The present disclosure relates generally to sensor apparatuses. In particular, the present disclosure relates to sensing apparatuses having pixels that can be dynamically controlled based on different application requirements.
Optical sensors are being used in many systems, such as smartphones, wearable electronics, robotics, and autonomous vehicles, etc. for proximity detection, 2D/3D imaging, object recognition, image enhancement, material recognition, color fusion, health monitoring, and other relevant applications. The present disclosure discloses an optical sensor having a configurable/reconfigurable pixel array. The optical sensor can be operable for different wavelength ranges, including visible (e.g., wavelength range 380 nm to 780 nm, or a similar wavelength range as defined by a particular application), near-infrared (NIR, e.g., wavelength range from 780 nm to 1400 nm, or a similar wavelength range as defined by a particular application) and short-wavelength infrared (SWIR, e.g., wavelength range from 1400 nm to 3000 nm, or a similar wavelength range as defined by a particular application) wavelength ranges.
Aspects and advantages of embodiments of the present disclosure will be set forth in part in the following description, or may be learned from the description, or may be learned through practice of the embodiments.
One example aspect of the present disclosure is directed to an optical sensor operable in a plurality of operating modes. The optical sensor includes a plurality of detectors arranged in an array. Each detector of the plurality of detectors includes one or more absorption regions, one or more readout regions, and one or more control regions. The one or more absorption regions is configured to receive an optical signal and generate charge carriers in response to receiving the optical signal. The one or more readout regions is configured to collect a portion of the charge carriers for output. The one or more control regions is coupled to one or more control signals, the one or more control regions configured to control, in response to the one or more control signals, a flow of charge carriers from the one or more absorption regions to the one or more readout regions. The optical sensor also includes driver circuitry configured to provide the control signals to enable or disable a subset of the plurality of detectors based on an operating mode of the plurality of operating modes.
In some implementations, the one of more absorption regions include germanium formed on a first silicon substrate.
In some implementations, the plurality of the driver circuitry are formed on a second silicon substrate.
In some implementations, the first silicon substrate is bonded to the second silicon substrate.
In some implementations, the plurality of detectors are arranged in a one-dimensional array or a two-dimensional array.
In some implementations, the plurality of operating modes include any combination of a proximity-sensing mode, a motion-detection mode, a depth-detection mode, a reduced-resolution mode, an enhanced-resolution mode, or a power-saving mode.
In some implementations, under the motion-detection mode, the driver circuitry is configured to enable first detectors of the plurality of detectors located at two or more edges of the array and disable second detectors of the plurality of detectors.
In some implementations, under the proximity-sensing mode, the driver circuitry is configured to enable the second detectors and disable the first detectors.
In some implementations, the optical sensor further includes controller circuitry configured to determine an operating mode of the plurality of optical modes of the optical sensor and to provide an output representing the operating mode to the driver circuitry.
In some implementations, the driver circuitry is configured to provide the control signals to disable the subset of the plurality of detectors by disabling a modulation of the corresponding control regions of the subset of the plurality of detectors to stop a flow of charge carriers through the corresponding control regions.
Another example aspect of the present disclosure is directed to a system including an optical sensor, driver circuitry, and a controller. The optical sensor is operable in a plurality of operating modes. The optical sensor includes a plurality of detectors arranged in an array. Each detector of the plurality of detectors includes one or more absorption regions, one or more readout regions, and one or more control regions. The one or more absorption regions are configured to receive an optical signal and generate charge carriers in response to receiving the optical signal. The one or more readout regions are configured to collect a portion of the charge carriers for output. The one or more control regions are coupled to one or more control signals, the one or more control regions configured to control, in response to the one or more control signals, a flow of charge carriers from the one or more absorption regions to the one or more readout regions. The driver circuitry is configured to provide the control signals to enable or disable a subset of the plurality of detectors based on an operating mode of the plurality of operating modes. The controller is configured to provide a mode signal to the driver circuitry indicating the operating mode of the optical sensor.
In some implementations, the one of more absorption regions include germanium formed on a first silicon substrate.
In some implementations, the plurality of the driver circuitry are formed on a second silicon substrate.
In some implementations, the first silicon substrate is bonded to the second silicon substrate.
In some implementations, the plurality of detectors are arranged in a one-dimensional array or a two-dimensional array.
In some implementations, the plurality of operating modes include any combination of a proximity-sensing mode, a motion-detection mode, a depth-detection mode, a reduced-resolution mode, an enhanced-resolution mode, or a power-saving mode.
In some implementations, the controller is configured to determine an operating mode of the operating modes of the optical sensor based on a user operation of the system.
A still further example aspect of the present disclosure is directed to a method for operating an optical sensor having a plurality of operating modes. The method includes obtaining, by driver circuitry, an input signal representing an operating mode of the plurality of operating modes. The method includes determining, by the driver circuitry, a subset of a plurality of detectors of the optical sensors to be enabled or disabled based on the operating mode. Each detector of the plurality of detectors includes one or more absorption regions, one or more readout regions, and one or more control regions. The one or more absorption regions are configured to receive an optical signal and generate charge carriers in response to receiving the optical signal. The one or more readout regions are configured to collect a portion of the charge carriers for output. The one or more control regions are coupled to one or more control signals, the one or more control regions configured to control, in response to the one or more control signals, a flow of charge carriers from the one or more absorption regions to the one or more readout regions. In response to determining the subset of the plurality of detectors to be enabled or disabled based on the operating mode, the method includes providing, by the driver circuitry to the plurality of detectors, the control signals to the plurality of detectors.
In some implementations, the plurality of operating modes include any combination of a proximity-sensing mode, a motion-detection mode, a depth-detection mode, a reduced-resolution mode, an enhanced-resolution mode, or a power-saving mode.
In some implementations, the plurality of detectors are arranged in an array, and under the motion-detection mode, providing the control signals to the plurality of detectors further includes: enabling first detectors of the plurality of detectors located at two or more edges of the array; and disabling second detectors of the plurality of detectors.
These and other features, aspects and advantages of various embodiments will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the description, serve to explain the related principles.
The foregoing aspects and many of the advantages of this application will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings:
An optical sensor (e.g., an indirect time-of-flight sensor, a direct time-of-flight sensor, an image sensor, a proximity sensor, a bio-signal detector, etc.) can be used in a number of different applications, such as proximity detection, gesture detection, depth-sensing, 2D/3D imaging, object recognition, image enhancement, material recognition, color fusion, health monitoring, and others. In general, a resolution (e.g., VGA, QVGA, etc.) of an optical sensor may be determined based on a number of pixels in the optical sensor, and the resolution requirement for each application may be different. For example, for proximity detection, the optical sensor is mainly used to determine whether something (e.g., a finger, a face, an object, etc.) is within a threshold distance from the optical sensor, and a low resolution (e.g., a low pixel count) may be sufficient. On the other hand, for 3D imaging, a high resolution is required for achieving a high-quality image. To achieve high resolution, the optical sensor can be implemented to include an array (e.g., 1D or 2D) of detector pixels. However, operating a higher number of pixels generally translates to a higher power consumption, which may not be desirable for low-resolution applications such as proximity sensing. In addition, an optical sensor that can operate for different applications (or operating modes) with different power consumptions would generally be desirable. Accordingly, an optical sensor where an operation of pixels can be dynamically controlled (e.g., turning on/off) based on different application requirements at different times may save an overall power consumption of the optical sensor, thereby achieving a technical benefit.
Referring back to
The sensor may operate under multiple operating modes. In some implementations, the operating modes may include any combination of a proximity-sensing mode, a motion-detection mode, a depth-detection mode, a reduced-resolution mode, an enhanced-resolution mode, and/or a power-saving mode. Referring to
Referring to
Referring to
Referring to
As another example, under a power-saving mode, the driver circuitry may disable a subset of detectors to meet a power requirement of the optical sensor or a device (e.g., smartphone) that incorporates the optical sensor.
In some implementations, the driver circuitry may dynamically reconfigure the detector array based on different operating modes. For example, the driver circuitry may operate the optical sensor under the proximity-detection mode, and then switch to the motion-detection mode upon detecting an object. In some implementations, the driver circuitry may dynamically reconfigure the detector array based on different operating modes associated with different software applications. For example, the driver circuitry may operate the optical sensor under the high-resolution mode when a user uses a camera software application on a smartphone that incorporates the optical sensor, and then switch to the power-saving mode when the user switches to a content-browsing application that does not require the use of the optical sensor.
In some implementations, the optical sensor (e.g., optical sensor 100) may include additional circuitry within controller 130 (e.g., a microcontroller) configured to determine the operating mode of the optical sensor and to provide an output representing the operating mode of the optical sensor to the driver circuitry. In some other implementations, the controller circuitry may be implemented outside the optical sensor (e.g., on a smartphone).
While the disclosure has been described by way of example and in terms of a preferred embodiment, it is to be understood that the disclosure is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
The present application claims a filing benefit of U.S. Provisional Patent Application Ser. No. 63/301,483 having a filing date of Jan. 20, 2022, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63301483 | Jan 2022 | US |