The present invention relates to an optical system, a display device, a projection device, and an illumination device.
Priority is claimed on Japanese Patent Application No. 2020-136940, filed Aug. 14, 2020, the content of which is incorporated herein by reference.
A diffusion plate diffuses incident light in various directions. Diffusion plates are used in various applications such as displays, projectors, and illuminations.
For example, Patent Document 1 describes a projector using laser light emitted from a laser light source. The projector described in Patent Document 1 displays a rectangular image by causing laser light to pass through a diffusion plate and a light pipe. Further, Patent Document 2 describes a light source device that has a plurality of diffusion regions. The plurality of diffusion regions are provided adjacent to each other and have different diffusion characteristics. Each of the plurality of diffusion regions is rotatable around a rotation axis.
In the projector described in Patent Document 1, light that is diffused in a circular shape by the diffusion plate is incident on the rectangular light pipe. As a result, in the projector described in Patent Document 1, an input loss of light occurs. Further, in the light source device of Patent Document 2, when a light diffusion element having the plurality of diffusion regions rotates, the shape of the diffused light becomes circular. As a result, in the light diffusion element described in Patent Document 2, an input loss of light occurs.
The present invention has been made in view of the above problems, and an object the present invention is to provide an optical system, a display device, a projection device, and an illumination device with high light utilization efficiency.
In order to solve the above problems, the present invention provides the following means.
An optical system according to a first aspect includes: a coherent light source; and a fixed diffusion plate and a relative movement diffusion plate which intersect with a traveling direction of light emitted from the coherent light source, wherein the fixed diffusion plate emits a light having a rectangular shape from an incident light, and wherein, in the relative movement diffusion plate, a diffusion surface of the light moves relative to the incident light.
In the optical system according to the aspect described above, the fixed diffusion plate and the relative movement diffusion plate may be arranged in the order of the fixed diffusion plate and the relative movement diffusion plate in the traveling direction of the light.
In the optical system according to the aspect described above, the fixed diffusion plate and the relative movement diffusion plate may be arranged in the order of the relative movement diffusion plate and the fixed diffusion plate in the traveling direction of the light.
In the optical system according to the aspect described above, the relative movement diffusion plate may be a rotating diffusion plate that is rotatable and a rotating surface of the relative movement diffusion plate intersects with the traveling direction of the light.
In the optical system according to the aspect described above, in the relative movement diffusion plate, convex lenses or concave lenses with random radii of curvature may be randomly disposed on the diffusion surface.
In the optical system according to the aspect described above, when a diffusion angle of the fixed diffusion plate is θa and a diffusion angle of the relative movement diffusion plate is θb, θb/θa ≤ 0.76 may be satisfied.
In the optical system according to the aspect described above, the fixed diffusion plate may be a microlens array in which a plurality of microlenses are arranged in a matrix in a plan view.
The optical system according to the aspect described above may further include: an integrator lens, wherein the integrator lens may be behind the fixed diffusion plate and the relative movement diffusion plate in the traveling direction of the light.
The optical system according to the aspect described above may further include: an integrator lens, wherein the integrator lens may be behind the fixed diffusion plate and the relative movement diffusion plate in the traveling direction of the light, wherein the microlens array may have basic cell regions bounded by a plurality of virtual column lines each of which passes through an average position in a row direction of centers of the microlenses arranged in a column direction among the plurality of microlenses and extends in the column direction, and a plurality of virtual row lines each of which passes through an average position in a column direction of centers of the microlenses arranged in a row direction among the plurality of microlenses and extends in the row direction, and wherein a ratio of a long side to a short side of the integrator lens may be substantially the same as a ratio of a long side to a short side of each of the basic cell regions.
A display device according to a second aspect includes the optical system according to the aspect described above.
A projection device according to a third aspect includes the optical system according to the aspect described above.
An illumination device according to a fourth aspect includes the optical system according to the aspect described above.
According to the optical system according to the above aspect, it is possible to enhance the light utilization efficiency.
Hereinafter, the present embodiment will be described in detail with appropriate reference to the drawing. In the drawings used in the following description, characteristic portions may be enlarged for convenience to make it easier to understand the characteristics, and the dimensional ratios of each component may differ from the actual ones. Materials, dimensions, and the like exemplified in the following description are examples, but the present invention is not limited to them and can be implemented with appropriate modifications within a scope in which the effects of the present invention are still exhibited.
First, directions will be defined. A surface on which the fixed diffusion plate 20 spreads is defined as an xy plane, an arbitrary direction on the xy plane is defined as an x direction, and a direction perpendicular to the x direction is defined as a y direction. The x direction is an example of a column direction. The y direction is an example of a row direction. Further, a direction orthogonal to the xy plane of the fixed diffusion plate 20 is defined as a z direction.
The coherent light sources 10B, 10G, and 10R emit coherent light. The coherent light sources 10B, 10G, 10R are lasers, for example. The coherent light source 10B shown in
Coherent light produces speckle noise. The speckle noise is a fine random interference pattern generated as noise by a diffusion action of an irradiated object (for example, a screen) and interference with coherent laser light. For example, the speckle noise causes significant degradation of image quality. When the speckle noise occurs, each color glares and does not become white.
The light from each of the coherent light sources 10B, 10G, and 10R is incident on the fixed diffusion plate 20 and the rotating diffusion plate 30. When the coherent light is spread by the fixed diffusion plate 20 and the rotating diffusion plate 30, the speckle noise is reduced. In the optical system 100 shown in
The fixed diffusion plate 20 is a rectangular diffusion plate that diffuses the incident light in a rectangular shape. Diffusing the incident light in a rectangular shape means that a ratio of a 10% angular width of the diffused light in the x direction to a 10% angular width of the diffused light in an xy direction is less than 1 (10% angular width of diffused light in x direction / 10% angular width of diffused light in xy direction < 1.0). The 10% angular width of the diffused light is a range of an angle in which an intensity distribution is fitted through a Gaussian function and an intensity is 10% or more of the maximum intensity in a fitting curve.
The fixed diffusion plate 20 is, for example, a microlens array.
The fixed diffusion plate 20 has a plurality of microlenses 21 arranged in a matrix in a plan view in the z direction, for example. Each of the microlenses 21 is, for example, substantially rectangular. Each of the plurality of microlenses 21 is arranged on the basis of a basic pattern.
The basic pattern is a pattern in which basic cell regions bounded by virtual column lines Vc and virtual row lines Vr are aligned in the x direction and the y direction. The virtual column lines Vc are a plurality of virtual column lines each of which passes through an average position in the row direction (the y direction) of centers of the microlenses 21 arranged in the column direction (the x direction) and extends in the x direction. The virtual row lines Vr are a plurality of virtual row lines each of which passes through an average position in the column direction (the x direction) of centers of the microlenses 21 arranged in the row direction (the y direction) and extends in the y direction.
Specifically, the average position in the row direction (the y direction) of the centers of the microlenses 21 arranged in the column direction (the x direction) and the average position in the column direction (the x direction) of the centers of the microlenses 21 arranged in the row direction (the y direction) can be calculated by observing the microlenses 21 using an optical microscope and specifying the positions in the row direction (the y direction) of ten microlenses 21 arranged in the column direction (the x direction) and the positions in the column direction (the x direction) of ten microlenses 21 arranged in the row direction (the y direction).
A minimum unit bounded by two virtual column lines Vc and two virtual row lines Vr is a basic cell region. When a ratio of a length Gx in the x direction to a length Gy in the y direction of the basic cell region substantially matches a ratio of a length in the x direction to a length in the y direction of the integrator lens 40, which will be described later, the light utilization efficiency of the optical system 100 is particularly enhanced. Substantially matching means that a difference is within a numerical range of 10% with respect to any value.
The microlenses 21 are densely present in the fixed diffusion plate 20. That is, there is no non-lens area between the microlenses 21. Therefore, ridgelines are formed between the microlenses 21. If the height and direction of the ridgelines are irregular, a diffraction by the fixed diffusion plate 20 is curbed. The adjacent ridgelines are preferably not parallel to each other.
The microlenses 21 are, for example, concave lenses that are recessed with respect to a reference plane Rp of the fixed diffusion plate 20. The microlenses 21 may be, for example, convex lenses that project with respect to the reference plane Rp. The reference plane Rp is a plane parallel to the xy plane and in contact with the most projecting portion of a first surface 20a. The reference plane Rp is, for example, the surface of a substrate before processing concave portions that will become the microlenses 21 of the fixed diffusion plate 20. Although
The fixed diffusion plate 20 is made of, for example, a material that can transmit light in an incidence wavelength band. The fixed diffusion plate 20 is, for example, optical glass, crystal, sapphire, a resin plate, or a resin film. The optical glass is, for example, quartz glass, borosilicate glass, white plate glass, or the like. The resin is, for example, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), a cyclic olefin copolymer (COC), or the like. Inorganic materials such as the optical glass, the crystal, and the sapphire are excellent in light resistance. Further, the crystal and the sapphire are excellent in heat dissipation.
The fixed diffusion plate 20 is manufactured through a resist coating step, an exposure/development step, and an etching step.
First, in the resist coating step, a resist R1 is coated on a substrate S as shown in
Then, as shown in
The grayscale mask Gm is designed on the basis of the basic pattern shown in
Next, as shown in
Next, as shown in
The rotating diffusion plate 30 is rotatable with its rotating surface intersecting with the traveling direction of the light. When the rotating diffusion plate 30 rotates, a diffusion surface of the light moves relative to the incident light. The rotating diffusion plate 30 is an example of a relative movement diffusion plate. The rotating diffusion plate 30 only has to be a rotating diffusion plate in which the diffusion surface of the light moves relative to the incident light. For example, instead of the rotating diffusion plate 30, a vibration diffusion plate that vibrates may be used.
The rotating diffusion plate 30 is, for example, a frosted diffusion plate or a microlens type diffusion plate. The rotating diffusion plate 30 may be a rectangular diffusion plate that diffuses the incident light in a rectangular shape or a circular diffusion plate that diffuses the incident light in a circular shape in a non-rotating state. In a case where the rotating diffusion plate 30 is used alone, the diffused light becomes circular because the diffusion surface moves relative to the incident light regardless of whether the rectangular diffusion plate or the circular diffusion plate is used.
In the rotating diffusion plate 30, for example, the convex lenses or the concave lenses with random radii of curvature are randomly disposed on the diffusion surface. Since the radii of curvature and the arrangement are random, it is easy to spread the coherent light efficiently and reduce the occurrence of the speckle noise.
The fixed diffusion plate 20 and the rotating diffusion plate 30 may have an antireflection film on at least one surface thereof. The antireflection film is, for example, a laminated film in which a low refractive index layer and a high refractive index layer are laminated. The low refractive index layer is, for example, SiO2, MgF2, or CaF2. The high refractive index layer is, for example, Nb2O5, TiO2, Ta2O5, Al2O3, HfO2, or ZrO2. SiO2, Nb2O5, and Ta2O5 are excellent in light resistance and are not easily deteriorated even when irradiated with high-density light emitted from a high-power laser or the like. Further, the antireflection film may have a moth-eye structure in which fine irregularities with a pitch of several hundred nm are arranged.
A diffusion angle θa of the fixed diffusion plate 20 and a diffusion angle θb of the rotating diffusion plate 30 preferably satisfy θb/θa ≤ 0.76.
The lower limit of θb/θa is preferably greater than zero. Further, it is more preferable to satisfy θb/θa ≤ 0.2.
The diffusion angle θ of the diffusion plate can also be defined as a spread angle of light emitted from the diffusion plate when parallel light is incident.
When the diffusion angles θa and θb satisfy the above relationship, the light after passing through the two diffusion plates becomes the light having the rectangular shape. As described above, in a case where the rotating diffusion plate 30 is used alone, the light that passes through it spreads in a circular shape in principle. On the other hand, when two diffusion plates are used and these two diffusion plates satisfy the above relationship, the light that passed through them becomes the light having the rectangular shape. An integrator lens and an image display device are irradiated with the light after passing through the diffusion plates. These members are quadrangular, and if the diffused light has the rectangular shape, the light utilization efficiency increases.
The integrator lens 40 is a lens that enhances the uniformity of illuminance on the irradiated surface. When the light passes through the integrator lens 40, the accuracy of the projected image increases. The integrator lens 40 is behind the fixed diffusion plate 20 and the rotating diffusion plate 30 in the traveling direction of the light.
When a ratio of a length in the x direction to a length in the y direction of the integrator lens 40 substantially matches a ratio of a length Gx in the x direction to a length Gy in the y direction of the basic cell region, the light utilization efficiency of the optical system 100 is particularly enhanced.
When the optical system according to the present embodiment is used, the light utilization efficiency is higher than in a case where a circular diffusion plate that diffuses light in a circular shape is used as the fixed diffusion plate 20. Further, when the diffusion angle θa of the fixed diffusion plate 20 and the diffusion angle θb of the rotating diffusion plate 30 satisfy a predetermined relationship, the light after passing through the two diffusion plates can be approximated to a rectangular shape, and the light utilization efficiency can be further enhanced.
Although the first embodiment of the present invention has been described in detail above, the present invention is not limited to this example, and various modifications and changes can be made within the scope of the gist of the present invention described in the scope of claims.
In the optical system 101 shown in
The optical systems 100 and 101 described above can be used for a display device, a projection device, an illumination device, and the like.
Blue light is emitted from the coherent light source 10B. After passing through the fixed diffusion plate 20 and the phosphor wheel PW, the light is incident on the rotating diffusion plate 30. The phosphor wheel PW produces yellow (green, red) by being irradiated with a blue laser, and the light reaches the rotating diffusion plate 30. After passing through the rotating diffusion plate 30, the light is condensed by the integrating lens 40 and the plurality of lenses L. The condensed light reaches the digital microdevice DLD via the prism TIR. The digital microdevice DLD controls ON/OFF of the light and outputs the light to the outside via the prism TIR.
In Examples 1 to 15 and Comparative Examples 1 to 20 below, an optical system shown in
The entire area of the screen was set to 40 mm × 40 mm, and the evaluation area was set to an area of 18.5 mm × 18.5 mm in the center of the entire area. Then, the light utilization efficiency of the evaluation area with respect to the entire area and the diffusion characteristics in the x direction and the xy direction were obtained. The xy direction is a direction that is tilted by 45° with respect to each of the x direction and the y direction.
In Examples 1 to 4, the fixed diffusion plate 20 was set to a rectangular diffusion plate that diffuses the incident light in a rectangular shape, and the rotating diffusion plate 30 was set to a circular diffusion plate that diffuses the incident light in a circular shape. In Comparative Examples 1 to 6, the fixed diffusion plate 20 was set to a circular diffusion plate, and the rotating diffusion plate 30 was set to a circular diffusion plate. In Examples 1 to 4 and Comparative Examples 1 to 6, a detection intensity in the entire area was set to about 1425 mW. In Examples 1 to 4, the diffusion angle θa of the fixed diffusion plate 20 was set to 5°, and in Comparative Examples 1 to 6, the diffusion angle θa of the fixed diffusion plate 20 was set to 7°. Then, the diffusion angle θb of the rotating diffusion plate 30 was changed, and evaluation was performed in each case. Table 1 below summarizes the results.
Examples 1 to 4 had higher light utilization efficiency than Comparative Examples 1 to 6. Further, when the diffusion angle θb/diffusion angle θa is smaller than 0.8, the shape of the diffused light approaches a rectangular shape.
In Comparative Examples 5 to 8, the fixed diffusion plate 20 was set to a rectangular diffusion plate, and the rotating diffusion plate 30 was set to a circular diffusion plate. In Comparative Examples 7 to 13, the fixed diffusion plate 20 was set to a circular diffusion plate, and the rotating diffusion plate 30 was set to a circular diffusion plate. In Examples 5 to 8 and Comparative Examples 7 to 13, a detection intensity in the entire area was set to about 300 mW. In Examples 5 to 8, the diffusion angle θa of the fixed diffusion plate 20 was set to 10°, and in Comparative Examples 7 to 13, the diffusion angle θa of the fixed diffusion plate 20 was set to 14°. Then, the diffusion angle θb of the rotating diffusion plate 30 was changed, and evaluation was performed in each case. Table 2 below summarizes the results.
Examples 5 to 8 had higher light utilization efficiency than Comparative Examples 7 to 13. Further, when the diffusion angle θb/diffusion angle θa is smaller than 0.8, the shape of the diffused light approaches a rectangular shape.
In Comparative Examples 9 to 15, the fixed diffusion plate 20 was set to a rectangular diffusion plate, and the rotating diffusion plate 30 was set to a circular diffusion plate. In Comparative Examples 14 to 20, the fixed diffusion plate 20 was set to a circular diffusion plate, and the rotating diffusion plate 30 was set to a circular diffusion plate. In Examples 9 to 15 and Comparative Examples 14 to 20, a detection intensity in the entire area was set to about 100 mW. In Examples 9 to 15, the diffusion angle θa of the fixed diffusion plate 20 was set to 16°, and in Comparative Examples 14 to 20, the diffusion angle θa of the fixed diffusion plate 20 was set to 22°. Then, the diffusion angle θb of the rotating diffusion plate 30 was changed, and evaluation was performed in each case. Table 3 below summarizes the results.
Examples 9 to 15 had higher light utilization efficiency than Comparative Examples 14 to 20. Further, when the diffusion angle θb/diffusion angle θa is smaller than 0.8, the shape of the diffused light approaches a rectangular shape.
Further, the results of these examples and comparative examples are summarized in
Number | Date | Country | Kind |
---|---|---|---|
2020-136940 | Aug 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/029838 | 8/13/2021 | WO |