1. Technical Field
The subject matter of the present disclosure relates to the illumination arts, lighting arts, solid-state lighting arts, and related arts.
2. Description of Related Art
Lighting fixtures including recessed lighting fixtures can use a floodlight bulb for general lighting tasks, a spotlight bulb that produces a relatively narrow beam of intense light, or other lamps for directional lighting. These directional lamps are useful to highlight a subject or an otherwise unlit area. Conventionally, the prior art utilizes individual imaging optical elements including lenses, reflectors, and total-internal-reflection (TIR) optics or combinations thereof to form the light emitted from the light source into a beam. These imaging elements are typically designed with a single focal point in order to perfectly collimate the light coming from an idealized point light source located at the focal point. Alternatively, selected examples of prior art instead utilize optical elements designed with more than one focal point, however, these focal points are still located along the optical axis.
A problem associated with these types of imaging optical systems is that any positional non-uniformities in the light source itself, either with respect to color or luminance, are directly translated into the light beam. These non-uniformities can be present in virtually all types of sources including incandescent, halogen, fluorescent, HID, and solid-state light sources. As a result, when the beam is directed onto a surface, these non-uniformities are projected onto the surface as well, resulting in a visually unappealing appearance of the light beam. To prevent this from occurring, diffusive elements such as lenslet arrays, holographically patterned films, and even surface roughened materials are introduced into the optical system Of to smooth out the non-uniformities in the light beam. Alternatively, some degree of diffusion can be achieved by slightly moving the source away from the focal point of the optical system. In either case, however, the added diffusion also serves to widen the overall light beam making it very difficult to efficiently form the narrow, intense beams desired for many applications. Thus, the improvement in visual appearance resulting from the added diffusion comes at the cost decreased optical performance.
The present disclosure describes embodiments of an optical system for use in lighting devices. Embodiments of the lighting devices that are outfit with the optical system find use as replacements for a variety of lamps and lighting devices (e.g., MR/PAR/R directional lamps). As discussed more below, these embodiments deploy optical elements with features that form light from a light source into a light beam. In one embodiment, the optical elements have a plurality of focus points, which unlike conventional lenses and reflectors, do not all converge to a single focus point proximate the light source and off of the optical axis. Rather, one or more of the focus points are spaced apart from the light source so the collective configuration of focus points causes the light beam to exhibit favorable characteristics.
There are several characteristics that define the performance of these embodiments and, in particular, the properties of the light beam the embodiments of the optical system create. Measurements for these characteristics often occur in the far field (e.g., a distance at least 5-10 times the exit aperture size of the lamp and/or about one-half meter or further away from the lamp). The following definitions summarize one or more of the characteristics that can define a beam pattern that is peaked near the center of the light beam, on the optical axis of the optical system, with generally reduced intensity moving outward from the optical axis to the edge of the beam and beyond.
One characteristic is, for example, maximum beam intensity (also maximum beam candlepower (MBCP) or, since the MBCP can occur at or near the optical axis, center-beam candlepower (CBCP)). Maximum beam intensity measures the perceived brightness of the light at the maximum, or at the center, of the light beam. Another characteristic is beam width, which is represented by the full width at half maximum (FWHM). The FWHM is the angular width of the light beam at an intensity equal to one-half of the MBCP. Beam lumens is another characteristics that relates to FWHM. Beam lumens defines the integral of the lumens from the center of the light beam, outward to the intensity contour having one-half of the maximum intensity or, in another example, the lumens integrated out to the FWHM of the beam. In one example, if the integration of lumens continues outward in the light beam to the intensity contour having 10% of the maximum intensity, the integrated lumens may be referred to as the field lumens of the lighting device. On the other hand, if all of the lumens in the beam pattern are integrated, the result is referred to as the face lumens of the lighting device or, in another example, all of the light emanating from the face of the lighting device. The face lumens can be about the same as the total lumens, as measured in an integrating sphere, since typically little or no light the lamp emits comes from other than through the output aperture of the lamp.
The optical system maintains or improves on the desirable characteristics of the light beam that conventional directional lamps and other lighting devices generate. Use of the optical system can, for example, improve beam uniformity (i.e., color and intensity) and optical performance (e.g., center-beam candlepower (CBCP), beam angle, beam lumens) without adding additional cost to the overall lamp. In one embodiment, by improving beam uniformity at the lens level, examples of the lighting device that deploys the optical systems below can forgo use of certain diffusing elements, including moderate to heavily holographic diffusing films, because the optical system is so configured to perform functions of the diffusing element (e.g., smoothing of the light from the light source).
Other features and advantages of the disclosure will become apparent by reference to the following description taken in connection with the accompanying drawings.
Reference is now made briefly to the accompanying drawings, in which:
Where applicable like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
In the present example, the light source 102 is disposed on an optical axis 106. Light from the light source 102 impinges on an optical element 108, which is configured to form the light into a light beam 110. Examples of the optical element 108 can improve uniformity of the light beam (e.g., color and intensity) and maintain (or improve) optical performance (e.g., center-beam candle power (CBCP), beam angle, beam lumens, etc.) for the optical system 100 to satisfy design parameters, e.g., for directional lamps and other lighting devices. In one embodiment, the improvements in uniformity, e.g., to minimize non-uniformities that are the result of the light source 102, do not require additional physical components (e.g., lens elements and/or diffusing elements that are common in conventional directional lamps).
As best shown in
The optical element 108 can take the form of a lens element 140, wherein the regions 118, 120 can include individual optical facets that can direct light (e.g., refract and/or diffuse). These optical facets can comprise one or more concentric and/or adjacent rings of material (e.g., glass and/or polycarbonate). This material can be diffusive and/or transmissive and/or combinations thereof. As shown in
Design of the optical facets, e.g., selection of materials for the optical element 108 in the region 118, 120, curvature of the surfaces of the optical element 108 in the region 118, 120, and/or other physical features and characteristics of the optical element 108 in the regions 118, 120, may correspond to beam characteristics and/or performance that is desired for the light beam 110. The design of the optical facets can, in turn, determine the configurations and layout of focal signature 112. In one embodiment, the design of the optical facet (and, accordingly, the beam characteristics) define the position, orientation, and other features (e.g., the slope) of the focus lines 122, 124 and the position of the focus point 126, 128. In one example, the first offset angle 130 has a value that is different from the value of the second offset angle 132. Likewise the first focus point 126 can have different positions relative to the imaging regions 136 than the second focus point 128.
In the present example, the focus points 126, 128 for the optical element 108 are found outside of the imaging region 136 and spaced apart from the optical axis 106. In other examples, one or more of the focus points 126, 128 are found outside of the boundary 136 and one or more of the focus points 126, 128 are found inside of the boundary 136. This disclosure contemplates other configurations of the focal signature 112 in which at least one of the focus points 126, 128 reside on the optical axis. In context of the present disclosure, one or more of these combinations can cause the optical system 100 to form the light beam 110 with optical performance that reduces and/or eliminates certain non-uniformities the light source 102 may cause and which may show up as anomalies in the light beam 110.
In one example, the regions of the reflector element 242, e.g., the regions 218, 220, can have reflective properties that re-direct light from the light source 202. The re-directed light can form the light beam 210. As shown in
In one example, the regions of the total internal reflection 344, e.g., the regions 318, 320, can have properties that permit light to diffuse or otherwise pass light from the light source 202. As shown in
As also shown in
Examples of the LEDs 404 can encompass organic and inorganic light-emitting diodes (LED) devices of various constructions. These LED devices can comprise bare semiconductor chips, encapsulated semiconductor chips, as well as various configurations of chip packages in which the LED device is mounted on one or more intermediate elements such as a sub-mount, a lead-frame, and a surface mount support. In one or more of examples, the LED device can incorporate a reflective member in the form of a cup, dome, cylinder, and/or other shape to direct light, e.g., away from the light source 402 toward the lens element 440. In still other examples, the LEDs 404 can comprise a coating or other material layer, e.g., a wavelength-converting phosphor coating with or without an encapsulant.
Examples of the reflector 452 may include conical and/or frusto-conical members that revolve about the optical axis 406. These members can have an entrance aperture proximate the light source 402 and an exit aperture proximate the lens element 440. This configuration permits light from the light source 202 to pass through the reflector 452 to the lens element 440. Dimensions for the exit aperture allow the reflector 452 to fit into the housing assembly 454, which can itself be dimensionally constrained to fit within industry standard form factors, standards set forth for the MR/PAR/R directional lamps.
The reflector 450 can comprise various metals (e.g., aluminum), plastics, and composites that provide sufficient strength and reliability as well as meet certain cost constraints for products of this type. The reflective surface 452 can exhibit high optical reflectivity. This feature may be a material property of the reflector 450 as constructed. In one example, a coating or material layer is disposed on the inner surface to form the reflective surface 452. Exemplary materials include a coated aluminum material by ALANOD Aluminum-Verdlung GMBH & Co. KG having about 92% to 98% visible reflectance and a polymer film produced by 3M having about 97% to 98% visible reflectance.
As used herein, an element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or functions, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the claimed invention should not be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
This written description uses examples to disclose embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.