The present invention generally relates to light output. More specifically, the present invention relates to evening the light output by a sensor device that uses multiple lighting elements.
Devices that output light, especially devices that use multiple light emitting diodes (LEDs), tend to output such light in an uneven fashion. That is, certain regions of an output apparatus tend to output more light and appear brighter to a user while other regions of the output apparatus tend to output less light and appear dimmer to the user. Such an effect may be found by users to be aesthetically poor.
In some embodiments, a light distribution system for a sensor device is presented. The system may include a circular light guide that receives light from a plurality of light emitters arranged in a circular pattern. The system may include a conical reflector positioned to reflect light emitted from the circular light guide onto an exterior of a case of the sensor device, the conical reflector reflecting light such that light is reflected by the exterior of the case into an ambient environment of the sensor device when each light source of the plurality of light emitters are illuminated.
In various embodiments, one or more of the following features may be preset in such a system: The system may include a plurality of arched light diffusers and a plurality of light receptacles, wherein the plurality of light receptacles receive light from the plurality of light emitters, and the plurality of arched light diffusers are interspersed with the plurality of light receptacles. The light that is reflected by the exterior of the case into the ambient environment of the sensor device may be reflected in a halo pattern. The conical reflector may be part of a button that can be actuated by a user and the conical reflector may be hidden when the sensor device is viewed from the top. The system may include the case, wherein the light that is reflected by the exterior of the case into the ambient environment of the sensor device is reflected by a circular depressed region of the exterior of the case. The case may include a grille that permits airflow into the sensor device, and the circular light guide and the conical reflector are positioned such that light encircles a center point of the grille. The circular depressed region of the exterior of the case may include a first region of greater material thickness and a second region of lesser material thickness. The second region of lesser material thickness may be positioned proximate to a status light such that the status light, when illuminated, shines light through the second region of lesser material thickness into the ambient environment of the sensor device. The system may include the plurality of light emitters, the plurality of light emitters comprising five or more groups of light emitting diodes (LEDs). Each group of LEDs may include a red LED, a blue LED, and a green LED. The circular light guide may include a plurality of light receptacles, wherein each group of LEDs is positioned to emit light into a particular light receptacle of the plurality of light receptacles. The plurality of light receptacles may each include a parabolic surface through which light is received by the circular light guide. The conical reflector may include at least a portion having a right circular conical section shape. The circular light guide may include a transparent plastic portion and a titanium dioxide reflective cladding. The system may include a plurality of arc insulators that are attached to the plurality of arched light diffusers to prevent light from entering an interior space of the sensor device through the plurality of arched light diffusers. A surface of the circular light guide through light is emitted to the conical reflector may have a textured surface to diffuse light.
In some embodiments, a device comprising a light distribution system is presented. The device may include a case; a carbon monoxide sensor within the case; a smoke sensor within the case; a plurality of light emitting diodes (LEDs) within the case; one or more processors in communication with the carbon monoxide sensor, the smoke sensor, and the plurality of LEDs. The one or more processors may control illumination of the plurality of LEDs based on information from the carbon monoxide sensor and the smoke sensor. The device may also include a circular light guide that receives light from a plurality of light emitters arranged in a circular pattern. The device may also include a conical reflector positioned to reflect light emitted from the circular light guide onto an exterior of the case of the device, the conical reflector reflecting light such that light is reflected by the exterior of the case into an ambient environment of the device when each light source of the plurality of light emitters are illuminated.
In some embodiments, a light distribution apparatus is presented. The apparatus may include a casing means. The apparatus may include a circular guide means that receives light from a plurality of light emitters arranged in a circular pattern. The apparatus may include a conical reflector means positioned to reflect light emitted from the circular guide means onto an exterior of the casing means of the light distribution apparatus within which the light distribution apparatus is at least partially housed. The conical reflector means may reflect light such that light is reflected by the exterior of the casing means into an ambient environment of the light distribution apparatus when each light source of the plurality of light emitters are illuminated. The apparatus may include arched light diffuser means that disperse light within the circular guide means incident on the arched light diffuser means. The casing means may include a first region of greater material thickness and a second region of lesser material thickness and the second region of lesser material thickness is positioned proximate to a light emitter such that the light emitter, when illuminated, shines light through the second region of lesser material thickness into the ambient environment of the light distribution apparatus.
A further understanding of the nature and advantages of various embodiments may be realized by reference to the following figures. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Devices, such as sensor devices, may output light for multiple reasons, including to provide an indication of the device's state or other information to a nearby user and to provide lighting for illumination of the ambient environment. By using multiple lighting elements, such as light emitting diodes (LEDs), various effects can be realized, including: increased light output (brightness), lighting animations, and multiple colors. While using one or more lights on devices for outputting information and/or lighting has been known for a significant period of time, outputting such light in an aesthetically-pleasing manner into the ambient environment of the device has been difficult to realize. Typically, a lighting element, such as an LED, of a device may shine directly into the ambient environment of the device, creating a bright “pinpoint” of light. Such an effect may be aesthetically annoying to a user and potentially distracting when the user is trying to sleep or otherwise perform a task where light can be an impediment.
Arrangements presented herein are focused on light distribution systems for routing light from multiple lighting elements into the ambient environment of a sensor device to produce an even glow, such as in the shape of a halo. For instance, such sensor devices can include smoke detectors, carbon monoxide detectors, and combination smoke detector and carbon monoxide detectors. Other types of sensor devices may also use the light distribution systems presented herein, such as an alarm system, security system, home automation host system, humidity sensor, etc. Further, while this document focuses on the applications of such light distribution systems for sensor devices, it should be understood that the light distribution systems presented herein can be used for other types of devices besides sensor devices.
The light distribution systems presented herein are focused on distributing light from multiple lighting elements (e.g., LEDs) into the ambient environment of a sensor device. The light distribution systems may use a (circular) light guide and a reflector, which may have a portion that has a conical shape, to distribute light from the lighting elements into the ambient environment of the sensor device, such as for viewing by one or more users and/or for lighting the ambient environment (e.g., serving as a nightlight). Light from the lighting elements may be partially distributed using the circular light guide. At least some light exiting the circular light guide may be incident upon a conical reflector. The conical reflector, which may be geometrically shaped as a portion of a right circular cone, may reflect and further distribute the light generated by the multiple lighting elements. Light reflected by the conical reflector may then be incident upon an exterior of a case of the sensor device. This portion of the exterior surface of the case of the sensor device may be depressed towards an interior of the sensor device as compared to other portions of the case. The light reflecting off of the exterior of the case may then enter the ambient environment of the sensor device for viewing by a user and/or for lighting purposes. By using the light guide, and reflector, and leveraging the exterior of the case of the sensor device, the light may be distributed in such a manner that a typical user cannot perceive (or has difficulty perceiving) that the light originated from multiple, discrete lighting elements, but rather appears continuous. Further, such an arrangement may allow light to be output in a “halo” shape (a perimeter of a circle, the perimeter having approximately a constant width). Such an arrangement may result in a pleasing aesthetic view of the light emanating from the sensor device by a user.
Further, in some instances, it may be desired to output a status light by the sensor device while minimally impacting the aesthetics of the exterior of the sensor device. For instance, if a sensor device is receiving power from a wired source (e.g., a household's wired power distribution system), it may be desired for the sensor device to use light to indicate that such power is detected and being used by the sensor device. A thinned portion of the sensor device's exterior case may allow light to shine through the thinned portion when a lighting source within the case is illuminated. When the lighting source is not illuminated, the thinned portion of the case may appear substantially the same as any other portion (e.g., non-thinned portion) of the case. Therefore, when the lighting source is not illuminated, the thinned portion of the case that facilitates transmission of the light is effectively “invisible” to a user viewing the sensor device from the exterior.
Various embodiments of light distribution systems that help produce an even glow output, including the above aspects and aspects yet to be noted, are described in detail in relation to the figures that follow. For overall understanding, a big picture view of a device that can use such a light distribution system is presented. Such a device may be a dedicated smoke detector or a combination device, such as carbon-monoxide detector and smoke detector.
A brief description of the above-noted components that have yet to be described follows: Mesh 280 sits behind cover grille 110 to obscure external visibility of the underlying components of device 200C while allowing for airflow through mesh 280. Mesh 280 and cover grille 110 can help CO more readily enter the interior of the device, where CO sensor 286 is located. Light guide 281 serves to direct light generated by lights (e.g., LEDs such as the LEDs present on daughterboard 285) to the external environment of device 200C by reflecting off of a portion of cover grille 110. Button flexure 283 serves to allow a near-constant pressure to be placed by a user on various locations on lens/button 120 to cause actuation. Button flexure 283 may cause an actuation sensor located off-center from lens/button 120 to actuate in response to user-induced pressure on lens/button 120. Diaphragm 284 may help isolate the PIR sensor on daughterboard 285 from dust, bugs, and other matter that may affect performance. Daughterboard 285 may have multiple lights (e.g., LEDS) and a PIR (or other form of sensor). Daughterboard 285 may be in communication with components located on main circuit board 288. The PIR sensor or other form of sensor on daughterboard 285 may sense the external environment of device 200C through lens/button 120.
Buzzer 287, which may be activated to make noise in case of an emergency (and when testing emergency functionality), and carbon monoxide sensor 286 may be located on main circuit board 288. Main circuit board 288 may interface with one or more batteries 271, which serve as either the primary source of power for the device or as a backup source of power if another source, such as power received via a wire from the grid, is unavailable. Protruding through main circuit board may be smoke chamber 260, such that air (including smoke if present in the external environment) passing into enclosure 130 is likely to enter smoke chamber 260. Smoke chamber 260 may be capped by chamber shield 289, which may be conductive (e.g., metallic). Smoke chamber 260 may be encircled by a conductive (e.g., metallic) mesh (not pictured). Enclosure 130 may be attached and detached from surface mount plate 290. Surface mount plate 290 may be configured to be attached via one or more attachment mechanism (e.g., screws or nails) to a surface, such as a wall or ceiling, to remain in a fixed position. Enclosure 130 may be attached to surface mount plate 290 and rotated to a desired orientation (e.g., for aesthetic reasons). For instance, enclosure 130 may be rotated such that a side of enclosure 130 is parallel to an edge of where a wall meets the ceiling in the room in which device 200C is installed.
Embodiments detailed herein may use at least some of the following components: a case (which may be in the form of a cover grille), a reflector, a light guide, and lighting elements. These components are detailed individually and in combination in the description that follows in combination with the associated figures.
Reflector 320 may be referred to as a conical reflector because at least one surface of the reflector 320 is conical. Reflector 320 may at least be partially set within depressed region 310 of cover grille 110. One purpose of reflector 320 can be to reflect light received from a light guide and reflect such light onto a depressed region 310 of cover grille 110. Reflector 320 may be incorporated as part of a multipurpose component. For instance, in some embodiments, reflector 320 is part of a button/lens assembly that can be actuated by a user. Further, additionally or alternatively, through the button/lens assembly, a sensor, such as a passive infrared sensor, may be used to detect occupancy and/or user-performed gestures in the vicinity of the sensor device. Reflector 320 may have multiple supports 321, such as support 321-1. Support 321-1 may be used for providing support for lens/button 120 (of
Reflector 320 can be circular, oval, or some other rounded shape. As such, reflector 320 can reflect light in a 360° pattern. Therefore, light reflected by reflector 320 onto depressed region 310 may give an effect of a halo—that is, an illuminated perimeter of a circle or oval. Whether all or a portion of depressed region 310 is illuminated may be controlled by a number of lighting elements that are illuminated within the sensor device. In some embodiments, reflector 320 does not reflect light directly into an ambient environment of the sensor device. Rather, reflector 320 reflects light onto an exterior surface of cover grille 110. Cover grille 110 may reflect such light into the ambient environment of the sensor device.
In cross-section 500, it can be seen that depressed region 310 can be circular, curved, and depressed. Generally, cover grille 110 increases in height towards a center of cover grille 110 until depressed region 310 is present. Therefore, where lens/button 120 is positioned atop reflector 320 may represent a furthest protruding location of the sensor device (e.g., a “crown” of the sensor device).
Light guide 281 is configured to receive light from multiple lighting elements, which may be LEDs and may include LEDs that emit light of different colors. Light guide 281 may route and disperse such admitted light onto conical reflector 322. Conical reflector 322 may reflect and disperse such light in a 360 degree pattern onto depressed region 310. Depressed region 310 may reflect and disperse such light into the ambient environment of the sensor device. Since a top surface of reflector 320 is not illuminated, the light emitted into the environment of the sensor device may be in the shape of a halo or another hollowed, curved shape. Extended portion 324, which may extend in a circular ring around conical reflector 322, may prevent light from being emitted from light guide 281 and directly entering the ambient environment of the sensor device. A gap may be present between depressed region 310 and extended portion 324 of reflector 320 in an uninterrupted circle around reflector 320. Extended portion 324 may also serve as a physical support for lens/button 120 (not pictured).
Present on depressed region 310 may be thinned material region 803. Thinned material region 803 may represent a region when the material of cover grille 110 is thinner than in other locations on depressed region 310. Thinned material region 803 may not be visible to a user unless a light is illuminated beneath thinned material region 803 (and thus shines through thinned material region 803). When such a light is not illuminated, thinned material region 803 may appear similar to other parts of depressed region 301. The thickness of thinned material region 803 may be determined based on the type of material and color of depressed region 310. That is, in order for the illuminated light to be visible through thinned material region 803, the thickness of the material is determined to compensate for the opacity of the material, including the color of depressed region 310 (e.g., if depressed region 310 is black, it may need to be thinner than if white to permit sufficient light to pass through thinned material region 803).
Reflective cladding 920 may at least partially encircle light disperser 910. Reflective cladding may be present on the outside and inside of light disperser 910 such as to prevent light from exiting sides of light disperser 910. Reflective cladding 920 may coat the entirety of light disperser 910 except for halo surface 945 and light receptacles 940. In some embodiments, reflective cladding 920 is a combination of plastic and titanium dioxide and may have a white color. In some embodiments, reflective cladding 920 and light disperser 910 are formed during manufacturing as a single, solid object.
Light receptacles 940, of which there may be six, may be arranged in a circular pattern such that a light receptacle pairs with a LED or group of LEDs (e.g., 6 groups of LEDs) present on a circuit board located beneath light guide 281. Interspersed with light receptacles 940 may be diffuser arcs 930 (e.g., six diffuser arcs), such as diffuser arc 930-1. While the illustrated embodiments are configured to accommodate six LEDs, or six groups of LEDs, arranged in a circular pattern, it should be understood that embodiments may be adapted for fewer or greater numbers of LED groups or LEDs and/or for different shapes. Diffuser arcs 930 may be covered with reflective cladding 920. Light that enters a light receptacle, such as light receptacle 940-1 and is being transmitted by light disperser 910, may be incident upon an interior surface of diffuser arc 930-1. Such a diffuser arc may serve to further disperse such light within light disperser 910. Also present on light guide 281, may be one or more clips 510. Clips 510 may serve to (removably) couple light guide 281 to button flexure 283.
Each light receptacle of light receptacles 940 may be configured to receive light from multiple light emitters, such as a group of LEDs. For each light receptacle of light receptacles 940, a red, green, and a blue LED may be present. Light disperser 910 may effectively cause light from each different colored LED to effectively be admitted by halo surface 945 in a similar illumination pattern. Thus, as reflected by the exterior of the cover grille, a substantially even glow is emitted into the ambient environment regardless of the one or more colored LEDs (or other type of lighting elements) illuminated.
First, light emitted from any of light emitters 1101, 1102, and 1103 may enter parabolic collector 941-1. Parabolic collector 941-1 may serve to disperse light into light guide 281. In the cross-section of light guide 281 illustrated, reflective cladding 920 is present on either side of light disperser 910. As such, light that is incident upon a side of light disperser 910 may be reflected by reflective cladding 920. A significant portion of the light emitted into light disperser 910 may emanate from halo surface 945, which may be textured to help diffuse the light. A portion of the light emitted from halo surface 945 may be incident upon conical reflector 322. Conical reflector 322 of reflector 320, possibly in combination with extended portion 324, may reflect light away from reflector 320 towards cover grille 110. Such light may be incident upon depressed region 310 and/or flat ring 801. At least a portion of such light may then be reflected out into an ambient environment of the sensor device. The surface of depressed region 310 may be textured in order to further cause diffusion of light incident upon such surface.
In embodiment 1200B of
The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various procedures or components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.
Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations will provide those skilled in the art with an enabling description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.
Also, configurations may be described as a process which is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, examples of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof.
Having described several example configurations, various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosure. For example, the above elements may be components of a larger system, wherein other rules may take precedence over or otherwise modify the application of the invention. Also, a number of steps may be undertaken before, during, or after the above elements are considered.
This application is a continuation of U.S. patent application Ser. No. 16/225,886, filed Dec. 19, 2018, which is a continuation of U.S. patent application Ser. No. 15/655,690, filed Jul. 20, 2017, which is a continuation of U.S. patent application Ser. No. 14/713,729, filed May 15, 2015. Each of these applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5642933 | Hitora | Jul 1997 | A |
6565223 | Liao et al. | May 2003 | B2 |
6965205 | Piepgras et al. | Nov 2005 | B2 |
8016421 | Eberl et al. | Sep 2011 | B2 |
8847772 | Marks et al. | Sep 2014 | B2 |
8994540 | Fadell et al. | Mar 2015 | B2 |
9322526 | Liu et al. | Apr 2016 | B2 |
9464803 | Salter | Oct 2016 | B2 |
9613525 | Boyd et al. | Apr 2017 | B2 |
9689853 | Mittleman | Jun 2017 | B2 |
9746154 | Dong et al. | Aug 2017 | B2 |
9799175 | Stagg | Oct 2017 | B2 |
10032343 | Boyd et al. | Jul 2018 | B2 |
10197243 | Dong et al. | Feb 2019 | B2 |
10598341 | Dong et al. | Mar 2020 | B2 |
10655881 | Sinha | May 2020 | B2 |
Number | Date | Country | |
---|---|---|---|
20200173628 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16225886 | Dec 2018 | US |
Child | 16787722 | US | |
Parent | 15655690 | Jul 2017 | US |
Child | 16225886 | US | |
Parent | 14713729 | May 2015 | US |
Child | 15655690 | US |