The present invention relates to optical systems and, more particularly, to an optical system for a wash light.
The Ellipsoidal Reflector Spotlight (ERS) and the Parabolic Wash light (PAR) are two of the most popular lighting fixtures used in theatre, television, and architectural lighting. An ERS employs a reflector generated from an ellipsoidal or near-ellipsoidal curve rotated about the longitudinal axis of the optical system to define a reflecting surface, typically referred to as an ellipsoidal reflector. An ERS also produces a beam with a sharp edge, which, if projected on a flat surface, results in a ‘spot’ of light.
In a PAR optical system, a parabolic or near-parabolic curve is used to define a reflecting surface, typically referred to as a parabolic reflector. A beam exiting a parabolic reflector is substantially parallel to the optical axis of the PAR system. That is, the light beam is made up of light rays that are substantially parallel to each other and to the optical axis. Several such light beams may be used to ‘wash’ a target in light, where the beams overlap without the edges of individual beams being distinguishable.
Light rays of the light beam 106 cross over the optical axis 120 as they pass through the projection gate 108, resulting in diverging light beam 112. The light beam 112 is converged by a projection lens 114 to form light beam 116. The projection lens 114 projects an image 118 of the light pattern generator 110 located in the projection gate 108. If no light pattern generator is present, the projection lens instead projects an image of the projection gate 108 itself. The projected image of the projection gate 108 or the light pattern generator 110 comes into focus at a distance from the projection lens 114 determined by several optical properties of the optical system 100. By repositioning the projection lens 114 along the optical axis, the resulting image can be made to be in focus at various distances from the projection lens 114, resulting in a beam with a sharp, or hard, edge.
A PAR optical system, in contrast, may consist solely of a parabolic reflector and lamp, although a lens may be placed after the reflector to further smooth or shape the beam. A PAR optical system does not project an image and is therefore referred to as a non-imaging optical system. The edges of a light beam produced by a PAR optical system are not sharp and may fall off quite gradually, resulting in a soft-edged pool of light.
An ERS optical system may alternatively be designed to produce a soft-edged wash beam. If a non-imaging lens, such as a stippled Fresnel lens, is employed in place of the projection lens 114, the light beam produced is substantially parallel to the optical axis 120 of the optical system and the edges of the light beam are softer. Typically, the user of a wash light fixture desires that a large diameter light beam exit the lighting fixture, requiring that such a non-imaging lens be placed at a greater distance from the projection gate 108 than the projection lens 114, where the light beam 112 has diverged to a suitably large diameter. Thus, an ellipsoidal wash light fixture of this design is typically longer than an ERS spot light fixture employing the same ellipsoidal reflector. An ellipsoidal reflector whose second focus is closer to the rim of the reflector may be used to reduce the length of an ellipsoidal wash light fixture of this design.
In another alternative, in order to soften the edges of the beam of an ERS optical system, diffusion, or scattering, of the light beam may be introduced at some location in the optical system. This diffusion may be placed in the beam manually, as part of preparing the light for use. Alternatively, the diffusion may be inserted and removed from the beam by a motorized mechanism, controlled by an operator from outside the light fixture. However, such diffused beams are often not considered by users as a suitable replacement for a beam from a parabolic optical system or an ellipsoidal optical system with a non-imaging lens.
Wash light fixtures may also be designed around reflectors of types other than ellipsoidal and parabolic reflectors. For example, a symmetric reflector may be generated by rotating about the longitudinal axis of the optical system a segment of a curve defined by a mathematical function other than an ellipse or parabola, or a segment of an arbitrary curve. Other reflectors may have a non-circular cross-section designed to smooth the irradiance distribution of light beams generated from lamps having an asymmetric intensity distribution.
In the design of any wash light fixture, at least two challenges are encountered. First, a small overall size for the fixture is desired in order to allow more fixtures to be placed in an available space, and, in the case of remotely controlled motorized fixtures, to reduce the size and power requirements of the motors and mechanisms. Second, while a large beam size from the fixture is generally desirable, the materials used to filter the color of the light beam in the fixture may be expensive, leading to a desire to minimize the amount of filter material used in each fixture.
A theatrical, television, or architectural lighting system typically includes both spot and wash lights. As a result, a company manufacturing or renting lighting systems typically maintains an inventory of both types of light fixtures.
The lamp 202 and ellipsoidal reflector 204 are enclosed in a reflector housing 230 to form a light beam generator. Attached to the reflector housing 230 is a lens barrel 232, which encloses the projection lens 214 and the projection gate 208. A coupling mechanism 234 may allow the lens barrel 232 to be removed from the reflector housing 230 and to rotate about an optical axis 220 of the ERS 200. This rotation permits a light pattern generator installed in the projection gate 208 to be aligned at a desired angle.
The present invention provides a wash light optical system for use with an ellipsoidal reflector. The optical system may be enclosed in a housing that may be detachably mounted to a lamp housing of an existing ellipsoidal reflector spotlight. The optical system may be employed in an ellipsoidal wash light fixture using the same ellipsoidal reflector as an ellipsoidal reflector spot lighting fixture. The optical system may be designed to have a short overall length and to use a reduced amount of color filter material.
More specifically, aspects of the invention may be found in an optical system for use with a light beam generator. The optical system includes a converging optical element that reduces the size of a light beam from the light beam generator. The optical system also includes a color filtering mechanism that is capable of filtering the light beam to a selected one of two or more colors. A spreading optical device in the optical system increases the size of the light beam, which then passes through a beam shaping optical device. The optical system may also include a dimming mechanism that is capable of reducing the intensity of the light beam to a selected one of two or more intensities. The optical system may be enclosed in a housing that includes a coupling mechanism capable of detachably mounting the housing to the light beam generator.
Other aspects of the invention may be found in a light fixture that includes a light beam generator. The light fixture also includes a converging optical element that reduces the size of a light beam from the light beam generator. The light fixture further includes a color filtering mechanism that is capable of filtering the light beam to a selected one of two or more colors. A spreading optical device in the light fixture increases the size of the light beam, which then passes through a beam shaping optical device. The light fixture may also include a dimming mechanism that is capable of reducing the intensity of the light beam to a selected one of two or more intensities.
Further aspects of the invention may be found in a method of generating a light beam having a desired color and shape. The method includes generating a light beam having a size and converging the light beam to a smaller size. The method also includes filtering the light beam to a selected one of two or more colors and spreading the light beam to a larger size. The method further includes shaping the light beam to a desired shape. The method may include dimming the light beam to a selected one of a plurality of intensities.
Aspects of the invention may also be found in a method of producing a light fixture capable of generating a light beam having a desired color and shape. The method includes providing a housing that includes a coupling mechanism and encloses an optical system. The method also includes detachably mounting the housing to a light beam generator using the coupling mechanism. The optical system includes a converging optical element that reduces the size of a light beam from the light beam generator. The optical system also includes a color filtering mechanism that is capable of filtering the light beam to a selected one of two or more colors. A spreading optical device in the optical system increases the size of the light beam, which then passes through a beam shaping optical device.
As such, an optical system, light fixture and method for a wash light are described. Other aspects, advantages and novel features of the present invention will become apparent from the detailed description of the invention and claims, when considered in conjunction with the accompanying drawings.
For a more complete understanding of the present invention and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawing, wherein like reference numerals represent like parts, in which:
An optical system embodying the present invention may include a converging optical element 302 that accepts a light beam emerging from the rim 205 of the ellipsoidal reflector 204. The converging optical element 302 produces a converging light beam 303, which converges toward a field stop plate 312. The field stop plate 312 blocks any light rays outside the desired contours of the light beam 303.
In the embodiment of the present invention shown in
The converging light beam 303 may pass through a dimming mechanism 304 and color filtering mechanisms 306, 308 and 310, located adjacent to the field stop plate 312. While the field stop plate 312 is shown in
The dimming mechanism 304 may be any of several known mechanisms, such as an iris, a neutral density wheel or a neutral density sliding plate. In some embodiments, the dimming mechanism 304 is a glass wheel having a reflective coating. The coating may be ablated or etched in a pattern to produce a gradual transition from fully transmissive (clear) to fully reflective (opaque).
In some embodiments, the dimming mechanism 304 is a motorized mechanism having a controller. The controller may be capable of receiving a control signal and responding to the control signal by positioning the dimming mechanism 304 to reduce the intensity of the light beam to a selected intensity indicated by the value of the control signal.
In another embodiment of the present invention the lamp 202 may be electrically dimmable, such as an incandescent lamp. It will be understood that the dimming mechanism 304 may be omitted from such a light fixture without departing from the scope of the present invention.
Similarly, the color filtering mechanisms 306-310 may be any of several known mechanisms, such as variable saturation color wheels or sliding plates, or wheels or semaphore mechanisms carrying multiple discrete color filters. In some embodiments, the color filtering mechanisms 306-310 are glass wheels having cyan, yellow and magenta dichroic filter coatings, respectively. The coatings may be ablated or etched in a pattern to produce a gradual transition from no coating (no filtration) to fully coated (fully filtered).
In some embodiments, the color filtering mechanisms 306-310 are motorized mechanisms having a controller. The controller may be capable of receiving a control signal and responding to the control signal by positioning the color filtering mechanisms 306-310 to filter the light beam to a selected color indicated by the value of the control signal.
As shown in
After the light beam 303 passes through the dimming mechanism 304, the color filtering mechanisms 306-310, and the field stop plate 312, a spreading optical element 314 (a negative lens in this embodiment of the invention) may spread the light beam to form a diverging beam 315. A collimating optical element 316 may then collimate the light beam to shape it into a substantially columnar light beam 317. The collimating optical element 316 may be a Fresnel lens (as shown in
Because the negative lens 314 and the collimating optical element 316 do not form an image of the field stop plate 312 or the dimming and color mechanisms 304-310 on a distant projection surface 340, the light beam 317 is a soft-edged beam with even color characteristics, producing a wash effect when it strikes the distant flat surface 340. If an even softer edge is desired, a diffusion texture may be applied to one surface of a lens used as the collimating optical element 316, or a diffusion material may be used as the beam shaping optical element 318, resulting in a scrambling of the light rays of light beam 317, as indicated at 319.
In other embodiments, the beam shaping optical element 318 may be a lenticular array, which shapes the beam by spreading it by differing amounts in different planes passing through an optical axis 320 of the optical system of the light fixture 300. A lenticular array is an array of lenticules (or ‘lenslets’) having a cylindrical, spherical or other surface with a symmetry along one or more axes. For example, a lenticular array having hemi-cylindrical lenticules with parallel longitudinal axes may spread the beam very little in a plane passing through the optical axis of the optical system and parallel to the longitudinal axes of the lenticules. However, in a plane passing through the optical axis and perpendicular to the lenticules' longitudinal axis, the light beam may be spread by an amount determined by the curvature of the surface of the lenticules.
As described above, the beam shaping optical element 318 is an optional element in an optical system embodying the present invention. As such, the housing 330 may be designed such that the optical element 318 may be inserted or removed from the optical system. Furthermore, because some optical elements 318 may produce a non-circular shape in the light beam 319, the housing 330 may also be designed to enable the beam shaping optical element 318 to rotate about the optical axis 320 to a desired angular orientation.
Similarly, in an alternative embodiment of the present invention (not shown) employing a converging optical element 402 having a shorter focal length, the optical element may be located at the aperture of the reflector housing 230. In this way, housing 430 could be designed not to extend into the reflector housing 230, as the housings 330 and 430 do in the embodiments of the invention shown in
While the present invention has been described in detail with respect to certain embodiments thereof, those skilled in the art should understand that various changes, substitutions, modifications, alterations, and adaptations in the present invention may be made without departing from the concept and scope of the invention in its broadest form.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/649,983, filed on Feb. 4, 2005, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4037097 | Stillman et al. | Jul 1977 | A |
4958265 | Solomon | Sep 1990 | A |
5073847 | Bornhorst | Dec 1991 | A |
5126886 | Richardson et al. | Jun 1992 | A |
5186536 | Bornhorst et al. | Feb 1993 | A |
5446637 | Cunningham et al. | Aug 1995 | A |
5515254 | Smith et al. | May 1996 | A |
5544029 | Cunningham | Aug 1996 | A |
5622426 | Romano et al. | Apr 1997 | A |
5844638 | Ooi et al. | Dec 1998 | A |
5882107 | Bornhorst et al. | Mar 1999 | A |
5904417 | Hewett | May 1999 | A |
RE36316 | Cunningham | Sep 1999 | E |
5969868 | Bornhorst et al. | Oct 1999 | A |
6048080 | Belliveau | Apr 2000 | A |
6113252 | Arlitt et al. | Sep 2000 | A |
6241366 | Roman et al. | Jun 2001 | B1 |
6572241 | Chan et al. | Jun 2003 | B1 |
6796682 | Hough et al. | Sep 2004 | B2 |
6796683 | Wood et al. | Sep 2004 | B2 |
20030206414 | Wood et al. | Nov 2003 | A1 |
20050018423 | Warnecke et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1 167 868 | Jan 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20060176696 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60649983 | Feb 2005 | US |