The disclosure relates to lighting devices and to recessed lighting fixture assemblies.
Light fixture assemblies, or luminaires, are used with electric light sources to provide aesthetic and functional housing in both interior and exterior lights. One type of light fixture assembly is a recessed light, typically used for interior lighting to conceal the light fixture in a wall or ceiling. In recessed lighting the light fixture is typically connected to a housing located in a cavity in the wall or ceiling. In recent years, lighting applications have trended towards the use of light emitting diodes (LEDs) as the light source in place of conventional incandescent lamps.
According to an exemplary embodiment, a light fixture assembly includes a light source, a reflector and a shield. The light source emits a beam of light. The reflector directs at least a portion of the beam of light emitted from the light source. The shield is positioned in the reflector to intercept at least a portion of the light emitted from the light source.
According to another exemplary embodiment, a light fixture assembly includes a light source, a reflector and a shield. The light source for emits light through the reflector. A first portion of the light emitted from the light source strikes the reflector and a second portion of the light emitted from the light source would pass through the reflector without striking it. The shield is positioned in the reflector to intercept at least some of the second portion of light emitted from the light source.
According to another exemplary embodiment, a light fixture assembly includes a heat sink, a light source, a mounting bracket, a reflector and a shield. The light source is connected to the heat sink. The mounting bracket is connected to the heat sink. The reflector is connected to the mounting bracket and positioned to receive and redirect light from the light source. The reflector has a first open end proximate to the light source and a second open end distal from the light source. The shield is positioned between the first open end and the second open end of the reflector to block at least a portion of the light emitted from the light source.
Another exemplary embodiment includes a recessed lighting unit having a housing, a light source, a reflector and a shield. The light source is positioned in the housing for emitting a beam of light. The reflector directs at least a portion of the beam of light. The shield is positioned in the reflector to intercept at least a portion of the light emitted from the light source.
A further exemplary embodiment is includes a method of directing a narrow beam of light. Light is emitted from a light source into a reflector. The light is emitted at a first angle that would strike the reflector and a second angle that would pass through without striking the reflector. Light emitted from the light source at the second angle that would not strike the reflector is intercepted to narrow the overall beam of light emitted from the reflector.
The above aspects and features of the present application will be more apparent from the description for the exemplary embodiments taken with reference to the accompanying drawings, in which:
With light sources, including LEDs, it can be difficult to focus and direct emitted light to a desired area. To help overcome this problem, a light fixture assembly 20 is provided that enables a light source 22 to direct light with a narrow beam. In an exemplary embodiment, the light fixture assembly 20 includes a light source 22, an optical shield 24, a mounting bracket 26, and a reflector 28. The light fixture assembly 20 is shown and described in connection with an LED light source for use with a recessed light housing 30, although various exemplary embodiments may utilize, or be adapted to be used with, any type of light source and housing.
According to the exemplary embodiment of
The size, shape, and configuration of the optical shield 24 can be varied depending on the size and shape of the light source 22, the size and shape of the reflector 28, and the desired light output. Even though a disk 44 is depicted and described herein, various alternative embodiments of optical shields 24 can be utilized and can have a central member in various sizes and shapes. For example an annular-shaped disk 44 can be used. The size, shape, length, and configuration of the supports can also vary, for example, fewer or more than three legs 46 may be used, the length of the supports can be varied, and the type of supports, including different types of mechanical fasteners, can be used.
Each leg 46 has a first portion 48 extending from the disk 44 towards the light source 22. The first portion 48 extends obliquely from the disk 44, for example at an obtuse angle as best shown in
In certain exemplary embodiments, the light source 22 is thermally coupled to a heat sink 54, for example using one or more mechanical fasteners 36. Two mechanical fasteners 36 are shown connecting the light source 22 to the heat sink 54, although the number of fasteners 36 may vary depending on the type of heat sink 54 and the type of light source 22. The light source 22 may also be connected to the heat sink 54 through other mechanical or chemical connections.
The heat sink 54 includes a plurality of fins 56, a top surface 58, and a bottom surface 60. The bottom surface 60 has a plurality of openings to receive mechanical fasteners. The heat sink 54 is made from a thermally conductive material, for example a metal such as aluminum or copper. Various sizes, designs, and materials may be used in forming the heat sink 54 depending on the application and requirements of the light source 22 as would be understood by one of ordinary skill in the art. In certain embodiments, the heat sink 54 is omitted.
In certain embodiments, a thermal interface 62 is positioned between the light source 22 and the heat sink 54. The thermal interface 62 eliminates air gaps between the surfaces of the light source 22 and the heat sink 54, increasing the transfer of heat from the light source 22 to the heat sink 54. The thermal interface 62 may be a variety of compounds or materials and may come in a variety of forms, including gels, pads, tapes, and phase-change materials. Some examples of suitable thermal interfaces 62 include the CHOMERICS® thermal interface materials sold by PARKER HANNIFIN®.
According to the exemplary embodiment shown, the mounting bracket 26 is connected to the heat sink 54 by a plurality of fasteners 64. The mounting bracket 26 is made from metal, or other suitable material having the weight and strength requirements to attach the light fixture assembly 20 to the housing 30. Although shown as a unitary structure, various exemplary embodiments utilize multiple pieces connected together to form the mounting bracket 26.
In an exemplary embodiment, the structure of the mounting bracket 26 includes a base 66, a first side 68, a second side 70, a first back wall 72 and a second back wall 74. The base 66 includes a central aperture 76 for receiving the light source 22. Accordingly, the size and shape of the central aperture 76 may vary depending on the light source 22. The base 66 includes a first set of openings to receive the mechanical fasteners 64 connecting the mounting bracket 26 to the heat sink 54 and a second set of openings to receive mechanical fasteners 78 connecting the reflector 28 to the mounting bracket 26. The base 66 also includes a pair of depressions 80 that assist in aligning the reflector 28 with the mounting bracket 26.
The first and second sides 68, 70 of the mounting bracket 26 extend from the base 66 away from the light source 22 at a substantially right angle, although the first and second sides 68, 70 may be angled obliquely depending on the required mounting connection. The first and second sides 68, 70 have a bottom projection 82 that extends inwardly towards the light source 22. The bottom projection 82 is used to slidably connect the mounting bracket 26 to a yoke member 84 in the recessed housing 30 as best shown in
The reflector 28 is positioned to receive light emitted from the light source 22. As best shown in
The reflector 28 is connected to the mounting bracket 26 by a reflector bracket 94. The reflector bracket 94 has a bottom 96 with an opening for receiving the reflector 28. The reflector 28 may be held in place by a channel (not shown) formed in the reflector 28 that mates with the reflector bracket 94, by an interference fit, by an adhesive bond, by any combination thereof, or other suitable method. A first side 98 and a second side 100 extend from opposite ends of the bottom 96 at a substantially right angle. The length of the first and second sides 98, 100 may be varied to change the position of the reflector 28 with respect to the light source 22 or to properly position a reflector 28 of a different size. A first flange 102 extends from the first side 98 and a second flange 104 extends from a second side 100. Each flange 102, 104 has a hook 106 surrounding an opening. The opening receives a mechanical fastener 78, for example a bolt and k-lock nut. The first and second flanges 102, 104 also include an outwardly extending projection 108 that mates with the depression 80 of the mounting bracket 26 and assists in aligning the reflector bracket 94 with the mounting bracket 26.
In various exemplary embodiments the beam angle A1 of the emitted light is less than approximately 10 degrees. For example the beam angle A1 is approximately 7 degrees to approximately 10 degrees or approximately 8 degrees to approximately 10 degrees. In an exemplary embodiment the beam angle is approximately 8 degrees.
In certain exemplary embodiments, the optical shield 24 is configured based on a specific beam angle. Using the approximately 8 degree beam angle as an example, the reflector 28 and optical shield 24 can be configured to intercept light emitted from the light source 22 that would create a wider angle. The optical shield 24 could utilize a disk that would block light that would create a wider beam angle or redirect light so that it struck the reflector to ensure the appropriate beam angle. The optical shield 24 could also utilize a lens that redirected of focused light to ensure all light passing through the reflector stayed within the approximately 8 degree beam angle.
As best shown in
The foregoing detailed description of the certain exemplary embodiments has been provided for the purpose of explaining the principles of the devices disclosed herein and their practical application. Those skilled in the art will understand from this disclosure the various embodiments of the devices and with various modifications as are suited to the particular use contemplated. This description is not necessarily intended to be exhaustive or to limit the embodiments disclosed. Any of the embodiments and/or elements disclosed herein may be combined with one another to form various additional embodiments not specifically disclosed. Accordingly, additional embodiments are possible and are intended to be encompassed within this specification and the scope of the appended claims. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way.
As used in this application, the terms “front,” “rear,” “upper,” “lower,” “upwardly,” “downwardly,” and other orientational descriptors are intended to facilitate the description of the exemplary embodiments of the application, and are not intended to limit the structure of the exemplary embodiments of the present application to any particular position or orientation. Terms of degree, such as “substantially” or “approximately” are understood by those of ordinary skill to refer to reasonable ranges outside of the given value, for example, general tolerances associated with manufacturing, assembly, and use of the described embodiments.
This application is based on U.S. Provisional application Ser. No. 61/971,834, filed Mar. 28, 2014, the disclosure of which is incorporated herein by reference in its entirety and to which priority is claimed
Number | Name | Date | Kind |
---|---|---|---|
3833955 | Hulbert, Jr. | Sep 1974 | A |
6572234 | Maier | Jun 2003 | B1 |
7264376 | Burton | Sep 2007 | B2 |
7876032 | Arndt et al. | Jan 2011 | B2 |
8858045 | Harbers | Oct 2014 | B2 |
20030141420 | Knight | Jul 2003 | A1 |
20050005490 | Sender et al. | Jan 2005 | A1 |
20060171151 | Park et al. | Aug 2006 | A1 |
20070147052 | Wyatt | Jun 2007 | A1 |
20090039799 | Newman, Jr. | Feb 2009 | A1 |
20100110698 | Harwood | May 2010 | A1 |
20110019409 | Wronski | Jan 2011 | A1 |
20120212945 | Frank | Aug 2012 | A1 |
20120294024 | Peck et al. | Nov 2012 | A1 |
20130215623 | Goodman | Aug 2013 | A1 |
20130343062 | Shum et al. | Dec 2013 | A1 |
20140063812 | Geralds et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2230439 | Sep 2010 | EP |
2466198 | Jun 2012 | EP |
Entry |
---|
PCT/US2015/23313 International Search Report and Written Opinion dated Jul. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20150276184 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61971834 | Mar 2014 | US |