Optical system for a flow cytometer with an interrogation zone

Information

  • Patent Grant
  • 8432541
  • Patent Number
    8,432,541
  • Date Filed
    Thursday, November 4, 2010
    14 years ago
  • Date Issued
    Tuesday, April 30, 2013
    11 years ago
Abstract
The optical system of the preferred embodiments includes a first light source that creates a first beam of a first wavelength, a first collimating element that collimates the first beam, a second light source 102 that creates a second beam of a second wavelength, a second collimating element that collimates the second beam, a beam combining element that combines the collimated beams, and a focusing element that focuses the combined collimated beam to a single point.
Description
TECHNICAL FIELD

This invention relates generally to the flow cytometer field, and more specifically to a new and useful optical system in the flow cytometry field.


BACKGROUND

The conventional optical system for flow cytometers requires aligning the light sources in relation to the lenses to shine multiple frequencies of light on a sample simultaneously. Since the light source affects the detection of each of the detector subsystems, this alignment must be precise or the performance of the system is dramatically reduced. To achieve this precision, however, requires expensive manufacturing techniques and/or time-consuming manual alignment. Thus, there is a need in the flow cytometer field to create a new and useful optical system. This invention provides such new and useful optical system.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic representation of a first preferred embodiment of the invention.



FIG. 2 is a cross-sectional view of a flow cell of the preferred embodiment of the invention.



FIG. 3 is a detailed schematic representation of a collimated beam that is incident on a focusing element of the preferred embodiment of the invention.



FIG. 4 is a schematic representation of an alternative embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


As shown in FIG. 1, the optical system of the preferred embodiments includes a first light source 101 that creates a first beam of a first wavelength, a first collimating element 103 that collimates the first beam, a second light source 102 that creates a second beam of a second wavelength, which is different than the first wavelength, a second collimating element 104 that collimates the second beam, a beam combining element 107 that combines the collimated beams of the first and second collimating elements to form a combined collimated beam that is multichromatic, and a focusing element no that focuses the combined collimated beam to a single point. The optical system 100 was specifically designed to focus a multichromatic beam at a single point in an interrogation zone of a flow cytometer, but may alternatively be used in any suitable device or system. The optical system 100 overcomes the disadvantages of the conventional optical systems for flow cytometers because, even if the light sources are not perfectly aligned with each other (or the beam combing element 107), enough light from the light sources will be combined to form an adequate multichromatic beam.


The light sources 101 and 102, which are preferably mounted to the base, function as two independent light sources. The light sources 101 and 102 are preferably lasers of different light frequencies. The first light source 101 is preferably a blue laser and the second light source 102 is preferably a red laser, but the light sources 101 and 102 may alternatively be any two different light sources that vary in wavelength, frequency, phase, polarization, light signal, and/or any suitable light characteristic. The light sources 101 and 102 may additionally be generated from a laser diode and/or any suitable optical setup to generate a suitable light source. In an alternative embodiment, as shown in FIG. 4, the system 100 may further include a third light source (not shown) that produces a third beam with yet another light characteristic.


The collimating elements 103 and 104 function to collimate light from the light sources 101 and 102, respectively. The collimated elements 103 and 104 preferably convert light into a collimated beam where light energy is uniformly (or near uniformly) distributed across a larger area. The collimated beam may alternatively have a gradient of light energy, a Gaussian distribution, or any suitable beam parameter of distributed light energy. The collimated beam preferably travels in a single direction and does not disperse radially outward from a point. The collimating element 103, which is preferably mounted to the first light source 101, is located between the first light source 101 and the beam combining element 107. The collimating element 104, which is preferably mounted to the second light source 102, is located between the second light sources 102 and the beam combining element 107. In one version, one or both of the collimating elements 103 and 104 may be combined or integrated with the light sources 101 and 102, such that each light source 101 and 102 produces collimated light. In another version, one or both of the collimating elements 103 and 104 may be fastened to, or otherwise optically communicating with, the light sources 101 and 102. The collimating elements 103 and 104 are preferably conventional collimating lens, but may alternatively be any suitable device to collimate the beams from the light sources 101 and 102.


The beam combining element 107, which is preferably mounted to the base, functions to combine the collimated beams from the light sources 101 and 102. The light between the beam combining element 107 and the focusing element 110 is preferably a collimated beam. Additionally, the light entering the beam combining element 107 is preferably a collimated beam (or beams). The collimated beam functions to reduce the tolerances and/or difficulty of optical alignment and manufacturing tolerances of the optical system. The loss of light due to minor misalignment (where at least a designated minimum percentage of light hits a target) is preferably allowable due to the light being a collimated beam. A collimated beam is preferably used to traverse the longer distances of the optical system. In a first version, the beam combining element 107 is a conventional beam splitter. The beam splitter is preferably selectively transmissive and preferably allows the light of an appropriate bandwidth from at least one light source to pass through it, and the beam splitter is also preferably reflective to allow at least one other light source to be reflected from it. Preferably, the collimated light from at least one light source 102 passes through the beam splitter 107, while collimated light from at least one other light source 101 is reflected off the other side of the beam splitter 107, to create multichromatic collimated beams 118. In other versions, the beam combining element 107 may include beam combiners, mirrors, optical prisms, fiber optics, and/or any suitable device or method to combine the beams from the light sources 101 and 102.


The focusing element 110 functions to focus the multichromatic collimated beams 118 to a single point. The focusing element 110 is preferably an achromatic lens, but may also be multiple lenses and/or lens configurations or any other suitable focusing element. The focusing element 110 is preferably positioned such that the light is focused on the interrogation zone 119 of the flow cytometer. As shown in FIG. 3, the focusing element preferably allows for slight misalignment of the multichromatic collimated beam. The focusing element may additionally allow for slight misalignment of the first light source 101 with respect to the collimated light from the second light source 102. The focusing element preferably has a target area on the focusing element where incident light is focused on the interrogation zone 119. The target area is preferably suitably large (e.g. magnitude of a collimated beam width) to allow for variation and small errors in optical alignment. The light energy of the multichromatic collimated beam is preferably distributed over the area of the collimated beam cross-section such that a majority or sufficient amount of light energy is incident on the target area. For example, a multichromatic collimated beam may be misaligned by 10% but the focusing element 110 is preferably able to focus 90% of the light (the part that is incident on the target area) on the interrogation zone and this is preferably sufficient. The target area is preferably uniform in focusing capability but may alternatively have a distribution of focusing capability, or any suitable mapping of focusing capability and may be any suitable shape or size. In a first version, as shown in FIG. 2, the focusing element 110 is preferably mounted to a flow cell 130 of a flow cytometer. The flow cell 130 is preferably similar to the one disclosed in PCT Application number US2007/083991 filed 7 Nov. 2007, which is incorporated in its entirety by this reference, but may alternatively be any suitable interrogation zone 119 of a flow cytometer. The light within the flow cell 130 (the light from the focusing element 110) is preferably an uncollimated (or focused) beam. The flow cell 130 is preferably manufactured and/or controlled with tight dimensional and optical tolerances such that precise optical alignment is achieved within the flow cell 130. Additionally, the distance the laser light travels is preferably minimized to reduce the likelihood of misalignment. In a second version, the focusing element 110 may be mounted, either directly or indirectly, to the beam combining element 107, a bracket 120, and/or to a base.


In an alternative embodiment, as shown in FIG. 4, the optical system 100 includes one or more additional light sources 102′, collimating elements 104′, and/or beam combining elements 107′. Groups of at least one light source, at least one collimating element, and at least one beam combining element may form optical “stages” in which additional light beams are added to the combined collimated beam, preferably similar to the group of the second light source 102, the second collimating element 104, and the beam combining element 107 but alternatively in any suitable manner. The optical system 100 may include second, third, fourth, or any suitable number of optical stages to add collimated light beams of additional wavelengths or other characteristics to the combined collimated beam 118, preferably before the focusing element 110 focuses the combined collimated beams 118.


In one variation, the optical system 100 includes a removable filter 117 that functions to filter the multichromatic collimated beams 118 from the beamsplitter 107. The filter 117 is preferably removable, replaceable, tunable, or variable in some fashion by the user of the system and/or by a central processor. Alternatively, the filter may also be a coating on a beamsplitter 107, and/or a coating on the focusing element 110. The removable filter 117 may alternatively filter light from the first light source 101 and/or second light source 102. Additionally, a plurality of filters may alternatively be used to filter light during multiple suitable stage of the optical system. The filter 117 functions to absorb spurious emissions and/or to “clean up” the light. The optical system 100 may, however, omit the removable filter or may include a filter and/or filters that are not variable.


In another variation, the optical system 100 includes a bracket 120 that functions to align and hold the light sources 101 and 102, the collimating elements 103 and 104, and the beam splitter 107 in the correct positions to produce collimated multichromatic light. The bracket 120 is preferably mounted to a base or surface of a flow cytometer. The bracket 120 preferably achieves alignment of the optical system once the bracket 120 is mounted. Additionally, minor adjustments to components of the optical system may be needed to optimize the optical system. The bracket 120 may alternatively include an adjustable mount for at least one of the light sources 101 and 102. The adjustable mount 121 is preferably adjustable along two axis and functions to allow the second light source 102, and/or any additional light sources, to be aligned with the first light source 101. The adjustable mount 121 preferably has a resolution of adjustment that enables alignment of the second light source, such that at least some minimum amount of light is positioned for the focusing element 110. For example, the adjustment mount may allow for at least 90% of the collimated light to be acceptably focused onto the interrogation zone 119. The resolution is preferably achieved through and/or takes into account component manufacturing tolerances, mechanism design, system dimension variance and/or system specification (e.g. allowable vibration tolerances and temperature tolerances). The optical system 100 may, however, omit the bracket 120 and use other techniques to align the elements of the system.


In another version, the optical system 100 includes a vertical lens 122 that functions to align the multichromatic collimated beam with the interrogation zone of the flow cytometer. The vertical lens 122 is preferably adjustable along an axis perpendicular to the path of the multichromatic collimated beam. Additionally, the adjustment axis is preferably perpendicular to the flow channel of the flow cytometer. The vertical lens 122 is preferably adjusted by turning a setscrew or alternatively any suitable mechanism may be used. The vertical lens 122 preferably has a resolution of adjustment that enables the multichromatic collimated beam to be aligned along one axis, such that at least some minimum amount of light is positioned for the focusing element 110. For example, the adjustment resolution may ensure that at least 90% of the collimated light can be acceptably focused onto the interrogation zone 119. The resolution of the vertical lens adjustment is preferably achieved through and/or takes into account component manufacturing tolerances, mechanism design, system dimension variance and/or system specification (e.g. allowable shock tolerances and temperature tolerances) The vertical lens 122 may additionally be designed to work in cooperation with the adjustable mount 121. In this additional alternative, the adjustable mount 121 and vertical lens 122 preferably adjust the multichromatic collimated beam to focus at least some minimum amount into the interrogation zone 119. The optical system 100 may, however omit the vertical lens 122 or may include any other suitable device to provide a similar functionality.


In yet another version, the optical system 100 includes a base that functions to support and align the elements of the system. In one variation, the light sources 101 and 102, the beam combining element 107 (or the bracket 120), and the flow cell 130 are all individually mounted to the base. In another variation, the light sources 101 and 102, the beam combining element 107 (or the bracket 120), and the focusing element 100 are all individually mounted to the base. The base is preferably made of a rigid material, such as steel, but may alternatively be made of any suitable material that provides support and alignment to the elements of the system.


In yet another version, the optical system 100 includes a beam shaping element 124 that functions to modify one or more characteristics of the combined collimated beam. The beam shaping element 124 preferably redistributes the irradiance and/or the phase of the combined collimated beam before the focusing element 110 focuses the combined collimated beam, but may additionally and/or alternatively manipulate any suitable characteristic of the combined collimated beam. The beam shaping element 124 is preferably located between the beam combining element 107 of the lattermost optical stage and the focusing element 124 (e.g., between the beam combining element 107 and the focusing element 124 as shown in FIG. 1, or between a second beam combining element 107′ and the focusing element 124 as shown in FIG. 4).


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. An optical system for a flow cytometer with an interrogation zone, the system comprising: a first optical stage including: a first light source that creates a first beam of a first wavelength;a first collimating element that collimates the first beam from the first light source;a second light source that creates a second beam of a second wavelength, which is different than the first wavelength;a second collimating element that collimates the second beam from the second light source;a first beam combining element that combines the collimated beams of the first and second collimating elements to form a combined collimated beam that is multichromatic; anda second optical stage including: a third light source that creates a third beam of a third wavelength, which is different than the first and second wavelengths;a third collimating element that collimates the third beam from the third light source; anda second beam combining element that combines the collimated beam of the third collimating element and the combined collimated beam to form an augmented combined beam;a bracket including an adjustable mount for the first light source and at least one of the second and third light sources, wherein the bracket allows for alignment of at least one of the second and third light sources relative to the first light source, and wherein the adjustable mount is adjustable along two axes; anda focusing element that focuses the augmented combined beam to a single point.
  • 2. The optical system of claim 1, wherein the first light source is a blue laser and the second light source is a violet laser or a red laser.
  • 3. The optical system of claim 2, wherein at least one of the light sources is produced by a laser diode.
  • 4. The optical system of claim 1, wherein the focusing element is located on a flow cell of the flow cytometer.
  • 5. The optical system of claim 4, wherein the augmented combined beam is a collimated beam, and wherein the focusing element is configured to focus light from the augmented combined beam to a single point within the flow cell.
  • 6. The optical system of claim 5, wherein at least one of the first and second beam combining elements is a beam splitter.
  • 7. The optical system of claim 5, wherein the focusing element is configured to focuses a portion of a collimated beam on the single point when the collimated beam is misaligned with the focusing element.
  • 8. The optical system of claim 7, further including an adjustable vertical lens positioned between the second beam combining element and the flow cell, wherein the adjustable vertical lens modifies a position of the augmented combined beam.
  • 9. The optical system of claim 7, further including a changeable optical filter configured to absorb spurious emissions.
  • 10. The optical system of claim 4, further including a beam shaping element that redistributes the phase of the augmented combined beam before the focusing element focuses the augmented combined beam.
  • 11. The optical system of claim 1, further comprising a flow cell that defines the interrogation zone for the flow cytometer, wherein the focusing element is located on the flow cell.
  • 12. The optical system of claim 11, wherein the augmented combined beam is a collimated beam, and wherein the focusing element is configured to focus light from the augmented combined beam to a single point within the flow cell.
  • 13. The optical system of claim 12 wherein the focusing element is configured to focus a portion of a collimated beam on the single point when the collimated beam is misaligned with the focusing element.
  • 14. The optical system of claim 13, further including an adjustable vertical lens positioned between the second beam combining element and the flow cell, wherein the adjustable vertical lens modifies a position of the augmented combined beam.
  • 15. The optical system of claim 13, further including a changeable optical filter configured to absorb spurious emissions.
  • 16. The optical system of claim 11, further including a beam shaping element that redistributes the phase of the augmented combined beam before the focusing element focuses the augmented combined beam.
  • 17. The optical system of claim 1 wherein the first collimating element is mounted to the first light source, and wherein the second collimating element is mounted to the second light source.
  • 18. The optical system of claim 1 further comprising a flow cell that defines the interrogation zone for the flow cytometer, wherein the focusing element is located on the flow cell.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of prior application Ser. No. 12/337,517 filed 17 Dec. 2008, which claims the benefit of U.S. Provisional Application No. 61/014,376 filed 17 Dec. 2007, which are both incorporated in their entirety by this reference.

US Referenced Citations (221)
Number Name Date Kind
3347273 Russell Oct 1967 A
3601128 Hakim Aug 1971 A
3672402 Bloemer Jun 1972 A
3819272 Crozier et al. Jun 1974 A
4112735 Mcknight Sep 1978 A
4138879 Liebermann Feb 1979 A
4371786 Kramer Feb 1983 A
4448538 Mantel May 1984 A
4559454 Kramer Dec 1985 A
4570639 Miodownik Feb 1986 A
4691829 Auer Sep 1987 A
4755021 Dyott Jul 1988 A
4790653 North, Jr. Dec 1988 A
4818103 Thomas et al. Apr 1989 A
4824641 Williams Apr 1989 A
4826660 Smith et al. May 1989 A
4844610 North, Jr. Jul 1989 A
4933813 Berger Jun 1990 A
5028127 Spitzberg Jul 1991 A
5040890 North, Jr. Aug 1991 A
5043706 Oliver Aug 1991 A
5083862 Rusnak Jan 1992 A
5138868 Long Aug 1992 A
5139609 Fields et al. Aug 1992 A
5150037 Kouzuki Sep 1992 A
5150313 Van Den Engh et al. Sep 1992 A
5155543 Hirako Oct 1992 A
5204884 Leary et al. Apr 1993 A
5224058 Mickaels et al. Jun 1993 A
5230026 Ohta et al. Jul 1993 A
5270548 Steinkamp Dec 1993 A
5301685 Guirguis Apr 1994 A
5308990 Takahashi et al. May 1994 A
5367474 Auer et al. Nov 1994 A
5374395 Robinson et al. Dec 1994 A
5395588 North, Jr. et al. Mar 1995 A
5403552 Pardikes Apr 1995 A
5466946 Kleinschmitt et al. Nov 1995 A
5469375 Kosaka Nov 1995 A
5539386 Elliott Jul 1996 A
5552885 Steen Sep 1996 A
5559339 Domanik et al. Sep 1996 A
5616124 Hague et al. Apr 1997 A
5684480 Jansson Nov 1997 A
5739902 Gjelsnes et al. Apr 1998 A
5797430 Becke et al. Aug 1998 A
5798222 Goix Aug 1998 A
5804507 Perlov et al. Sep 1998 A
5883378 Irish et al. Mar 1999 A
5920388 Sandberg et al. Jul 1999 A
5960129 Kleinschmitt Sep 1999 A
5981180 Chandler et al. Nov 1999 A
6016376 Ghaemi et al. Jan 2000 A
6039078 Tamari Mar 2000 A
6067157 Altendorf May 2000 A
6070477 Mark Jun 2000 A
6091502 Weigl et al. Jul 2000 A
6097485 Lievan Aug 2000 A
6108463 Herron et al. Aug 2000 A
6110427 Uffenheimer Aug 2000 A
6115065 Yadid-Pecht et al. Sep 2000 A
6139800 Chandler Oct 2000 A
6154276 Mariella, Jr. Nov 2000 A
6156208 Desjardins et al. Dec 2000 A
6181319 Fujita et al. Jan 2001 B1
6183697 Tanaka et al. Feb 2001 B1
6288783 Auad Sep 2001 B1
6377721 Walt et al. Apr 2002 B1
6382228 Cabuz et al. May 2002 B1
6403378 Phi-Wilson et al. Jun 2002 B1
6427521 Jakkula et al. Aug 2002 B2
6431950 Mayes Aug 2002 B1
6456769 Furusawa et al. Sep 2002 B1
6469787 Meyer et al. Oct 2002 B1
6473171 Buttry et al. Oct 2002 B1
6519355 Nelson Feb 2003 B2
6522775 Nelson Feb 2003 B2
6568271 Shah et al. May 2003 B2
6587203 Colon Jul 2003 B2
6602469 Maus et al. Aug 2003 B1
6636623 Nelson et al. Oct 2003 B2
6675835 Gerner et al. Jan 2004 B2
6694799 Small Feb 2004 B2
6700130 Fritz Mar 2004 B2
6710871 Goix Mar 2004 B1
6718415 Chu Apr 2004 B1
6778910 Vidal et al. Aug 2004 B1
6809804 Yount et al. Oct 2004 B1
6816257 Goix Nov 2004 B2
6825926 Turner et al. Nov 2004 B2
6852284 Holl et al. Feb 2005 B1
6859570 Walt et al. Feb 2005 B2
6869569 Kramer Mar 2005 B2
6872180 Reinhardt et al. Mar 2005 B2
6890487 Sklar et al. May 2005 B1
6897954 Bishop et al. May 2005 B2
6901964 Kippe et al. Jun 2005 B2
6908226 Siddiqui et al. Jun 2005 B2
6912904 Storm, Jr. et al. Jul 2005 B2
6936828 Saccomanno Aug 2005 B2
6941005 Lary et al. Sep 2005 B2
6944322 Johnson et al. Sep 2005 B2
7009189 Saccomanno Mar 2006 B2
7012689 Sharpe Mar 2006 B2
7019834 Sebok et al. Mar 2006 B2
7024316 Ellison et al. Apr 2006 B1
7061595 Cabuz et al. Jun 2006 B2
7075647 Christodoulou Jul 2006 B2
7105355 Kurabayashi et al. Sep 2006 B2
7106442 Silcott et al. Sep 2006 B2
7113266 Wells Sep 2006 B1
7130046 Fritz et al. Oct 2006 B2
7232687 Lary et al. Jun 2007 B2
7262838 Fritz Aug 2007 B2
7274316 Moore Sep 2007 B2
7328722 Rich et al. Feb 2008 B2
7362432 Roth Apr 2008 B2
7403125 Rich Jul 2008 B2
7471393 Trainer Dec 2008 B2
7520300 Rich et al. Apr 2009 B2
7628956 Jindo Dec 2009 B2
7738099 Morrell Jun 2010 B2
7739060 Goebel et al. Jun 2010 B2
7776268 Rich Aug 2010 B2
7780916 Bair et al. Aug 2010 B2
7843561 Rich Nov 2010 B2
7857005 Rich et al. Dec 2010 B2
7903706 O'Shaughnessy et al. Mar 2011 B2
7981661 Rich Jul 2011 B2
7996188 Olson et al. Aug 2011 B2
8017402 Rich Sep 2011 B2
8031340 Rich et al. Oct 2011 B2
20010014477 Pelc et al. Aug 2001 A1
20010039053 Liseo et al. Nov 2001 A1
20020028434 Goix et al. Mar 2002 A1
20020049782 Herzenberg et al. Apr 2002 A1
20020059959 Qatu et al. May 2002 A1
20020080341 Kosaka Jun 2002 A1
20020123154 Burshteyn et al. Sep 2002 A1
20020192113 Uffenheimer et al. Dec 2002 A1
20030035168 Qian et al. Feb 2003 A1
20030048539 Oostman et al. Mar 2003 A1
20030054558 Kurabayashi et al. Mar 2003 A1
20030062314 Davidson et al. Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030078703 Potts et al. Apr 2003 A1
20030129090 Farrell Jul 2003 A1
20030134330 Ravkin et al. Jul 2003 A1
20030148379 Roitman et al. Aug 2003 A1
20030175157 Micklash et al. Sep 2003 A1
20030202175 Van Den Engh et al. Oct 2003 A1
20030211009 Buchanan Nov 2003 A1
20030223061 Sebok et al. Dec 2003 A1
20030235919 Chandler Dec 2003 A1
20040031521 Vrane et al. Feb 2004 A1
20040048362 Trulson et al. Mar 2004 A1
20040112808 Takagi et al. Jun 2004 A1
20040119974 Bishop et al. Jun 2004 A1
20040123645 Storm et al. Jul 2004 A1
20040131322 Ye et al. Jul 2004 A1
20040143423 Parks et al. Jul 2004 A1
20040175837 Bonne et al. Sep 2004 A1
20040197768 Glencross Oct 2004 A1
20040201845 Quist et al. Oct 2004 A1
20040246476 Bevis et al. Dec 2004 A1
20050044110 Herzenberg et al. Feb 2005 A1
20050047292 Park et al. Mar 2005 A1
20050057749 Dietz et al. Mar 2005 A1
20050069454 Bell Mar 2005 A1
20050073686 Roth et al. Apr 2005 A1
20050078299 Fritz et al. Apr 2005 A1
20050105091 Lieberman et al. May 2005 A1
20050162648 Auer et al. Jul 2005 A1
20050163663 Martino et al. Jul 2005 A1
20050195605 Saccomanno et al. Sep 2005 A1
20050195684 Mayer Sep 2005 A1
20050252574 Khan et al. Nov 2005 A1
20060002634 Riley et al. Jan 2006 A1
20060015291 Parks et al. Jan 2006 A1
20060023219 Meyer et al. Feb 2006 A1
20060161057 Weber et al. Jul 2006 A1
20060177937 Kurabayashi et al. Aug 2006 A1
20060219873 Martin et al. Oct 2006 A1
20060280061 Koreeda et al. Dec 2006 A1
20060281143 Liu et al. Dec 2006 A1
20060286549 Sohn et al. Dec 2006 A1
20070003434 Padmanabhan et al. Jan 2007 A1
20070041013 Fritz et al. Feb 2007 A1
20070096039 Kapoor et al. May 2007 A1
20070124089 Jochum et al. May 2007 A1
20070127863 Bair et al. Jun 2007 A1
20070144277 Padmanabhan et al. Jun 2007 A1
20070212262 Rich Sep 2007 A1
20070224684 Olson et al. Sep 2007 A1
20070243106 Rich Oct 2007 A1
20080055595 Olson et al. Mar 2008 A1
20080064113 Goix et al. Mar 2008 A1
20080092961 Bair et al. Apr 2008 A1
20080152542 Ball et al. Jun 2008 A1
20080215297 Goebel et al. Sep 2008 A1
20080228444 Olson et al. Sep 2008 A1
20080246949 Harris et al. Oct 2008 A1
20090104075 Rich Apr 2009 A1
20090174881 Rich Jul 2009 A1
20090201501 Bair et al. Aug 2009 A1
20090202130 George et al. Aug 2009 A1
20090216478 Estevez-Labori Aug 2009 A1
20090257339 Katayama Oct 2009 A1
20090260701 Rich et al. Oct 2009 A1
20090293910 Ball et al. Dec 2009 A1
20100008204 Bae et al. Jan 2010 A1
20100012853 Parks et al. Jan 2010 A1
20100032584 Dayong et al. Feb 2010 A1
20100118298 Bair et al. May 2010 A1
20100119298 Huang May 2010 A1
20100302536 Ball et al. Dec 2010 A1
20100319469 Rich Dec 2010 A1
20100319786 Bair et al. Dec 2010 A1
20110008816 Ball et al. Jan 2011 A1
20110061471 Rich et al. Mar 2011 A1
20110306031 Rich Dec 2011 A1
Foreign Referenced Citations (31)
Number Date Country
466490 Jan 1992 EP
1391611 Feb 2004 EP
1396736 Mar 2004 EP
1521076 Apr 2005 EP
356169978 Dec 1981 JP
SHO5913689 Mar 1984 JP
SHO6353901 Apr 1988 JP
04086546 Mar 1992 JP
6194299 Jul 1994 JP
06221988 Dec 1994 JP
7260084 Oct 1995 JP
08201267 Aug 1996 JP
09288053 Nov 1997 JP
10227737 Aug 1998 JP
2001050887 Feb 2001 JP
2001170062 Jun 2001 JP
2003262201 Sep 2003 JP
200477484 Mar 2004 JP
9956052 Nov 1999 WO
0194914 Dec 2001 WO
2005017499 Feb 2005 WO
2005068971 Jul 2005 WO
2005073694 Aug 2005 WO
2005091893 Oct 2005 WO
2006055722 May 2006 WO
2007067577 Jun 2007 WO
2007100723 Sep 2007 WO
2007103969 Sep 2007 WO
2007136749 Nov 2007 WO
2008058217 May 2008 WO
2010101623 Sep 2010 WO
Related Publications (1)
Number Date Country
20110058163 A1 Mar 2011 US
Provisional Applications (1)
Number Date Country
61014376 Dec 2007 US
Continuation in Parts (1)
Number Date Country
Parent 12337517 Dec 2008 US
Child 12939836 US