,548,550, Optical Sensor Including Disposable and Reusable Elements, filed Oct. 1, 2013.
U.S. Pat. No. 8,868,150, Optical Sensor Including Disposable and Reusable Elements, filed Oct. 21, 2014.
U.S. Appl. No. 15/642,162, Noninvasive Oximetry Optical Sensor Including Disposable and Reusable Elements, filed Jul. 5, 2017.
U.S. Appl. No. 14/515,943, Optical Sensor Including Disposable and Reusable Elements, filed Oct. 16, 2014.
U.S. Appl. No. 15/377,459, Optical Sensor Including Disposable and Reusable Elements, filed Dec. 13, 2016.
Related Publications (1)
Number Date Country
20180153447 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
61222450 Jul 2009 US
Continuations (3)
Number Date Country
Parent 14828784 Aug 2015 US
Child 15830696 US
Parent 14066529 Oct 2013 US
Child 14828784 US
Parent 12829276 Jul 2010 US
Child 14066529 US
Continuation in Parts (1)
Number Date Country
Parent 11606455 Nov 2006 US
Child 12829276 US