This invention relates generally to the flow cytometer field, and more specifically to a new and useful optical system in the flow cytometry field.
The conventional optical system for flow cytometers requires aligning the light sources in relation to the lenses to shine multiple frequencies of light on a sample simultaneously. Since the light source affects the detection of each of the detector subsystems, this alignment must be precise or the performance of the system is dramatically reduced. To achieve this precision, however, requires expensive manufacturing techniques and/or time-consuming manual alignment. Thus, there is a need in the flow cytometer field to create a new and useful optical system. This invention provides such new and useful optical system.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The light sources 101 and 102, which are preferably mounted to the base, function as two independent light sources. The light sources 101 and 102 are preferably lasers of different light frequencies. The first light source 101 is preferably a blue laser and the second light source 102 is preferably a red laser, but the light sources 101 and 102 may alternatively be any two different light sources that vary in wavelength, frequency, phase, polarization, light signal, and/or any suitable light characteristic. The light sources 101 and 102 may additionally be generated from a laser diode and/or any suitable optical setup to generate a suitable light source. In an alternative embodiment, the system 100 may further include a third light source (not shown) that produces a third beam with yet another light characteristic.
The collimating elements 103 and 104 function to collimate light from the light sources 101 and 102, respectively. The collimated elements 103 and 104 preferably convert light into a collimated beam where light energy is uniformly (or near uniformly) distributed across a larger area. The collimated beam may alternatively have a gradient of light energy, a Gaussian distribution, or any suitable beam parameter of distributed light energy. The collimated beam preferably travels in a single direction and does not disperse radially outward from a point. The collimating element 103, which is preferably mounted to the first light source 101, is located between the first light source 101 and the beam combining element 107. The collimating element 104, which is preferably mounted to the second light source 102, is located between the second light sources 102 and the beam combining element 107. In one version, one or both of the collimating elements 103 and 104 may be combined or integrated with the light sources 101 and 102, such that each light source 101 and 102 produces collimated light. In another version, one or both of the collimating elements 103 and 104 may be fastened to, or otherwise optically communicating with, the light sources 101 and 102. The collimating elements 103 and 104 are preferably conventional collimating lens, but may alternatively be any suitable device to collimate the beams from the light sources 101 and 102.
The beam combining element 107, which is preferably mounted to the base, functions to combine the collimated beams from the light sources 101 and 102. The light between the beam combining element 107 and the focusing element 110 is preferably a collimated beam. Additionally, the light entering the beam combining element 107 is preferably a collimated beam (or beams). The collimated beam functions to reduce the tolerances and/or difficulty of optical alignment and manufacturing tolerances of the optical system. The loss of light due to minor misalignment (where at least a designated minimum percentage of light hits a target) is preferably allowable due to the light being a collimated beam. A collimated beam is preferably used to traverse the longer distances of the optical system. In a first version, the beam combining element 107 is a conventional beam splitter. The beam splitter is preferably selectively transmissive and preferably allows the light of an appropriate bandwidth from at least one light source to pass through it, and the beam splitter is also preferably reflective to allow at least one other light source to be reflected from it. Preferably, the collimated light from at least one light source 102 passes through the beam splitter 107, while collimated light from at least one other light source 101 is reflected off the other side of the beam splitter 107, to create multichromatic collimated beams 118. In other versions, the beam combining element 107 may include beam combiners, mirrors, optical prisms, fiber optics, and/or any suitable device or method to combine the beams from the light sources 101 and 102.
The focusing element 110 functions to focus the multichromatic collimated beams 118 to a single point. The focusing element 110 is preferably an achromatic lens, but may also be multiple lenses and/or lens configurations or any other suitable focusing element. The focusing element 110 is preferably positioned such that the light is focused on the interrogation zone 119 of the flow cytometer. As shown in
In one variation, the optical system 100 includes a removable filter 117 that functions to filter the multichromatic collimated beams 118 from the beamsplitter 107. The filter 117 is preferably removable, replaceable, tunable, or variable in some fashion by the user of the system and/or by a central processor. Alternatively, the filter may also be a coating on a beamsplitter 107, and/or a coating on the focusing element 110. The removable filter 117 may alternatively filter light from the first light source 101 and/or second light source 102. Additionally, a plurality of filters may alternatively be used to filter light during multiple suitable stage of the optical system. The filter 117 functions to absorb spurious emissions and/or to “clean up” the light. The optical system 100 may, however, omit the removable filter or may include a filter and/or filters that are not variable.
In another variation, the optical system 100 includes a bracket 120 that functions to align and hold the light sources 101 and 102, the collimating elements 103 and 104, and the beam splitter 107 in the correct positions to produce collimated multichromatic light. The bracket 120 is preferably mounted to a base or surface of a flow cytometer. The bracket 120 preferably achieves alignment of the optical system once the bracket 120 is mounted. Additionally, minor adjustments to components of the optical system may be needed to optimize the optical system. The bracket 120 may alternatively include an adjustable mount for at least one of the light sources 101 and 102. The adjustable mount 121 is preferably adjustable along two axis and functions to allow the second light source 102 to be aligned with the first light source 101. The adjustable mount 121 preferably has a resolution of adjustment that enables alignment of the second light source, such that at least some minimum amount of light is positioned for the focusing element 110. For example, the adjustment mount may allow for at least 90% of the collimated light to be acceptably focused onto the interrogation zone 119. The resolution is preferably achieved through and/or takes into account component manufacturing tolerances, mechanism design, system dimension variance and/or system specification (e.g. allowable vibration tolerances and temperature tolerances). The optical system 100 may, however, omit the bracket 120 and use other techniques to align the elements of the system.
In another version, the optical system 100 includes a vertical lens 122 that functions to align the multichromatic collimated beam with the interrogation zone of the flow cytometer. The vertical lens 122 is preferably adjustable along an axis perpendicular to the path of the multichromatic collimated beam. Additionally, the adjustment axis is preferably perpendicular to the flow channel of the flow cytometer. The vertical lens 122 is preferably adjusted by turning a setscrew or alternatively any suitable mechanism may be used. The vertical lens 122 preferably has a resolution of adjustment that enables the multichromatic collimated beam to be aligned along one axis, such that at least some minimum amount of light is positioned for the focusing element 110. For example, the adjustment resolution may ensure that at least 90% of the collimated light can be acceptably focused onto the interrogation zone 119. The resolution of the vertical lens adjustment is preferably achieved through and/or takes into account component manufacturing tolerances, mechanism design, system dimension variance and/or system specification (e.g. allowable shock tolerances and temperature tolerances) The vertical lens 122 may additionally be designed to work in cooperation with the adjustable mount 121. In this additional alternative, the adjustable mount 121 and vertical lens 122 preferably adjust the multichromatic collimated beam to focus at least some minimum amount into the interrogation zone 119. The optical system 100 may, however omit the vertical lens 122 or may include any other suitable device to provide a similar functionality.
In yet another version, the optical system 100 includes a base that functions to support and align the elements of the system. In one variation, the light sources 101 and 102, the beam combining element 107 (or the bracket 120), and the flow cell 130 are all individually mounted to the base. In another variation, the light sources 101 and 102, the beam combining element 107 (or the bracket 120), and the focusing element 100 are all individually mounted to the base. The base is preferably made of a rigid material, such as steel, but may alternatively be made of any suitable material that provides support and alignment to the elements of the system.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of US Provisional Application No. 61/014,376 filed 17 Dec. 2007, which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4826660 | Smith | May 1989 | A |
5028127 | Spitzberg | Jul 1991 | A |
5139609 | Fields et al. | Aug 1992 | A |
5367474 | Auer | Nov 1994 | A |
5739902 | Gjelsnes et al. | Apr 1998 | A |
5798222 | Goix | Aug 1998 | A |
6016376 | Ghaemi et al. | Jan 2000 | A |
6091502 | Weigl et al. | Jul 2000 | A |
6097485 | Lievan | Aug 2000 | A |
6154276 | Mariella, Jr. | Nov 2000 | A |
6377721 | Walt et al. | Apr 2002 | B1 |
6403378 | Phi-Wilson et al. | Jun 2002 | B1 |
6469787 | Meyer et al. | Oct 2002 | B1 |
6519355 | Nelson | Feb 2003 | B2 |
6522775 | Nelson | Feb 2003 | B2 |
6636623 | Nelson et al. | Oct 2003 | B2 |
6700130 | Fritz | Mar 2004 | B2 |
6710871 | Goix | Mar 2004 | B1 |
6816257 | Goix | Nov 2004 | B2 |
6859570 | Walt et al. | Feb 2005 | B2 |
6869569 | Kramer | Mar 2005 | B2 |
6897954 | Bishop | May 2005 | B2 |
6936828 | Saccomanno | Aug 2005 | B2 |
6944322 | Johnson et al. | Sep 2005 | B2 |
7009189 | Saccomanno | Mar 2006 | B2 |
7012689 | Sharpe | Mar 2006 | B2 |
7075647 | Christodoulou | Jul 2006 | B2 |
7106442 | Silcott | Sep 2006 | B2 |
7113266 | Wells | Sep 2006 | B1 |
7232687 | Lary et al. | Jun 2007 | B2 |
7262838 | Fritz | Aug 2007 | B2 |
7362432 | Roth | Apr 2008 | B2 |
20020028434 | Goix | Mar 2002 | A1 |
20030048539 | Oostman, Jr. et al. | Mar 2003 | A1 |
20040048362 | Trulson et al. | Mar 2004 | A1 |
20040175837 | Bonne et al. | Sep 2004 | A1 |
20040201845 | Quist et al. | Oct 2004 | A1 |
20050047292 | Park et al. | Mar 2005 | A1 |
20050057749 | Dietz et al. | Mar 2005 | A1 |
20050078299 | Fritz et al. | Apr 2005 | A1 |
20050105091 | Lieberman et al. | May 2005 | A1 |
20050162648 | Auer et al. | Jul 2005 | A1 |
20050163663 | Martino et al. | Jul 2005 | A1 |
20050195605 | Saccomanno et al. | Sep 2005 | A1 |
20060023219 | Myer et al. | Feb 2006 | A1 |
20060281143 | Liu et al. | Mar 2006 | A1 |
20070041013 | Fritz et al. | Feb 2007 | A1 |
20070096039 | Kapoor et al. | May 2007 | A1 |
20100118298 | Bair et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2005073694 | Jan 2005 | WO |
WO2005017499 | Feb 2005 | WO |
WO2005073694 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090174881 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61014376 | Dec 2007 | US |