The present disclosure relates to an optical system and a method for imaging an object onto an image plane of a microscope.
For use in a microscope, optical systems are known, which provide a zoom function enabling an object to be imaged onto an image plane with continuously variable magnification. For this purpose, such an optical system includes one or more lens groups which can be moved along the optical axis for zooming between a short focal length extremity and a long focal length extremity. Usually, the optical system includes a cam mechanism or the like in order to move the zoom lens groups in an interdependent manner.
A microscope including an optical zoom system as described above further comprises a focusing device which is designed to focus the object onto the image plane for any zoom setting, i.e. for any positioning of the zoom lens groups along the optical axis. Usually, such a focusing device is configured to vary an axial distance from an object plane, on which the object is located, to the image plane. For this purpose, the focusing device may move the optical system relative to a microscope stage on which the object is arranged, or vice versa.
Providing the microscope with such a focusing device involves considerable effort in terms of the components which have to be provided in order to achieve the relative movement between the optical system and the microscope stage. Further, as the focusing device has to be operated by the user, the focusing operation is cumbersome and time-consuming.
Therefore, it is an object of the present disclosure to provide an optical system for imaging an object onto an image plane of a microscope, said optical system enabling a focusing operation in a convenient and precise manner.
In order to achieve the afore-mentioned object, an optical system for imaging an object onto an image plane of a microscope is provided, the optical system comprising a first lens group and a fourth lens group which are stationary, and a second lens group and a third lens group which are independently movable along an optical axis of the optical system for focusing the object onto the image plane while zooming between a short focal length extremity and a long focal length extremity.
The optical system as described above enables continuously zooming, i.e. continuously varying a total focal length of the optical system between the short focal length extremity and the long focal length extremity, and at the same time continuously focusing, i.e. continuously varying a distance from the object plane to the image plane.
A coupled zooming and focusing control is achieved by independently moving the second lens group and the third lens group while the first lens group and the fourth lens group remain stationary. Thus, it is possible to simultaneously adjust the magnification, based on which the object is imaged onto the image plane of the microscope, and the axial distance from the object plane, on which the object is arranged, to the image plane. As a result, the optical system enables the user of the microscope to realize the desired zoom and focus adjustments in a convenient and precise manner.
In this respect, it is to be noted that the afore-mentioned image plane is meant to be any plane on which an image is created by the optical system. In particular, such an image plane may comprise a plane on which a sensor as for instance a digital camera is located, and a plane on which an intermediate image is generated.
Preferably, the first lens group having negative power, the second lens group having positive power, the third lens group having positive power and the fourth lens group having negative power are arranged in this order from an object side. According to this embodiment, the stationary lens groups are formed the outer lens groups of the optical system, i.e. by the first and fourth lens groups facing towards the object side and the image side, respectively. Thus, a compact design of the optical system is achieved.
In a preferred embodiment, the optical system is configured to be telecentric on an object side and telecentric on an image side. Such a double-sided telecentric configuration enables the object to be imaged with high image quality.
In a preferred embodiment, the short focal length extremity and the long focal length extremity define a zoom range from Z1=0.9 to Z2=5. A limitation of the zoom range to the afore-mentioned values Z1 and Z2 allows a design of the optical system in which the moving distances of the second lens group and the third lens group when performing the coupled zooming and focusing operation do not become too large. Thus, a compact design of the optical system is achieved.
Preferably, memory means are provided for storing information assigning each combination of zoom setting and focus setting to a corresponding lens group position along the optical axis for each of the second and third lens groups. Storing the zoom and focus information enables the optical system to be controlled in a simple and precise manner.
In a preferred embodiment, the optical system comprises an optical element for coaxial light coupling. Such an optical element may be used for coupling illumination light emitted by a light source of the microscope into the optical system. Thus, the optical system can be used for both illuminating and imaging the object.
In a preferred embodiment, the optical element is arranged in a segment of the optical system where an angular characteristic of light passing the optical system is the same for the whole range of zoom and focus positions of the second lens group and the third lens group. In case that, for instance, an illumination path is coupled into the optical system by means of the afore-mentioned optical element, the entire zoom range, i.e. all zoom positions of the second and third lens groups, can be supplied with light passing the optical system from the object plane to the image plane without having to perform a corresponding zoom operation on the illumination light path which is coupled into the optical system by the optical element.
Preferably, the optical element is arranged in the fourth lens group.
In case that the optical element is arranged in the fourth lens group, the latter preferably comprises a first sub-lens group having negative power and a second sub-lens group having positive power arranged in this order from the object side, wherein the optical element is arranged between the first sub-lens group and the second sub-lens group.
According to another aspect, a method is provided for imaging an object onto an image plane of a microscope, comprising the steps of holding a first lens group and a fourth lens group stationary during imaging of the object; and moving a second lens group and a third lens group independently along an optical axis for focusing the object onto the image plane while zooming between a short focal length extremity and a long focal length extremity.
According to another aspect, a microscope is provided comprising an image plane and an optical system as described above.
Hereinafter, preferred embodiments are described with reference to the drawings in which:
The optical system 100 comprises a first lens group L1 having negative power, a second lens group L2 having positive power, a third lens group L3 having positive power and a fourth lens group L4 having negative power, the lens group L1 to L4 being arranged in this order from the object plane OP1, OP2 to the image plane IP. The first lens group L1 facing towards the object plane OP1, OP2 and the fourth lens group L4 facing to the image plane IP are stationary. In other words, upon focusing and zooming, the two outer lens groups L1, L4 of the optical system 100 remain unchanged in their positions along the optical axis O. In contrast, both inner lens groups L2, L3 of the optical system 100 are independently moved along the optical axis O for focusing the object onto the image plane IP while zooming between the long focal length extremity, i.e. Vmin, and the short focal length extremity, i.e. Vmax.
Specifically, both the second lens group L2 and the third lens group L3 are moved from the object plane OP1, OP2 to the image plane IP while zooming between the long focal length extremity and the short focal length extremity. Further, the second lens group is moved towards the object plane OP1, OP2, and the third lens group L3 is moved towards the image plane IP when the distance from the object plane to the image plane IP is increased, i.e. when the object plane is moved from OP1 to OP2. This focusing movement of the second lens group L2 and the third lens group L3 applies for both the long focal length extremity and the short focal length extremity.
According to the embodiment shown in
Each combination of zoom setting and focus setting corresponds to a combination of an associated position of the second lens group L2 and an associated position of the third lens group L3 along the optical axis O. Thus, an information assigning each combination of zoom setting and focus setting to the corresponding lens group positions of the second and third lens groups L2, L3 may be stored beforehand so that this information can be referred to when a specific zoom setting and a specific focus setting shall be provided.
Preferably, the optical element 202 is arranged in a segment of the optical system 200 where an angular characteristic of light passing through the optical system 200 is the same for the whole range of zoom and focus positions of the second lens group L2 and the third lens group L3. In other words, the segment of the optical system 200, which preferably includes the optical element 202, exhibits a constant angular characteristic with respect to the light passing the optical system 100 throughout the entire zoom range from the short focal length extremity to the long focal length extremity as well as throughout the entire focus range FR defined by OP1 and OP2. As the afore-mentioned angular characteristic remains unchanged while performing the coupled zoom and focus operation, the light passing the optical system 200 from the object plane OP1, OP2 to the image plane IP1 can be supplied to all zoom positions of the second and third lens group L2, L3 without any need to perform a corresponding zoom operation on the illumination light path which is coupled into the optical system 200 by means of the optical element 202.
The microscope 308 further comprises a second magnification changing subsystem 312 including a second digital camera 314 and a second optical magnification system 316. The second digital camera 314 and the second optical magnification system 316 are aligned along a second optical axis O2.
The microscope 308 further comprises a controller 318 including a memory 320. Further, the microscope 308 comprises a microscope stage 322 on which an object 324 is arranged. The microscope stage 322 is movable in a direction orthogonal to the optical axis O1 and O2 by means of a positioning device 326. In particular, the controller 318 is configured to cause the positioning device 326 to laterally shift the microscope stage 322 such that a target region 328 of the object 324 is positioned on the optical axis O1 of the first magnification changing subsystem 309 or the optical axis O2 of the second magnification changing subsystem 312.
Whereas the first magnification changing subsystem 309 comprising the optical system 100 may be used as an optical zoom system, the second magnification changing subsystem 312 may be used as a digital zoom system. For this, the second digital camera 314 may be provided with a digital zoom function whereas the second optical magnification system 316 is configured to provide a fixed magnification.
For instance, in the configuration shown in
It is to be noted that the microscope 308 shown in
Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus. Some or all of the method steps may be executed by (or using) a hardware apparatus, like for example, a processor, a microprocessor, a programmable computer or an electronic circuit. In some embodiments, some one or more of the most important method steps may be executed by such an apparatus.
Depending on certain implementation requirements, embodiments of the disclosure can be implemented in hardware or in software. The implementation can be performed using a non-transitory storage medium such as a digital storage medium, for example a floppy disc, a DVD, a Blu-Ray, a CD, a ROM, a PROM, and EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed. Therefore, the digital storage medium may be computer readable.
Some embodiments according to the disclosure comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present disclosure can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may, for example, be stored on a machine readable carrier.
Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier.
In other words, an embodiment of the present disclosure is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.
A further embodiment of the present disclosure is, therefore, a storage medium (or a data carrier, or a computer-readable medium) comprising, stored thereon, the computer program for performing one of the methods described herein when it is performed by a processor. The data carrier, the digital storage medium or the recorded medium are typically tangible and/or non-transitionary. A further embodiment of the present disclosure is an apparatus as described herein comprising a processor and the storage medium.
A further embodiment of the disclosure is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may, for example, be configured to be transferred via a data communication connection, for example, via the internet.
A further embodiment comprises a processing means, for example, a computer or a programmable logic device, configured to, or adapted to, perform one of the methods described herein.
A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.
A further embodiment according to the disclosure comprises an apparatus or a system configured to transfer (for example, electronically or optically) a computer program for performing one of the methods described herein to a receiver. The receiver may, for example, be a computer, a mobile device, a memory device or the like. The apparatus or system may, for example, comprise a file server for transferring the computer program to the receiver.
In some embodiments, a programmable logic device (for example, a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are preferably performed by any hardware apparatus.
Number | Date | Country | Kind |
---|---|---|---|
18248050.9 | Dec 2018 | EP | regional |
The present application is a division of pending U.S. application Ser. No. 17/417,817 filed Jun. 24, 2021 which is the U.S. national phase of International Application No. PCT/EP2019/086176 filed Dec. 19, 2019, which claims priority of European Application No. 18248050.9 filed Dec. 27, 2018, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17417817 | Jun 2021 | US |
Child | 18743573 | US |