Optical sensor tape

Information

  • Patent Grant
  • 12004877
  • Patent Number
    12,004,877
  • Date Filed
    Wednesday, November 3, 2021
    3 years ago
  • Date Issued
    Tuesday, June 11, 2024
    6 months ago
Abstract
Various sensor tapes can improve securing of a non-invasive optical sensor to a surface of a medium for taking noninvasive measurement of characteristics of the medium. The sensor tape can taper from a wide end to a narrow end. The sensor tape can transition from a wide portion to a narrow portion in a step-like change or slope. The sensor tape can have staggered portions. The various tapes can be used with an L-shaped sensor. The various tapes can increase contact surface between the surface of the medium and an adhesive side of the tape so as to reduce motion-induced noise.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to low-noise optical probes which may be used to sense optical energy passed through a medium to determine the characteristics of the medium.


BACKGROUND

Pulse oximetry—a noninvasive, widely accepted form of oximetry—relies on a sensor attached externally to a patient to output signals indicative of various physiological parameters, such as a patient's constituents or analytes, including, for example, oxygen saturation (SpO2), hemoglobin (Hb), blood pressure (BP), pulse rate (PR), perfusion index (PI), Pleth Variable Index (PVI), carbon monoxide saturation (HbCO), methemoglobin saturation (HbMet), fractional saturations, total hematocrit, billirubins, or the like. As such a pulse oximeter is one of a variety of patient monitors that help provide monitoring of a patient's physiological characteristics.


Pulse oximeters are available from Masimo Corporation (“Masimo”) of Irvine, California. Moreover, some exemplary portable and other oximeters are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952, and 5,769,785, which are owned by Masimo, and are incorporated by reference herein. Such oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.


SUMMARY

A pulse oximeter sensor generally includes one or more energy emission devices, such as specific wavelength emitting light emitting diodes (“LED”), and one or more energy detection devices. The sensor is generally attached to a measurement site such as a patient's finger, toe, ear, ankle, or the like. An attachment mechanism positions the emitters and detector, collectively called an optical probe, proximal to the measurement site such that the emitters project energy into the tissue, blood vessels, and capillaries of the measurement site, which in turn attenuate the energy. The detector then detects that attenuated energy. The detector communicates at least one signal indicative of the detected attenuated energy to one or more digital signal processors, for calculating, among other things, one or more physiological parameters of the measurement site.


The present disclosure discloses an improved sensor tape for securing a non-invasive optical sensor, such as a pulse oximeter sensor, to a surface of a medium for taking noninvasive measurement of characteristics of the medium. The sensor tapes of the present disclosure can increase contact surface between the surface of the medium and an adhesive side of the tape in order to increase tape adhesion to the medium and to reduce motion-induced noise. The sensor tapes of the present disclosure can be disposable and lost cost. The sensor tapes of the present disclosure can also be manufactured in a manner that maximizes the amount of material used so as to keep material cost low.


One type of disposable sensor uses an “L”-shaped configuration. This type of configuration is generally used for infant patients so that the sensor can be used in a variety of measurement sites on the infant. As the tape is applied to the patient, the tape is often wound around a patient measurement site and later portions of the tape are adhered to the back of previous portions of the tape. Although the present disclosure is described mainly with respect to an L-shaped tape sensor, the embodiments of sensor tapes in this disclosure are not limited to being used with an L-shaped sensor, but are applicable to any type of sensor shapes and configurations.


In some embodiments, a sensor tape for securing a non-invasive optical sensor to a surface of a medium for taking physiological measurements is disclosed. The sensor tape can comprise a first end with a first width, a second end with a second width, the second width greater than the first width, and a flexible tape portion between the first and second ends, the tape portion including an adhesive surface and a non-adhesive surface. The sensor tape can be tapered such that a width of the tape decreases gradually from the second end to the first end. The sensor tape can further comprise a first portion and a second portion, the first portion having a width substantially the same as the first width, the second portion having a width substantially the same as the second width. The first portion can transition to the second portion in a step-like change. The sensor tape can comprise a sloped transition between the first portion and the second portion. The first and second portions can have substantially the same length.


In some embodiments, a sensor assembly for measuring characteristics of the medium is disclosed. The sensor assembly can comprise a sensor having a detector arm and a connector arm, the detector arm and the connector arm forming an L-shape, and a sensor tape configured to position and secure the sensor to a surface of the medium, the sensor tape having a first end with a first width, a second end with a second width, the second width greater than the first width, the sensor tape further having a flexible tape portion between the first and second ends, the tape portion having an adhesive surface and a non-adhesive surface, and the sensor tape substantially covering the detector arm. The detector arm can comprise an emitter and a detector. The second end of the sensor tape can be closer to the sensor than the first end of the sensor tape. The first end of the sensor tape is closer to the sensor than the second end of the sensor tape. The sensor tape can be tapered such that a width of the tape decreases gradually from the second end to the first end. The sensor tape can further comprise a first portion and a second portion, the first portion having a width substantially the same as the first width, the second portion having a width substantially the same as the second width. The first portion can transition to the second portion in a step-like change. The sensor tape can comprise a sloped transition between the first portion and the second portion. The first and second portions can have substantially the same length.


In some embodiments, a sensor tape for positioning and securing a noninvasive L-shaped sensor to a surface of a medium for measuring characteristics of the medium is disclosed, the L-shaped sensor comprising a detector arm and a connector arm, the detector and connector arms being perpendicular to each other and forming a substantially L-shape, the detector arm comprising an optical emitter and an optical detector. The sensor assembly can comprise a first portion of flexible tape having an adhesive surface and a non-adhesive surface, the first portion having first and second ends, the adhesive surface of the first portion configured to cover the detector arm of the L-shaped sensor and attach to a measurement site, the first portion configured to be substantially parallel to the detector arm; and a second portion of flexible tape having an adhesive surface and a non-adhesive surface, the second portion having first and second ends, the adhesive surface of the second portion configured to attach to a measurement site; wherein the first end of the first portion is connected to the second portion between the first and second ends of the second portion such that the first and second portions are configured to independently wrap around a measurement site. The optical emitter of the detector arm can be configured to be at or near the first end of the first portion and the optical detector is configured to be between the first and second ends of the first portion. The first portion can be longer than the second portion such that the second end of the first portion extends beyond the second end of the second portion. The first and second portions can form an integral piece of sensor tape. The second portion can be configured to cover a portion of the connector arm of the L-shaped sensor. The first and second portions can be mechanically decoupled. The sensor tape can be configured to be placed across a joint of a digit such that the first and second portions are placed on opposite sides of the joint.


All of these embodiments are intended to be within the scope of the disclosure herein. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the disclosure not being limited to any particular disclosed embodiment(s).





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure are described with reference to the drawings of certain embodiments, which are intended to schematically illustrate certain embodiments and not to limit the disclosure.



FIG. 1 illustrates a perspective view of an embodiment of a patient monitor system according to the disclosure.



FIG. 2 illustrates a top view of an embodiment of a sensor assembly including an L-shaped sensor and a sensor tape.



FIG. 3 illustrates a top view of an embodiment of a sensor tape.



FIG. 4A illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 3.



FIG. 4B illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 3.



FIG. 5A illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 3.



FIG. 5B illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 3.



FIG. 6 illustrates a top view of an embodiment of a sensor tape.



FIG. 7A illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 6.



FIG. 7B illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 6.



FIG. 8A illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 6.



FIG. 8B illustrates a top view of an embodiment of a sensor assembly including the L-shaped sensor of FIG. 2 and the sensor tape of FIG. 6.



FIG. 9 illustrates a top view of an embodiment of a sensor tape.



FIGS. 10A-B illustrate top and back perspective views of an embodiment of a sensor assembly including an L-shaped sensor and the sensor tape of FIG. 9.



FIG. 10C illustrates a top view of an embodiment of a sensor assembly including an L-shaped sensor and the sensor tape of FIG. 9.



FIGS. 11A-B illustrate top and front perspective views of an embodiment of the sensor assembly of FIGS. 10A-B connected to a sensor cable.



FIG. 12 illustrates a top view of an embodiment of a sensor tape.



FIGS. 13A-B illustrate top and back perspective views of an embodiment of a sensor assembly including an L-shaped sensor and the sensor tape of FIG. 12.



FIG. 13C illustrates a top view of an embodiment of a sensor assembly including an L-shaped sensor and the sensor tape of FIG. 12.



FIGS. 14A-B illustrate top and front perspective views of an embodiment of the sensor assembly of FIGS. 13A-B connected to a sensor cable.



FIG. 15 illustrates a top view of an embodiment of a sensor assembly including an L-shaped sensor and a two-piece staggered sensor tape.



FIGS. 16A-C illustrate methods of manufacturing the sensor tapes of FIGS. 3, 6, and 9.





DETAILED DESCRIPTION

Although certain embodiments and examples are described below, those of skill in the art will appreciate that the disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the disclosure herein disclosed should not be limited by any particular embodiments described below.


Turning to FIG. 1, an embodiment of a multi-parameter patient monitor system 1 is illustrated. The patient monitor system 1 includes a patient monitor 12 attached to a sensor 16 by a cable 14. The sensor can monitor various physiological data of a patient and send signals indicative of the parameters to the patient monitor 12 for processing. The patient monitor can include a display 18 that is capable of displaying readings of various monitored patient parameters, including one or more graphs. The display 18 may be a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma screen, a Light Emitting Diode (LED) screen, Organic Light Emitting Diode (OLED) screen, or any other suitable display. The patient monitor system 1 may monitor oxygen saturation (SpO2), perfusion index (PI), pulse rate (PR), hemoglobin count, and other parameters described above. Typically, the patient monitor 12 can also include user control interfaces and a speaker for audible alerts. The patient monitor 12 can also include inputs from other devices, such as, an EKG machine, an ECG machine, a respirator, a ventilator, a blood pressure monitor, a capnograph, combinations of the same, or the like. The sensor 16 can be attached to a measurement site with an attachment mechanism. Non-limiting examples of a measurement site can include a fingertip, arm, leg, or foot of a patient, such as a neonatal patient. The attachment mechanism can be disposable, including, for example, adhesive tapes, hook and loop, magnets or other disposable attachments as described herein.



FIG. 2 shows a top view of an embodiment of a sensor assembly 10 including an L-shaped sensor 100 and a sensor tape 200. The sensor 100 can have a detector arm 110 and a connector arm 120 forming a substantially L-shape. The detector arm 110 can have a free end 112 on and a fixed end 114. The detector arm 110 can have a detector 113 at or near the free end 112. The detector arm 110 can have an emitter 124 at or near the fixed end 114. The emitter 124 can be located anywhere between the free and fixed ends 112, 114. The detector 113 and the emitter 124 locations can be swapped so that the emitter 124 is located at or near the free end 112 and the detector 113 is located at or near the fixed end 114. The detector 112 and the fixed end 114 can be connected by a neck portion 116. The neck portion 116 may vary in length depending on the patient's anatomy so that the detector 112 and an emitter 124 can be positioned on opposite sides of the patient's anatomy. In some embodiments, the emitter 124 can include one or more LEDs. In some embodiments, the detector 112 can include one or more photodetectors. The fixed end 114 can be connected to the connector arm 120. The connector arm 120 can have a cable connector 123 on a free end 122. The connector arm 120 can have a fixed end 125 opposite the free end 122 along a length of the connector arm 120 for connecting to the fixed end 114 of the detector arm 110. The connector arm 120 can also include a flexible foam strip 126 extending between the cable connector 123 and the emitter 124. The cable connector 122, the emitter 124, and the detector 112 can be electrically connected to form a portion of an electrical circuit. The flexible foam strip 126 can protect the electrical circuit. The electrical circuit can be configured to attach to other electrical components, such as a resistor and/or an electrically erasable programmable read-only memory (“EEPROM”), which are not shown in the figures for clarity. The cable connector 123 can be operably coupled to a sensor cable (see FIGS. 11A-B and 14A-B), which can be plugged into a variety of patient monitors, such as the patient monitor 12 of FIG. 1, or pulse oximeters or any other multi-parameter monitors for providing noninvasive physiological measurements. Methods of manufacturing the L-shaped sensor is not limiting. In some embodiments, the L-shaped sensor 100 can be manufactured as a straight arm and be folded into the L-shape. In other embodiments, the fixed end 114 of the detector arm 110 and the fixed end 125 of the connector arm 120 can be attached mechanically, welded or affixed using adhesives. Additional details regarding the L-shaped sensor and other features can be found in U.S. application Ser. No. 15/017,505, filed Feb. 5, 2016, which is hereby incorporated by reference in its entirety and should be considered a part of this specification. The L-shaped sensor can be used for infant patients as the flexible connector arm 120 can give a caregiver more flexibility for connecting the sensor to various locations on an infant or neonatal patient. Although the present disclosure is described mainly with reference to the L-shaped sensor, the embodiments of sensor tapes described herein are not limited to being used with an L-shaped sensor, but are applicable to any suitable type of sensors. For example, the tapes disclosed herein can be used for securing sensors onto a fingertip or arm of an adult patient.


With continued reference to FIG. 2, the sensor tape 200 can cover the detector arm 110 of the L-shaped sensor 100. The sensor tape 200 can have a sensor end 202 and a free end 204. The sensor end 202 can be proximate the emitter 124. The sensor tape 200 can extend along a length of the detector arm 110, past the detector 113, and terminate at the free end 204. The sensor tape 200 can be substantially longer than the detector arm 110 so as to wrap around the patient's anatomy in more than one loop. The length of the sensor tape 200 can depend on the dimension of the patient's anatomy to which the sensor tape 200 can be applied. The sensor tape 200 can have an adhesive side 206 and a non-adhesive side 208. Materials for making the adhesive side 206 and the non-adhesive side 208 are not limiting. In some embodiments, the detector arm 110 can be sandwiched between the adhesive side 206 and the non-adhesive side 208. In some embodiments, the detector arm 110 can be positioned beneath or immediately adjacent to the adhesive side 206. The sensor tape 200 can have a rectangular shape with a substantially uniform first width and a length. During use, the neck portion 116 of the detector arm can be wrapped around a patient's anatomy, such as a foot, a hand, a finger, or a toe, so that the emitter 124 and the detector 112 are on opposite sides of the patient's anatomy. For example, the emitter 124 can be on a patient's palm and the detector 112 can be on a back of the same hand opposite the emitter 124. After the emitter 124 and the detector 112 have been positioned, the sensor tape 200 can continue to be wrapped around the patient's anatomy from the sensor end 202 to the free end 204. An initial length of the adhesive side 206 of the sensor tape 200 can directly contact the patient's skin, resulting in a contact area. After the sensor tape 200 has made one loop around the patient's anatomy, a remaining length of the adhesive side 206 of the sensor tape 200 can contact substantially the non-adhesive side 208 of the tape instead of the patient's skin. The sensor tape 200 advantageously reduces motion-induced noise by firmly positioning and securing the emitter 124 and the detector 112 to the patient's skin, thereby minimizing movements of the sensor 100 relative to the patient due to patient's movement. Bonding formed between the remaining length of the adhesive side 206 and the non-adhesive side 208 can prevent the sensor tape 200 from loosening, thereby facilitating the secure attachment of the sensor tape 200 with the emitter 124 and the detector 113 to the patient at or near the measurement site. The L-shaped sensor 100 is typically attached to the measurement site such that the connector arm 120 extends along the patient's anatomy, such as the patient's finger, hand, toe, foot, arm, or leg. The patient's anatomy can provide support to the connector arm 120 or protect the connector arm 120 from being pulled during use of the sensor. In some instances, the caregiver or user can attach the L-shaped sensor 100 to the measurement site such that the connector arm 120 extends away from the patient's anatomy. In these instances, the connector arm 120 can be tangling from the measurement site and prone to pulling. Pulling on the connector arm 120 can cause the sensor 100 and the sensor tape 200 be yanked away from the patient's skin.


Various embodiments of sensor tapes that can improve securement of the L-shaped sensor 100 to the measurement site will now be described. The improved sensor tapes described herein can minimize or eliminate sliding between the detector arm 110 of the sensor 100 and the patient's skin during use of the sensor 100. The sliding can be caused by the patient's movement or due to pulling on the connector arm 120 or the sensor cable. The improved sensor tapes described herein can provide sufficient bonding between the tape and the patient's skin such that even when the L-shaped sensor 100 is attached with the connector arm 120 extending away from the patient's anatomy, the improved sensor tape and the sensor 100 can stay attached to the patient's skin.


Tapered Sensor Tapes



FIG. 3 shows a top view of a tapered sensor tape 300. The sensor tape 300 can have features of the sensor tape 200 except as described below. Accordingly, features of the sensor tape 300 can be incorporated into features of the sensor tape 200 and features of the sensor tape 200 can be incorporated into features of the sensor tape 300. The sensor tape 300 can have a first end 302 and a second end 304. The sensor tape 300 can have a first width at the first end 302. The sensor tape 300 can have a second width at the second end 304. As shown in FIG. 3, the second width is greater than the first width. The first width of the sensor tape 300 can be substantially the same as the first width of the sensor tape 200 as shown in FIG. 2. Accordingly, the sensor tape 300 tapers, for example, gradually tapers, from the second end 304 to the first end 302. The geometry between the first end 302 and second end 304 is not limiting. For example, the sensor tape 300 can have wavy edges instead of straight edges on any of the four sides. The sensor tape 300 can also have an adhesive side 306 and a non-adhesive side 308.



FIGS. 4A-B illustrate embodiments of sensor assembly 20, 25 including the L-shaped sensor 100 and the tapered sensor tape 300. As shown in FIGS. 4A-B, the second end 304 of the sensor tape 300 can be proximate the emitter 124. The sensor tap 300 can extend along a length of the detector arm 110, past the detector 113, and terminate at the first end 302. The sensor tape 300 can be substantially parallel to the detector arm 110. The second width and a length of the sensor tape 300 are sufficient to cover the detector arm 110. The sensor tape 300 can be substantially longer than the length of the detector arm 110. In FIG. 4A, the tapered side 310 of the sensor tape 300 can be closer to the connector arm 120 than the non-tapered opposite side. In FIG. 4B, the tapered side 310 can be further away from the connector arm 120 than the non-tapered opposite side. During use, the sensor tape 300 can be wrapped around the patient's anatomy from the second end 304 to the first end 302. An initial length of the adhesive side 306 of the sensor tape 300 can directly contact the patient's skin, resulting in a contact area. The contact area between the sensor tape 300 and the patient's skin is greater than the contact area between the sensor tape 200 and the patient's skin, because the sensor tape 300 is wider near the fixed end 114 of the detector arm 110 of the sensor 100 in the sensor assembly 20, 25 than the sensor tape 200 in the sensor assembly 10. The sensor tape 300 in the sensor assembly 20, 25 can advantageously provide greater contact area and thus better securement between the sensor assembly and the patient's skin, thereby further minimizing movements of the sensor 100 relative to the patient's skin. Further, as described above, after the sensor tape 300 has made one loop around the patient's anatomy, a remaining length of the adhesive side 306 can contact substantially the non-adhesive side 308 of the tape instead of the patient's skin. Accordingly, the sensor tape 300 can provide better securement of the L-shaped sensor 100 by providing a greater contact area between the adhesive side 306 of the sensor tape 300 with the patient skin than the sensor tape 200, but without requiring a significant increase in use of tape materials due to the tapering of the sensor tape 300.



FIGS. 5A-B illustrate embodiments of sensor assembly 30, 35 including the L-shaped sensor 100 and the tapered sensor tape 300. As show in FIGS. 5A-B, the first end 302 of the sensor tape 300 can be proximate the emitter 124. The sensor tape 300 can extend along a length of the detector arm 110, past the detector 112, and terminate at the second end 304. The sensor tape 300 can be substantially parallel to the detector arm 110. The first width of the sensor tape 300 can be sufficient to cover the detector arm 110. In FIG. 5A, the tapered side 310 of the sensor tape 300 can be closer to the connector arm 120 than the non-tapered opposite side. In FIG. 5B, the tapered side 310 can be further away from the connector arm 120 than the non-tapered opposite side. During use, after the sensor tape 300 has made a first loop around the patient's anatomy, a remaining length of the adhesive side 306 can contact partially the non-adhesive side 308 of the first loop and partially the patient's skin because the sensor tape 300 becomes increasing wider from the fixed end 114 to the free end 112 of the detector arm 110. Specifically, the sensor tape 300 is narrower near the emitter 124 and gradually widens toward the detector 112. As a result, after each loop of the sensor tape 300 around the patient's anatomy, the adhesive side 306 of the sensor tape 300 is wider than the non-adhesive side 308 of the previous loop. The wider adhesive side 306 can then contact the skin not covered by the non-adhesive side 308 of the previous loop. The total contact area between the sensor tape 300 of the sensor assembly 30, 35 and the patient's skin is thus higher than the contact area between the sensor tape 200 and the patient's skin. In addition, the narrow first end 302 of the tape 300 can be easier to place on the finger to align the emitter 124 and the detector 113 before the wider second end 304 can wrap the detector arm 110 and the narrower part of the sensor tape 300 in place. The wider second end 304 can attach a portion of the connector arm 120 to the patient's skin. The sensor assembly 30, 35 can therefore better position and secure the sensor 100 to the patient's skin than the sensor tape 200, while not requiring a significant increase in use of tape materials due to the tapering of the sensor tape 300.


Stepped Sensor Tapes



FIG. 6 illustrates a top view of a stepped sensor tape 400. The sensor tape 400 can have features of the sensor tapes 200, 300 except as described below. Accordingly, features of the sensor tape 400 can be incorporated into features of the sensor tapes 200, 300 and features of the sensor tapes 200, 300 can be incorporated into features of the sensor tape 400. The sensor tape 400 can have a first end 402 and a second end 404. The sensor tape 400 can have a first width at the first end 402. The sensor tape 400 can have a second width at the second end 404. As show in FIG. 6, the second width is greater than the first width. The first width of the sensor tape 400 can be substantially the same as the first widths of the sensor tapes 200, 300. The sensor tape 400 can transition from the first width to the second width in a step-like change 410. The step-like transition 410 can be at a location between the first end 402 and the second end 404. The step-like transition 410 can separate the sensor tape 400 into a first portion 412 and a second portion 414. The exact geometries of the first portion 412 and the second portion 414 are not limiting. For example, at least one of the first portion 412 and the second portion 414 can have wavy edges on any sides. The step-like change 410 can be on one side or both sides along the length of the sensor tape 400. The sensor tape 400 can have an adhesive side 406 and a non-adhesive side 408.



FIGS. 7A-B illustrate embodiments of sensor assembly 40, 45 including the L-shaped sensor 100 and the stepped sensor tape 400. As shown in FIGS. 7A-B, the second end 404 of the sensor tape 400 can be proximate the emitter 124. The sensor tap 400 can extend along a length of the detector arm 110, past the detector 113, and terminate at the first end 402. The sensor tape 400 can be substantially parallel to the detector arm 110. The second width and a length of the sensor tape 400 can be sufficient to cover the detector arm 110. In FIG. 7A, the step-like transition 410 of the sensor tape 400 can be closer to the connector arm 120 than the opposite side without the step-like transition. In FIG. 7B, the step-like transition 410 can be further away from the connector arm 120 than the opposite side without the step-like transition. During use, the sensor tape 400 can then be wrapped around the patient's anatomy from the second end 404 to the first end 402. An initial length of the adhesive side 406 of the sensor tape 400, which can include the second portion 414, can directly contact the patient's skin, resulting in a contact area. The contact area between the adhesive side 406 of the sensor tape 400 and the patient's skin is greater than the contact area between the sensor tape 200 and the patient's skin. This is because the sensor tape 400 is wider near the fixed end 114 of the detector arm 110 of the sensor 100 in the sensor assembly 40, 45 than the sensor tape 200 in the sensor assembly 10. The sensor tape 400 in the sensor assembly 40 can advantageously provide greater contact area and thus better securement between the sensor assembly and the patient's skin, thereby minimizing movements of the sensor 100 relative to the patient's skin. Further, after the second portion 414 of the sensor tape 400 has made a first loop around the patient's anatomy, a remaining length of the adhesive side 406 can contact substantially the non-adhesive side 408 of the first loop instead of the patient's skin. The contact between the remaining length of the adhesive side 406 with the non-adhesive side 408 of the first loop can prevent the sensor tape 400 from loosening. Accordingly, the sensor tape 400 of the sensor assembly 40, 45 can provide better securement of the L-shaped sensor 100 by providing a greater contact area between the adhesive side 406 of the sensor tape 400 with the patient skin than the sensor tape 200, but without requiring a significant increase in use of tape materials due to the first portion 412 being narrower than the second portion 414.



FIGS. 8A-B illustrate embodiments of a sensor assembly 50, 55 including the L-shaped sensor 100 and the stepped sensor tape 400. As show in FIGS. 8A-B, the first end 402 of the sensor tape 400 can be proximate the emitter 124. The sensor tape 400 can extend along a length of the detector arm 110, past the detector 113, and terminate at the second end 404. The sensor tape 400 can be substantially parallel to the detector arm 110. The first width of the sensor tape 400 can be sufficient to cover the detector arm 110. In FIG. 8A, the step-like transition 410 of the sensor tape 400 can be closer to the connector arm 120 than the opposite side without the step-like transition. In FIG. 8B, the step-like transition 410 can be further away from the connector arm 120 than the opposite side without the step-like transition. During use, after the narrow first portion 412 of the sensor tape 400 runs out, the adhesive side 406 of the wide second portion 414 can contact partially the non-adhesive side 408 of the narrow first portion 412 and partially the patient's skin not covered by the non-adhesive side 408 of the narrow first portion 412. The total contact area between the sensor tape 400 of the sensor assembly 50, 55 and the patient's skin is higher than the contact area between the sensor tape 200 and the patient's skin. In addition, the narrow first portion 412 can be easier to place on the finger to align the emitter 124 and the detector 113 before the wider second portion 414 can wrap the detector arm 110 and the narrow first portion 412 in place. The wider second portion 414 can attach a portion of the connector arm 120 to the patient's skin. The sensor assembly 50, 55 can therefore better secure the sensor 100 to the patient's skin than the sensor tape 200 and without requiring a significant increase in use of tape materials due to the first portion 412 of the sensor tape 400 of being narrower than the second portion 414.


In some embodiments, the first portion 412 and the second portion 414 of the sensor tape 400 can have substantially equal lengths. In some embodiments, the first portion 412 and the second portion 414 can have different lengths. Ratio of the respective lengths of the first portion 412 and the second portion 414 is not limiting. For example, the first portion 412 can have a length sufficient for making at least one loop around a patient's anatomy. The second portion 414 can have a length sufficient for making at least one loop around a patient's anatomy.


Sloped Sensor Tapes



FIG. 9 illustrates a top view of a sloped sensor tape 500. The sensor tape 500 can have features of the sensor tapes 200, 300, 400 except as described below. Accordingly, features of the sensor tape 500 can be incorporated into features of the sensor tapes 200, 300, 400 and features of the sensor tapes 200, 300, 400 can be incorporated into features of the sensor tape 500. The sensor tape 500 can have a first end 502 and a second end 504. The sensor tape 500 can have a first width at the first end 502. The sensor tape 500 can have a second width at the second end 504. As show in FIG. 9, the second width is greater than the first width. The first width of the sensor tape 500 can be substantially the same as the first widths of the sensor tapes 200, 300, 400. The sensor tape 500 can transition from the first width to the second width in a slope 510. The slope 510 can be at a location between the first end 502 and the second end 504. The slope 510 can separate the sensor tape 500 into a first portion 512, a second portion 514, and a transition portion 513. The exact geometries of the first portion 512, the second portion 514, and the transition portion 513 are not limiting. For example, at least one of the first portion 512, the second portion 514, and the transition portion can have wavy edges along any sides. The transition portion 513 can have a straight-line slope or a curved slope. The transition portion 513 can have a slope on one side or both sides along the length of the sensor tape 500. The sensor tape 500 can have an adhesive side 506 and a non-adhesive side 508.


With continued reference to FIG. 9, the non-adhesive side 508 of the sensor tape 500 can have alignment indicators 516, 518. The indicator 516 can be aligned with the emitter 124 of the L-shaped sensor 100. The indicator 518 can be aligned with the detector 113 of the L-shaped sensor 100. The alignment indicators 516, 518 can facilitate accurate placement of the detector arm 110 onto the sensor tape 500. For example, both indicators 516, 518 can be centered along a central axis or midline “A” of the narrower first portion 512, as shown in FIG. 9, or along a central axis or midline of the wider second portion 514. A center of the indicator 516 can be a distance dl from the first end 502 of the sensor tape 500. The alignment indicators 516, 518 can also provide visual aid to a user or a caregiver to ensure that the emitter 124 and the detector 113 are aligned during securement of the sensor 100 to the measurement site with the sensor tape 500.



FIGS. 10A-C illustrate embodiments of a sensor assembly 60, 65 including the L-shaped sensor 100 and the sloped sensor tape 500. FIGS. 11A-B illustrate the sensor assembly 60 including the L-shaped sensor 100 and the sloped sensor tape 500 being connected to a sensor cable 130 at the cable connector 123. As shown in FIGS. 10A-C, the first end 502 of the sensor tape 500 can be proximate the emitter 124. The indicator 516 can be aligned with the emitter 124. The sensor tape 500 can be substantially parallel to the detector arm 110. The sensor tape 500 can extend along the length of the detector arm 110, past the detector 113, and terminate at the second end 504. The first width and a length of the sensor tape 400 can be sufficient to cover the detector arm 110. The indicator 518 can be aligned with the detector 113. In FIGS. 10A-B, the slope 510 of the sensor tape 500 can be closer to the connector arm 120 than the opposite side without the slope. In FIG. 10C, the slope 510 can be further away from the connector arm 120 than the opposite side without the slope. During use, the narrow first portion 512 of the sensor tape 500 can contact the patient's skin at or near the measurement site. As shown in FIGS. 10A-C, the narrow first portion 512 terminates at or near the free end 112 of the detector arm 110. The first portion 512 can cover approximately half a loop around the patient's anatomy. The adhesive side 506 of the increasingly wider transition portion 513 can contact the patient's skin along a portion of or an entire second half of the loop around the patient's anatomy. After the transition portion 513 runs out, the adhesive side 506 of the wider second portion 514 can contact partially the non-adhesive side 508 of the narrow first portion 512 and/or the transition portion 513, and partially the patient's skin not covered by the non-adhesive side 508 of the first portion 512 and/or the transition portion 513. The total contact area between the sensor tape 500 of the sensor assembly 60 and the patient's skin is higher than the contact area between the sensor tape 200 and the patient's skin. In addition, the narrow first portion 512 can be easier to place on the finger to align the emitter 124 and the detector 113 before the wider second portion 514 can wrap the detector arm 110 and the narrow first portion 512 in place. The transition portion 513 and the wider second portion 514 can attach a portion of the connector arm 120 to the patient's skin. The sensor assembly 60 can therefore better secure the sensor 100 to the patient's skin than the sensor tape 200 and without requiring a significant increase in use of tape materials due to the first portion 512 and the transition portion 513 of the sensor tape 500 being narrower than the second portion 514.


The transition portion 513 of the sloped sensor tape 500 can avoid sharp corners of a stepped transition. The transition portion 513 can thus reduce tearing of a sensor tape at or around the sharp corner when applying or removing the sensor tape. As show in FIG. 10B, the detector arm 110 of the sensor 110 is placed beneath or immediately next to the adhesive side 506 of the sensor tape 500. The emitter 124 and the detector 113 can be aligned to the indicators 516, 518 as discussed above to ensure that the detector arm 110 is placed within the boundary of the sensor tape 500. Placing the sensor 100 next to the adhesive side 506 of the sensor tape 500 can allow the sensor and the tape be assembled right before use. The sensor tape 500 can come in a variety of sizes, such as small, medium, and large. The appropriately sized sensor tape 500 can be selected depending on the size of the patient's anatomy. The separability of the sensor tape 500 from the sensor 100 can allow the sensor tape 500 to be disposable so that a new sensor tape 500 with a fresh adhesive side 506 can be used for every measurement site to improve securement of the sensor 100 to the measurement site. The separability of the sensor tape 500 from the sensor 100 can allow the more expensive components, such as the emitter 124, the detector 113, and other electrical components, be reusable. Reusing the more expensive components can reduce cost of replacing the optical sensors.


Similar to the assemblies of the sensor tapes 300, 400 and the L-shaped sensor 100 described above, the sensor tape 500 can be used with the sensor 100 such that the second side 504 is approximate the emitter 124. The indicators can be placed on the second portion 514 and be centered on the central axis or midline of the wider second portion 514.


Staggered Sensor Tapes



FIG. 12 illustrates a top view of a staggered sensor tape 600. The sensor tape 600 can have features of the sensor tapes 200, 300, 400, 500 except as described below. Accordingly, features of the sensor tape 600 can be incorporated into features of the sensor tapes 200, 300, 400, 500 and features of the sensor tapes 200, 300, 400, 500 can be incorporated into features of the sensor tape 600. The sensor tape 600 can have a first portion 612 and a second portion 614. The first and second portions 612, 614 can be cut from the same piece of tape material. The first and second portions 612, 614 can be an integral sensor tape. The first and second portions 612, 614 can be connected at a first end 602 of the second portion 614 such that sections of the two portions are staggered. The first portion 612 can be substantially centered at the first end 602 of the second portion 614 such that one end of the first portion 612 extends beyond the first end 602 of the second portion 614. In other embodiments, the first portion 612 can have about ⅔ of its length extending beyond the first end 602 of the second portion 614 and the remaining about ⅓ of its length aligned with the second portion 614. The length of the first portion 612 that extends beyond the first end 602 of the second portion 614 is not limiting. The first portion 612 can have a first width. The second portion 614 can have a second width. The second portion 614 can have a second end 604 opposite the first end 602 along a length of the second portion 614. The length of the second portion 614 can be greater than a length of the first portion 612. As show in FIG. 12, the second width is greater than the first width. The first and second widths can be substantially the same. The second width can be smaller than the first width. The second width of the sensor tape 600 can be substantially the same as the first widths of the sensor tapes 200, 300, 400, 500. The exact geometries of the first portion 612 and the second portion 614 are not limiting. For example, at least one of the first portion 512 and the second portion 614 can have straight or wavy edges along any sides.


With continued reference to FIG. 12, the sensor tape 600 can have an adhesive side 606 and a non-adhesive side 608. The non-adhesive side 608 of the sensor tape 600 can have alignment indicators 616, 618. The indicator 616 can be aligned with the emitter 124 of the L-shaped sensor 100. The indicator 618 can be aligned with the detector 113 of the L-shaped sensor 100. The alignment indicators 616, 618 can facilitate accurate placement of the detector arm 110 onto the sensor tape 600. For example, both indicators 616, 618 can be centered along a central axis or midline “A” of the wider second portion 614, as shown in FIG. 12, or along a central axis or midline of the narrow first portion 612. A center of the indicator 616 can be a distance dl from the first end 602 of the sensor tape 600. The alignment indicators 616, 618 can also provide visual aid to a user or a caregiver to ensure that the emitter 124 and the detector 113 are aligned during securement of the sensor 100 to the measurement site with the sensor tape 600.



FIGS. 13A-C illustrate embodiments of a sensor assembly 70, 75 including the L-shaped sensor 100 and the staggered sensor tape 600. FIGS. 14A-B illustrate the sensor assembly 70 including the L-shaped sensor 100 and the staggered sensor tape 600 being connected to a sensor cable 130 at the cable connector 123. As shown in FIGS. 13A-C, the first end 602 of the sensor tape 600 can be proximate the emitter 124. The indicator 616 can be aligned with the emitter 124. The sensor tape 600 can extend along the length of the detector arm 110, past the detector 113, and terminate at the second end 604. The sensor tape 600 can be substantially parallel to the detector arm 110. The second width of the sensor tape 600 can be sufficient to cover the detector arm 110. The indicator 618 can be aligned with the detector 113. In FIGS. 13A-B, the first portion 612 of the sensor tape 500 can be closer to the connector arm 120 than the second portion 614. In FIG. 13C, the first portion 612 can be further away from the connector arm 120 than the second portion 614. During use, the wider second portion 614 and the narrow first portion 612 of the sensor tape 600 can each contact the patient's skin at or near the measurement site. The wider second portion 614 and the narrow first portion 612 of the sensor tape 600 can form independent, staggered loops around the patient's anatomy. In addition, the total contact area between the sensor tape 600 of the sensor assembly 70, 75 and the patient's skin is higher than the contact area between the sensor tape 200 and the patient's skin. The sensor assembly 70, 75 can therefore better secure the sensor 100 to the patient's skin than the sensor tape 200 and without requiring a significant increase in use of tape materials due to the first portion 612 of the sensor tape 600 being narrower and/or shorter than the second portion 614. Further, the first portion 612 of the sensor assembly 70 can attach a portion of the connector arm 120 to the patient's skin.


The staggered first and second portion 612, 614 can each form at least a first loop around the patient's anatomy without layer(s) of tape between the first or second portions 612, 614 and the patient's skin. The staggered first and second portion 612, 614 can thus result in even tape surfaces around the patient's anatomy. An even tape surface can provide better securement of the tape to the skin because there is no gap that could sometimes form when the adhesive side of a tape is placed partially over the skin and partially over a non-adhesive side of the previous loop of tape. The staggered first and second portion 612, 614 can also provide a mechanical decoupling along a joint of an appendage, such as a finger. The first and second portions 612, 614 can be placed above and below a joint respectively. The first and second portions 612, 614 can stay securely connected to the patient skin despite small movements of the patient, such as flexing of a finger or a foot, because the first and second portions 612, 614 are not connected along an entire length of the staggered sections. This can allow the finger to bend freely, but still maintain the tape in substantially the same position due to the increased adhesive surface provided by the first portion 612. As show in FIG. 14B, the detector arm 110 of the sensor 110 is placed beneath or immediately next to the adhesive side 606 of the sensor tape 600. The emitter 124 and the detector 113 can be aligned to the indicators 616, 618 respectively as discussed above to ensure that the detector arm 110 is placed within the boundary of the sensor tape 600. Placing the sensor 100 next to the adhesive side 606 of the sensor tape 600 can allow the sensor 100 and the tape 600 be assembled right before use. The sensor tape 600 can come in a variety of sizes, such as small, medium, and large. The appropriately sized sensor tape 600 can be selected depending on the size of the patient's anatomy. The separability of the sensor tape 600 from the sensor 100 can allow the sensor tape 600 be disposable so that a new sensor tape with a fresh adhesive side can be used for every measurement site to improve securement of the sensor to the measurement site. The separability of the sensor tape 600 from the sensor 100 can allow the more expensive components, such as the emitter 124, the detector 113, and other electrical components be reusable. Reusing the more expensive components can reduce cost of replacing the optical sensors.



FIG. 15 illustrates a top view of a sensor assembly 80 including the L-shaped sensor 100 and a staggered sensor tape 700. The sensor tape 700 can have features of the sensor tapes 200, 300, 400, 500, 600 except as described below. Accordingly, features of the sensor tape 700 can be incorporated into features of the sensor tapes 200, 300, 400, 500, 600 and features of the sensor tapes 200, 300, 400, 500, 600 can be incorporated into features of the sensor tape 700. The sensor tape 700 can have a first portion 712 and a second portion 714. The first and second portions 712, 714 of the sensor tape 700 can each have an adhesive side and a non-adhesive side. The non-adhesive side of the second portion can include alignment indicators 716, 718. The second portion 714 can have a first end 702 and a second end 704 opposite the first end 702 along a length of the second portion 714. The first end 702 of the second portion 714 can be proximate the emitter 124. The indicator 716 can be aligned with the emitter 124. The sensor tape 700 can extend along the length of the detector arm 110, past the detector 113, and terminate at the second end 604. The sensor tape 700 can be substantially parallel to the detector arm 110. The indicator 718 can be aligned with the detector 113 of the L-shaped sensor 100. The alignment indicators 716, 718 can have the advantages described above. The first portion 712 can be detached from the second portion 714. The first portion 712 can be placed closer to the cable connector 123 than the second portion 714. The first portion 712 can be generally centered at the connector arm 120. A mid-point of the first portion 712 along a length of the first portion 712 can be offset from a midline along a length of the connector arm 120. The offset can be on the same side of the connector arm 120 as the detector 110 or on the opposite side. The first portion 712 can stabilize a portion of the connector arm 120 to the patient's skin, thereby facilitating the secure attachment of the sensor assembly 80 with the measurement site.


Manufacturing of Sensor Tapes


Certain manufacturing techniques for saving materials will now be described with reference to FIGS. 16A-C. As shown in FIG. 16A, during manufacturing, a top sensor tape 320 and a bottom sensor tape 330 can be cut from a rectangular piece of sensor tape material by a diagonal cut. The first and second ends of the bottom sensor tape 330 can be flipped horizontally in the cut pattern so that the first end 302 of the top sensor tape 320 aligns with the second end 304 of the bottom sensor tape 330 and the second end 304 of the top sensor tape 320 aligns with the first end 302 of the bottom sensor tape 330. As shown in FIG. 16B, during manufacturing, two pieces of the sensor tape 420, 430, each with the first and second portions 412, 414, can be cut from a rectangular piece of sensor tape material by a zig-zag lined cut. This manufacturing technique is especially advantageous if the first and second portions 412, 414 have the same length. The first and second ends of the bottom sensor tape 430 can be flipped in the cut pattern so that the first portion 412 of the top sensor tape 420 aligns with the second portion 414 of the bottom sensor tape 430 and the second portion 414 of the top sensor tape 420 aligns with the first portion 412 of the bottom sensor tape 430. Likewise, as shown in FIG. 16C, during manufacturing, two pieces of the sensor tape 520, 530 can be cut from a rectangular piece of sensor tape material by a zig-zag lined cut, especially if the first and second portions 512, 514 have the same length. The first and second ends of the bottom sensor tape 530 can be flipped in the cut pattern so that the first portion 512 of the top sensor tape 520 aligns with the second portion 514 of the bottom sensor tape 530 and the second portion 514 of the top sensor tape 520 aligns with the first portion 512 of the bottom sensor tape 530. As shown, the sensor tapes 300, 400, 500 can be manufactured with less waste in tape material despite the non-uniform widths of the tapes.


In some embodiments, the sensor assembly 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 can have two layers of sensor tapes instead of only one layer of sensor tape 200, 300, 400, 500, 600, 700. The detector arm 100 can be sandwiched between the two layers of sensor tapes. The tape layer interfacing the detector arm 100 and the patient's skin can have two adhesive sides. The two layers of sensor tapes can have the same or different shapes and/or sizes.


In some embodiments, the sensor assembly 10, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 can optionally include a liner and applicator tape (not shown). The liner can be printed with a variety of designs and/or colors. The liner can be long and wide enough to fit the length of the sensor tape 200, 300, 400, 500, 600, 700. The applicator tape can have a variety of shapes and sizes. In one embodiment, the applicator tape has a length and width that can fit onto the liner. Additional details regarding the liner and applicator tape and other features can be found in U.S. application Ser. No. 15/017,505, reference herein.


In some embodiments, the sensor tape 200, 300, 400, 500, 600, 700 can be used to secure any types of sensor to a patient's skin to form a sensor assembly. In some embodiments, the sensor tape 200, 300, 400, 500, 600, 700 can be used to secure any types of sensor to a surface of a medium other than a patient's skin to taking non-invasive measurement of characteristics of a medium.


Although this disclosure has been described in the context of certain embodiments and examples, it will be understood by those skilled in the art that the disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations of the embodiments of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. For example, features described above in connection with one embodiment can be used with a different embodiment described herein and the combination still fall within the scope of the disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the embodiments of the disclosure. Thus, it is intended that the scope of the disclosure herein should not be limited by the particular embodiments described above. Accordingly, unless otherwise stated, or unless clearly incompatible, each embodiment of this invention may comprise, additional to its essential features described herein, one or more features as described herein from each other embodiment of the invention disclosed herein.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a sub combination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. Additionally, as used herein, “gradually” has its ordinary meaning (e.g., differs from a non-continuous, such as a step-like, change).


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A sensor tape for positioning and securing a noninvasive sensor to a skin of a patient to noninvasively measure physiological parameters of the patient, the sensor tape comprising: a first portion at a first end comprising a first width, the first portion configured to position an emitter and a detector of the noninvasive sensor;a second portion at a second end comprising a second width, the second width being greater than the first width;a transition portion between the first portion and the second portion, the transition portion comprising: a first edge extending between the first and second ends along the first and second portions, wherein the first edge is substantially linear between the first and second ends;a second edge extending between the first and second ends along the first and second portions, wherein the second edge transitions between the first end and the second end non-linearly such that the transition portion changes from the first width to the second width along the second edge; andan adhesive surface and a non-adhesive surface on each of the first and second portions.
  • 2. The sensor tape of claim 1, wherein the transition portion comprises a sloped transition along the second edge between the first portion and the second portion.
  • 3. The sensor tape of claim 1, wherein the first and second portions have substantially the same length.
  • 4. The sensor tape of claim 1, wherein the second portion is configured to cover an entirety of the first portion when the sensor tape is secured to the skin of the patient.
  • 5. The sensor tape of claim 1, wherein at least a section of the adhesive surface of the second portion at the second end is configured to secure to the skin of the patient.
  • 6. The sensor tape of claim 1, wherein the first portion is configured to removably secure to the emitter and the detector.
  • 7. The sensor tape of claim 1, wherein the first portion comprises a first magnet, wherein the second portion comprises a second magnet, and wherein the first and second magnets are configured to attract to secure the first portion to the second portion when the noninvasive sensor is secured to the skin of the patient.
  • 8. The sensor tape of claim 1, wherein the non-adhesive surface of the first portion comprises a first alignment indicator aligned with the emitter and a second alignment indicator aligned with the detector.
  • 9. The sensor tape of claim 1, wherein the second edge of the transition portion is closer to the first end.
  • 10. The sensor tape of claim 1, wherein the second edge of the transition portion is closer to the second end.
  • 11. The sensor tape of claim 1, wherein the second edge comprises a linear slope.
  • 12. The sensor tape of claim 1, wherein the second edge comprises a curved slope.
  • 13. A sensor tape for positioning and securing a noninvasive sensor to a skin of a patient to noninvasively measure physiological parameters of the patient, the sensor tape comprising: a first portion at a first end comprising a first width, the first portion configured to position an emitter and a detector of the noninvasive sensor;a second portion at a second end comprising a second width, the second width being greater than the first width;a first edge extending between the first and second ends along the first and second portions, wherein the first edge is substantially linear;a second edge extending between the first and second portions, wherein the second edge is non-parallel with the first edge;wherein a width of the tape between the first and second edges decreases from the second end to the first end; andan adhesive surface and a non-adhesive surface on each of the first and second portions.
  • 14. The sensor tape of claim 13, wherein the second edge is substantially linear.
  • 15. The sensor tape of claim 13, wherein the width of the tape between the first and second edges continually decreases from the second end to the first end along an entire length of the sensor tape.
  • 16. The sensor tape of claim 13, wherein the first and second portions have substantially the same length.
  • 17. The sensor tape of claim 13, wherein the second portion is configured to cover an entirety of the first portion when the sensor tape is secured to the skin of the patient.
  • 18. The sensor tape of claim 13, wherein at least a section of the adhesive surface of the second portion at the second end is configured to secure to the skin of the patient.
  • 19. The sensor tape of claim 13, wherein the second portion extends from the first portion to the second end along a longitudinal axis of the sensor tape.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/582,082, filed Apr. 28, 2017, and titled “OPTICAL SENSOR TAPE” which claims benefit of priority to U.S. Provisional Application No. 62/329,451, filed Apr. 29, 2016. The disclosure of each of these applications is incorporated herein in its entirety for all purposes. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1211)
Number Name Date Kind
3547120 Grossman Dec 1970 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5170786 Thomas Dec 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Ai-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Kiani et al. Jan 2019 B1
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20050267341 Blank Dec 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070123756 Kitajima et al. May 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20120046557 Kiani Feb 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Muhsin et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Ai-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Ai-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
Related Publications (1)
Number Date Country
20220125380 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
62329451 Apr 2016 US
Continuations (1)
Number Date Country
Parent 15582082 Apr 2017 US
Child 17518427 US