The present invention relates to a hydrogen sensor having an optical switch. With such a sensor the optical properties of an optical switching device can be monitored.
Such hydrogen sensor is known from U.S. Pat. No. 6,006,582.
As active metal a magnesium transition metal alloy is for example used. It has been found that a magnesium nickel layer being provided on a substrate and on top of which a catalyst such as palladium is provided will turn into a magnesium nickel hydride layer near the substrate when hydrogen is added to such layer. This means that although hydrogen enters the device through the catalyst the hydride phase nucleates first at the magnesium nickel layer/substrate interface. This leads to a self-organized layering of the sample. With increasing hydrogen absorption the hydride layer grows until the whole magnesium nickel layer is converted to a hydride. Such layers are also known as VAriable REflection Metal hydrides (VAREM) or metal-hydride switchable mirrors.
Depending on the conversion such a layer can have properties ranging from reflective through black to transparent. The transparent and reflective modes are relatively stable and easy to obtain and maintain. However a stable black situation in which the light entering through the substrate is absorbed, is difficult to maintain. It depends sensitively on external parameters such as temperature and H2 gas pressure.
The different physical appearances are preferably obtained by loading with hydrogen or unloading hydrogen for example by using oxygen. Electrochemical hydrogenation/dehydrogenation can also be used. The hydrogen concentration in which the black condition is obtained is very critical.
US 2002/101413 discloses a light switching device, for use as a optical switching element, for example as a variable beam splitter, optical shutter, and for controlling the a luminance or the shape of light beam luminaries, wherein a switching film is provided with a catalyst Pd-layer on which a hydrogen ion conducting electrolyte layer is provided. On this hydrogen ion conducting electrolyte layer a hydrogen storage layer is present. With this device one actively controls the amount of hydrogen and thereby the optical state of the active layer.
US2005/0173716 A1 discloses the use of VAREM material for switching between black absorbing and metallically reflecting in the optical portion of the spectrum. This is used for a device for converting solar energy into heat energy and more particular is present between an sunlight/transmitting plate and a rear plate.
The invention aims to provide a hydrogen sensor in which the black condition is both easily obtained and on the other hand can easily be maintained.
According to the invention this is realized in that, between said active metal layer and said catalytic layer an auxiliary layer comprising a transition metal layer is provided having a thickness larger than the thickness of said active metal layer and being hydrogen permeable.
According to the invention there is no longer a “self-organized” double layer needed to provide for the large change in optical behavior. The self organized double layer is according to the invention replaced by an auxiliary layer which has been separately provided and comprises a transition metal layer. In contrast to the prior art an auxiliary layer is provided between the metal layer and the catalytic layer.
It has been found that by using an artificially provided auxiliary layer a stable black condition is obtained of the magnesium transition metal (hydride) layer. It has also been found that after unloading the hydrogen and reloading with hydrogen reproducible results are obtained which means that switching can be obtained in a reproducible way making the optical switching device suitable for all kinds of applications.
Furthermore it has been found that a better contrast can be obtained and oxidation protection is further improved.
The thickness of the transition metal layer should be such that there is no or little transmission.
The active metal layer can comprise any metal which has changing optical properties at loading or unloading with hydrogen. As example magnesium or magnesium based transition metals are mentioned. Also combination of several elemental metals can be used or metal hydrides such as yttrium hydride being in the metallic phase. Further possibilities for the active layer can be rare earths including yttrium, possibly in combination with a transition metal, magnesium and so on. Another preferred option is the use of Mg2Ni or Mg1-xTix as active layer.
According to a preferred embodiment of the invention the active layer has a thickness of 100 nm at maximum. The transition metal layer or auxiliary layer has a thickness starting from 10 nm and is preferably not more than 1 μm.
The auxiliary layer can comprise layers being positioned on top of each other and comprising a different transition metal for example titanium, nickel and/or niobium. It is also possible that different layers are stacked on each other having a different structure, as long as the layer stack allows for hydrogen diffusion and is optically reflective.
The substrate according to the invention can comprise any material such as glass.
The transition metal of the transition metal layer can comprise any transition metal known from the periodic system and in more particular titanium and/or palladium.
The same applies to the transition metal in the magnesium transition metal active layer which preferably comprises nickel.
According to an advantageous embodiment the hydrogen sensor is passive. This means that switching is only obtained by gas pressure and not to the use of electrical voltage. However, an embodiment being electrolytically switched is within the range of the subject application.
The hydrogen sensor according to the invention can be prepared by deposition of the several layers mentioned above on a substrate. This deposition can comprise sputtering such as co-sputtering of the several metals to obtain for example the magnesium transition metal layer.
It is possible that there is a distance between the optical switching device and the optical sensor which can be bridged by fiber optics. Furthermore it is possible to monitor a large number of optical switching devices with a single optical sensor.
The hydrogen sensor comprising the optical switching device can be embodied to have the optical properties reversible or non-reversible. An example for the last possibility is the use of a tag which shows exposure of an article or person in an environment in which hydrogen might be present. Such a tag can be disposable.
The invention will be further elucidated referring to embodiments shown in the drawing wherein:
In
If hydrogen is added to such an optical switching device 1 the Mg2Ni layer will convert to Mg2NiH4. The optical properties of this material are completely different from Mg2Ni.
According to the invention an artificial double layer comprising the layers 3 and 4 has been synthesized. Mg2NiH4 is transparent while hydrogenated titanium which is for example used in layer 4 remains reflective.
During tests it revealed that the reflection observed through the layer structure in an energy range 1.25-3 eV goes from around 60% before hydrogenation to about 5% at 1.9-2 eV in the totally hydrogenated layer 3. This is a ratio of 12 in reflection. At room temperature such hydrogenation, when a 5% H2 in Ar is used is effected in typical 10 seconds depending on the thickness of layer 4. A sensitivity of 0.3% H2 has been observed.
In
In
In the above some applications of the photovoltaic switching device according to the invention have been discussed. However it should be understood that further applications are possible both on Earth and in space. As example the use on the outer surface of a satellite is mentioned.
Number | Date | Country | Kind |
---|---|---|---|
1030299 | Oct 2005 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL2006/050268 | 10/27/2006 | WO | 00 | 7/7/2008 |