1. Field of the Invention
The present invention relates to an optical system for a Fresnel lens light, particularly a spotlight or floodlight, with an ellipsoidal reflector, a light source and at least one Fresnel lens and to a Fresnel lens light with the optical system.
2. Description of the Related Art
Conventional optical systems for Fresnel lens lights include a light source, a Fresnel lens and spherical auxiliary reflector as the lighting engineering relevant parts. The filament of the light source is located substantially unchanged at the focal point of the spherical auxiliary reflector. Because of that a portion of the light radiated from the light source is reflected back to it and assists the light to the front of the light. The Fresnel lens focuses the light radiated in the front direction. The extent of the focusing depends on the distance between the Fresnel lens and the light source. If the filament is located at the focal point of the Fresnel lens, the narrowest light beam is produced or propagated. In that case a quasi-parallel beam, also known as a spotlight, is obtained. By shortening the distance between the Fresnel lens and the light source, the aperture angle of the propagated light beam continuously increases. In that case a divergent beam, also called a floodlight, is obtained.
This type of light has the disadvantage of a poor light efficiency, especially in the case of the spotlight, since the Fresnel lens receives light from the light source only over a comparatively small angular range. Furthermore it is disadvantageous that a large part of the light reflected by the spherical reflector impinges on the filament of the light source, is absorbed there and further heats the filament.
It is an object of the present invention to provide an improved optical system for a Fresnel lens light with an improved light efficiency, especially for spotlights and floodlights, while maintaining the uniformity of the light intensity in the illuminated areas.
The optical system for the Fresnel lens light according to the invention comprises an ellipsoidal reflector, a light source and at least one Fresnel lens, wherein a distance between the at least one Fresnel lens and the reflector has a definite relationship to the distance between the light source and the reflector, which is determined by a predetermined or preselected aperture angle of a light beam propagated from the light.
A clearly improved light efficiency, especially for spotlight and floodlight applications, is achieved according to the optical system of the invention. At the same time the uniformity of the light intensity in the illuminated areas is maintained, especially according to preferred embodiments.
According to the invention the ellipsoidal reflector is provided with a greater aperture. Spotlight is obtained when the filament of the light source is arranged at a first focal point of the ellipsoidal reflector closest to the reflector vertex. The light reflected by the reflector is then nearly completely focused at the second focal point of the ellipsoidal reflector that is furthest from the reflector vertex. The filament located at the first focal point that is closest to the reflector is imaged at the second focal point remote from the reflector. Thus reflected light does not impinge on the filament. The Fresnel lens is then positioned so that the focal point of the Fresnel lens coincides with the second focal point of the ellipsoidal reflector. The Fresnel lens receives nearly all of the light reflected by the reflector by means of an appropriate selection of the aperture angles of the reflector and the Fresnel lens. The Fresnel lens then produces a forwardly directed spotlight. The light efficiency or yield is considerably greater than with conventional optical systems for Fresnel lens lights.
The aperture angle of the light beam propagated from the Fresnel lens can be increased arbitrarily, when the position of the light source is changed in relation to the reflector and the distance of the Fresnel lens to the reflector is changed in a suitable manner. So that the good properties of the conventional Fresnel lens light in regard to the uniformity of the light intensity can be maintained, these spacing or distance changes must occur under suitable constraints.
According to one embodiment of the invention the ellipsoidal reflector is made of a metallic or transparent material. Preferably glass and polymeric materials are used. One of both surfaces of the reflector is provided with a system of thin layers in order to make a reflective surface. Because of this feature visible portions of the incident radiation are reflected but portions of the incident radiation outside of the visible range, especially heat radiation, pass through the reflector.
In a preferred embodiment of the optical system the light-reflecting surface of the ellipsopidal reflector is structured to scatter light and no, one or two surfaces of the Fresnel lens are structured to scatter light. The illumination intensity in the illuminated areas is more uniform because of this sort of structuring.
In an alternative preferred embodiment of the optical system for a Fresnel lens at least one of the surfaces of the Fresnel lens is structured to scatter light and the light-reflecting surface of the reflector is not structured to scatter light. The illumination intensity in the illuminated areas is more uniform because of this sort of structuring.
The optical system according to the invention is useful in lights for film, stage, studio and photography.
The objects, features and advantages of the invention will now be described in more detail with the aid of the following description of the preferred embodiments, with reference to the accompanying figures in which:
The front surface of the reflector 1 is provided with a plurality of thin layers I. Because of this reflector structure visible portions of the incident radiation are reflected, but infrared radiation passes through the reflector, i.e. it is not reflected. A cutaway portion of the reflector 1 in the dashed circle III of
While the invention has been illustrated and described as embodied in an optical system for a Fresnel lens light, particularly for a spotlight or floodlight, it is not intended to be limited to the details shown, since various modifications and changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
What is claimed is new and is set forth in the following appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101 13 385 | Mar 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3428800 | Levin et al. | Feb 1969 | A |
6123436 | Hough et al. | Sep 2000 | A |
6386743 | Futami et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
34 13 310 | Oct 1985 | DE |
39 19 643 | Jan 1991 | DE |
Number | Date | Country | |
---|---|---|---|
20030063466 A1 | Apr 2003 | US |