Optical system including light-guide optical element with partially-reflective internal surfaces

Information

  • Patent Grant
  • 11526003
  • Patent Number
    11,526,003
  • Date Filed
    Thursday, May 23, 2019
    5 years ago
  • Date Issued
    Tuesday, December 13, 2022
    2 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Beatty; Collin X
    Agents
    • Friedman; Mark M.
Abstract
An optical system includes a light-guide optical element (LOE) (100) having a pair of parallel major external surfaces (102, 104) and a set of mutually-parallel reflector surfaces (106a, 106b, 106c) obliquely angled within the LOE. At least one of the reflector surfaces has high reflectivity for angles of incidence above 60 degrees to the normal and partial reflectivity for angles of incidence less than 35 degrees to the normal.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to optical systems for use in head-up displays and, in particular, it concerns an optical system employing a light-guide optical element (LOE) with partially-reflective internal surfaces.


Various displays, particularly head-up displays (HUD) and near-eye displays for augmented reality or virtual reality, employ light-guide optical elements (LOEs) having a pair of parallel major external surfaces to convey a collimated image which propagates within the LOE by internal reflection. The image is gradually coupled-out from the LOE, typically either directly towards the eye or into another LOE which conveys the image to the eye. In one class of such devices, coupling-out of the image from the LOE is achieved by a set of mutually-parallel partially-reflecting surfaces within the LOE, deployed obliquely relative to the major external surfaces of the LOE. The gradual coupling-out over a series of partially-reflecting surfaces achieves multiplication of the optical aperture that was coupled into the LOE.


Conventional LOEs impose stringent requirements on reflectivity of the partially-reflecting surfaces as a function of incident angle, typically requiring high transmission (near complete transmission) of image illumination at certain ranges of angles, and partial reflection at other angles relative to the plane of the facets. In practice, it is difficult to achieve near-complete transmission. One typical example is illustrated schematically in FIGS. 1A and 1B in which an LOE 10 with parallel major surfaces 12, 14 includes a set of partially-reflecting surfaces 16 (also referred to interchangeably herein as “facets”). An exemplary ray of light 18, at an angle corresponding to a given pixel of the image generated from a given location in the input optical aperture (not shown), propagates along the LOE by internal reflection at surfaces 12 and 14.


In a typical application, the image illumination exemplified by ray 18 propagates at a steeper angle to the major surfaces 12, 14 than the angle of the partially-reflecting surfaces 16. As a result, each illumination ray 18 may cross a given facet 16 several times. For instance, in FIGS. 1A and 1B, as ray 18 propagates from left to right, it crosses the third facet three times, at locations denoted 1, 2 and 3, respectively. As a result, the light reflected and coupled-out from point 1 (denoted a in FIG. 1B) will be stronger than that reflected and coupled-out from point 3 (denoted b), resulting in a non-uniformity in the output image.


Additionally, it is typically required that the facet be transparent (no reflection) for ray 18 at the angle of incidence shown at location 2, since any reflection there (dotted arrow) will further decrease the brightness of propagating light reaching point 3, and will generate a “ghost” due to illumination propagating in the wrong direction, which may result in part of the image appearing misplaced in the final image. This requirement for full transparency (zero reflection) is difficult to achieve, and becomes increasingly difficult to fulfill as the angles of incidence (AOI) get larger.


SUMMARY OF THE INVENTION

The present invention is an optical system including a light-guide optical element (LOE) with internal reflector surfaces.


According to the teachings of an embodiment of the present invention there is provided, an optical system comprising: (a) a light-guide optical element (LOE) having a pair of parallel major external surfaces; and (b) a plurality of mutually-parallel reflector surfaces within the LOE, the reflector surfaces being obliquely angled relative to the major external surfaces, wherein at least one of the reflector surfaces is configured to have high reflectivity for angles of incidence above 60 degrees to the normal and partial reflectivity for angles of incidence less than 35 degrees to the normal.


According to a further feature of an embodiment of the present invention, the high reflectivity is in excess of 95% for angles of incidence above 60 degrees.


According to a further feature of an embodiment of the present invention, the partial reflectivity is no more than 50%.


According to a further feature of an embodiment of the present invention, the LOE has a coupling-in region from which coupled-in image illumination propagates along the LOE, and wherein the partial reflectivity varies between successive reflector surfaces so as to at least partially compensate for a decreasing intensity of the image illumination reaching successive reflector surfaces.


According to a further feature of an embodiment of the present invention, the plurality of mutually-parallel reflector surfaces within the LOE further comprises a coupling-in reflector surface that forms at least part of a coupling-in arrangement, the coupling-in reflector surface having high reflectivity for angles of incidence above 60 degrees to the normal and reflectivity of at least about 66% for angles of incidence less than 35 degrees to the normal.


According to a further feature of an embodiment of the present invention, the plurality of reflector surfaces including the coupling-in reflector surface are part of a symmetrical arrangement of two sets of mutually-parallel reflector surfaces including two coupling-in reflector surfaces, the two coupling-in reflector surfaces meeting to form a chevron coupling-in arrangement.


According to a further feature of an embodiment of the present invention, there is also provided an image projector projecting a collimated image, and wherein a coupling-in arrangement optically couples the collimated image into the LOE as first-order image illumination so as to propagate within the LOE by internal reflection at the major faces, the first-order image illumination spanning a first angular field of view, the first angular field of view being at steeper angles to the major surfaces than the reflector surfaces.


According to a further feature of an embodiment of the present invention, at least part of the first-order image illumination propagating along the LOE is transmitted and then reflected by one of the reflector surfaces to generate second-order image illumination spanning a second angular field of view at shallower angles to the major surfaces than the reflector surfaces.


According to a further feature of an embodiment of the present invention, the second-order image illumination is deflected back to first-order image illumination by reflection in a subsequent one of the reflector surfaces.


According to a further feature of an embodiment of the present invention, the reflector surfaces are inclined at an angle of 20°-26°, and preferably at an angle of 23°-25°, to the major external surfaces of the LOE.


For the purpose of defining angles of incidence of a ray incident on a plane, the angle of incidence is defined as the angle between the ray direction and a normal to the plane, such that a ray perpendicular to a surface has an angle of incidence referred to as 0° while an angle approaching 90° is grazing incidence. Unless otherwise specified, the phrase “small angles of incidence” refers to angles of 0°-35° while “large angles of incidence” refers to angles of 60°-90°.


The terms “steep” or “steeper” are used to refer to rays with relatively small angles of incidence to a plane, or to a plane which is inclined at a relatively large angle to the reference plane. Conversely, “shallow” or “shallower” are used to refer to relatively large-angle rays that are nearer to grazing incidence, or to a plane which is inclined at a relatively small angle to the reference plane.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIGS. 1A and 1B, discussed above, are schematic side views showing the geometry of a ray of light propagating along an LOE and a set of obliquely oriented partially-reflective surfaces within the LOE according to certain conventional LOE designs;



FIGS. 2A, 2C, 2D and 2E are schematic side views of an LOE constructed and operative according to the teachings of an embodiment of the present invention, illustrating various ray paths for rays of an image propagating along the LOE;



FIG. 2B is an enlarged view of the region of FIG. 2A indicated by a circle designated II; and



FIG. 3 is a schematic view of an optical system employing the LOE of FIGS. 2A-2E to provide a near-eye display.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is an optical system including a light-guide optical element.


The principles and operation of optical systems according to the present invention may be better understood with reference to the drawings and the accompanying description.


Referring now to the drawings, FIGS. 2A-2E are schematic illustrations of a basic implementation of part of an optical system including a light-guide optical element (LOE) 100 having a pair of parallel major external surfaces 102 and 104. A plurality of mutually-parallel reflector surfaces 106a, 106b and 106c are deployed within LOE 100, obliquely angled relative to major external surfaces 102 and 104.


It is a particular feature of certain particularly preferred implementations of the present invention that at least one of the reflector surfaces 106b, 106c is configured to have high reflectivity for angles of incidence above 60 degrees to the normal and partial reflectivity for angles of incidence less than 35 degrees to the normal. “High reflectivity” in this context is generally taken to mean reflectivity above 90%, and more preferably in excess of 95%. In some particularly preferred implementations, the high reflectivity achieved for incident angles above 60 degrees is above 98%, and most preferably close to 100%. Unlike the prior art approaches described above, this aspect of the present invention does not require the reflector surfaces to have near-zero reflectivity at any range of incident angles. This greatly simplifies implementation of the multi-layer dielectric coatings or other reflective coatings applied to the reflector surfaces.


The use of reflector surfaces that are highly reflective at large angles generates distinctive ray paths that differ from those of the prior art. Specifically, referring to the ray paths illustrated in FIGS. 2A and 2C-2E, as well as in the enlargement of FIG. 2B, a collimated image delivered to the LOE (exemplified by injected rays 108 in various different positions across the aperture, labeled A, B, C, D and E) is coupled into the LOE as first-order image illumination, exemplified by image rays 110a and their conjugate image rays 110b so as to propagate within LOE 100 by internal reflection at the major faces 102, 104. The illustrated rays A-E are all parallel which, in a collimated image, indicates that they all correspond to illumination from a single pixel of the injected image, where the total field of view (FOV) of the coupled-in image, referred to here as “first-order image illumination,” spans a first angular field of view. This first angular field of view is directed at steeper angles to the major surfaces than the reflector surfaces 106a, 106b, 106c. As a result of this steeper angle of the first angular field of view, at least part of the first-order image illumination propagating along the LOE undergoes reflection at large incident angle by one of the reflector surfaces, deflecting rays 110a to generate second-order image illumination, exemplified by ray 112, spanning a second angular field of view at shallower angles to the major surfaces 102, 104 than the reflector surfaces 106a, 106b, 106c. When ray 112 impinges on the next reflector surface, the second-order image illumination 112 is deflected back to first-order image illumination 110a by reflection in a subsequent one of the reflector surfaces. When rays 110b impinge on the reflector surfaces, this occurs at small angles (less than 35 degrees), resulting in partial reflection for coupling out image illumination as rays 114, as well as partial transmission of rays 110b which carries forward part of the illumination intensity for coupling-out further along the LOE.


In the non-limiting example illustrated here, coupling-in of image rays 108 is achieved using reflector surface 106a which is implemented as a coupling-in reflector surface with high reflectivity for angles of incidence above 60 degrees to the normal and more than 50% reflectivity, typically at least about 66%, for angles of incidence less than 35 degrees to the normal. A first reflection in facet 106a thus couples-in the image illumination to first-order image illumination 110b. Rays A and B illustrated in FIGS. 2A-2C enter in a region of the input aperture and at an angle that leads to them being reflected a second time from facet 106a, resulting in second-order image illumination 112, which is converted back to first-order image illumination 110a at facet 106b. That first-order image illumination then reflects from major surface 104 to become 106a which traverses facet 106b while generating coupled-out rays 114 by partial reflection. Rays A and B continue to propagate along the LOE, also traversing facet 106c where further partial reflection occurs, and then undergo an additional large-angle reflection at facet 106c to repeat the above process. Since the reflectivity of the reflector surfaces at large angles is high, the conversion to and from second-order image illumination occurs without significant losses of energy or generation of ghost images. Additionally, the use of relatively shallow-angle reflector surfaces facilitates implementation of a relatively thin and light-weight LOE. Preferred inclination of the reflector surfaces relative to the major surfaces of the LOE is between 20°-26°, and most preferably 23°-25°.


It will be noted that different rays undergo the above conversion between first- and second-order image illumination at different locations, and in some cases, not at all. Thus, FIG. 2D illustrates rays C and D which undergo regular first-order image illumination propagation between facets 106a and 106b, and then undergo conversion to second-order illumination by reflection on the rear face of second reflector surface 106b. FIG. 2E illustrates a ray E for which the position and angle of the coupled-in ray is such that the ray remains as first-order image illumination over the span of the three facets illustrated here.


These various different types of optical paths provide coupling out of the image illumination from the LOE in a range of locations along the LOE, and typically cooperate to generate a generally continuous overall image output over a desired output area. The partial reflectivity of the reflector surfaces at small angles are preferably varied between the surfaces in order to enhance uniformity of the output image, according to the following principles. Firstly, where a first facet 106a is used as a coupling-in surface, the reflectivity for the coupling-in reflector surface is preferably at least 50%, and is most preferably roughly (1−1/n) where n is the number of facets, unless the coupling-in reflector surface is outside the region in which coupling-out is required, in which case a 100% reflector can be used.


The small-angle partial reflectivity of the remaining facets is preferably roughly 1/n where n for each facet is the number of remaining facets at which coupling-out is required, including the current facet. Thus, for example, in the case of a 3 facet implementation as shown, optimal reflectivity values for the facets at small and large angles would be as follows:














Facet Number
Reflectivity at small angles
Reflectivity at large angles







1
66%
>98%


2
50%
>98%


3
100% 
>98%










and for a 4 facet implementation would be as follows:














Facet Number
Reflectivity at small angles
Reflectivity at large angles







1
75%
>98%


2
33%
>98%


3
50%
>98%


4
100% 
>98%









The above properties can readily be achieved using standard software tools for designing multi-layer coatings and, in fact, can be achieved more uniformly and require fewer coating layers than the aforementioned conventional designs having requirements of non-reflective properties for certain angular ranges.


The above exemplary reflectance values are suitable for implementations in which the LOE is used for a first dimension of optical aperture expansion that serves as the input to another LOE which is opposite the eye, or for virtual reality applications. For applications in which the LOE is deployed opposite the eye for augmented reality applications, the coupling-in facet is deployed outside the field of view (or an alternative coupling-in configuration is used), and a larger number of facets with relatively low reflectivity at small angles is preferred.



FIG. 3 illustrates schematically an overall optical system 200 which includes an image projector 202 configured to project a collimated image. The image projector 202 is shown here only schematically, and can be any type of projector that projects a collimated image. In some embodiments, the image projector includes a light source, a spatial light modulator (such as a liquid crystal on silicon, or “LCOS”) and collimating optics. These components may advantageously be arranged on surfaces of a number of beam splitter prisms, for example, polarized beam splitter (PBS) cubes, with reflective collimating optics, all as is known in the art.


A coupling-in arrangement, such as first facets 106a, optically couples the collimated image into the LOE as first-order image illumination so as to propagate within the LOE, with interchange between the first- and second-order image illumination and progressive coupling-out of the image, all as described above. In one particularly preferred but non-limiting implementation as illustrated here, the set of reflector surfaces 106a, 106b and 106c are part of a symmetrical arrangement of two sets of mutually-parallel reflector surfaces 106a, 106b, 106c, 106a′, 106b′ and 106c′ including two coupling-in reflector surfaces 106a and 106a′ which meet to form a chevron coupling-in arrangement.


The coupled-out image illumination from LOE 100 is shown here schematically coupled-in to a further LOE 204 which conveys the image opposite the eye of the observer and couples it out towards the observer's eye. LOE 204 may be implemented with facets 206 that are implemented according to the teachings of the present invention, with high reflectivity at large angles, or may be implemented using otherwise conventional LOE technology based on partially-reflective facets and/or diffractive optical elements for coupling-in and coupling-out, as is known in the art.


Although coupling of the projected image into the LOE has been exemplified herein with reference to a coupling-in reflector surface, it will be appreciated that other coupling in arrangements can also be used to advantage. Additional options include, but are not limited to, various forms of coupling-in prism, attached to or integrated with one of the major surfaces and/or with a side surface of the LOE, which provides a correctly angled surface for direct injection of a projected image into a guided first-order image illumination mode, and various coupling-in arrangements based on diffractive optical elements.


Additional features may optionally be implemented in combination with the features described thus far in order to further enhance uniformity of the coupled-out image intensity across the exit aperture. According to one non-limiting example, one or both of the major surfaces of the LOE is modified by addition of a parallel-faced plate optically bonded to the LOE, and with a partially-reflecting interface between the LOE and the plate, generated either by introduction of an interface layer of suitable material or by applying suitable coatings to one or both surfaces at the interface. This partially-reflecting interface serves as a “mixer”, generating overlap of multiple optical paths, thereby enhancing uniformity of the coupled-out image intensity across the exit aperture of the LOE.


It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.

Claims
  • 1. An optical system comprising: (a) a light-guide optical element , LOE, having a pair of parallel major external surfaces and
  • 2. The optical system of claim 1, wherein said LOE has a coupling-in region from which coupled-in image illumination propagates along the LOE, and wherein said partial reflectivity varies between successive reflector surfaces so as to at least partially compensate for a decreasing intensity of said image illumination reaching successive reflector surfaces.
  • 3. The optical system of claim 1, wherein said plurality of mutually-parallel reflector surfaces within said LOE further comprises a coupling-in reflector surface that forms at least part of a coupling-in arrangement, said coupling-in reflector surface having high reflectivity for angles of incidence above 60 degrees to the normal and reflectivity of at least about 66% for angles of incidence less than 35 degrees to the normal.
  • 4. The optical system of claim 3, wherein said plurality of reflector surfaces) including said coupling-in reflector surface are part of a symmetrical arrangement of two sets of mutually-parallel reflector surfaces (106a, 106b, 106c, 106a′, 106b′, 106c′) including two coupling-in reflector surfaces (106a, 106a′), said two coupling-in reflector surfaces (106a, 106a′) meeting to form a chevron coupling-in arrangement.
  • 5. The optical system of claim 1, further comprising an image projector projecting a collimated image, and wherein a coupling-in arrangement optically couples said collimated image into said LOE as first-order image illumination so as to propagate within said LOE by internal reflection at said major faces, said first-order image illumination spanning a first angular field of view, said first angular field of view being at steeper angles to said major surfaces than said reflector surfaces.
  • 6. The optical system of claim 5, wherein at least part of said first-order image illumination propagating along said LOE (is transmitted and then reflected by one of said reflector surfaces to generate second-order image illumination spanning a second angular field of view at shallower angles to said major surfaces than said reflector surfaces.
  • 7. The optical system of claim 6, wherein said second-order image illumination is deflected back to first-order image illumination by reflection in a subsequent one of said reflector surfaces.
  • 8. The optical system of claim 1, wherein said reflector surfaces are inclined at an angle of 20°-26° to said major external surfaces of said LOE.
  • 9. The optical system of claim 1, wherein said reflector surfaces are inclined at an angle of 23°-25° to said major external surfaces of said LOE.
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/054272 5/23/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/224764 11/28/2019 WO A
US Referenced Citations (352)
Number Name Date Kind
2748659 Geffcken et al. Jun 1956 A
2795069 Hardesty Jun 1957 A
2886911 Hardesty May 1959 A
3491245 Hardesty Jan 1970 A
3626394 Nelson et al. Dec 1971 A
3667621 Barlow Jun 1972 A
3677621 Smith Jul 1972 A
3737212 Antonson et al. Jun 1973 A
3802763 Cook et al. Apr 1974 A
3829197 Thelen Aug 1974 A
3857109 Pilloff Dec 1974 A
3873209 Schinke Mar 1975 A
3940204 Withrington Feb 1976 A
3969023 Brandt Jul 1976 A
4084883 Eastman et al. Apr 1978 A
4191446 Arditty et al. Mar 1980 A
4309070 St Leger Searle Jan 1982 A
4331387 Wentz May 1982 A
4355864 Soref Oct 1982 A
4516828 Steele May 1985 A
4613216 Herbec et al. Sep 1986 A
4711512 Upatnieks Dec 1987 A
4715684 Gagnon Dec 1987 A
4775217 Ellis Oct 1988 A
4798448 Van Raalte Jan 1989 A
4805988 Dones Feb 1989 A
4932743 Isobe et al. Jun 1990 A
4978952 Irwin Dec 1990 A
5033828 Haruta Jul 1991 A
5076664 Migozzi Dec 1991 A
5096520 Faris Mar 1992 A
5157526 Kondo et al. Oct 1992 A
5208800 Isobe et al. May 1993 A
5231642 Scifres et al. Jul 1993 A
5235589 Yokomori et al. Aug 1993 A
5301067 Bleier et al. Apr 1994 A
5353134 Michel et al. Oct 1994 A
5367399 Kramer Nov 1994 A
5369415 Richard et al. Nov 1994 A
5453877 Gerbe et al. Sep 1995 A
5543877 Takashi et al. Aug 1996 A
5555329 Kuper et al. Sep 1996 A
5619601 Akashi et al. Apr 1997 A
5650873 Gal et al. Jul 1997 A
5680209 Maechler Oct 1997 A
5712694 Taira et al. Jan 1998 A
5724163 David Mar 1998 A
5751480 Kitagishi May 1998 A
5764412 Suzuki et al. Jun 1998 A
5829854 Jones Nov 1998 A
5883684 Millikan et al. Mar 1999 A
5896232 Budd et al. Apr 1999 A
5919601 Nguyen et al. Jul 1999 A
5966223 Amitai et al. Oct 1999 A
5982536 Swan Nov 1999 A
6021239 Minami et al. Feb 2000 A
6052500 Takano et al. Apr 2000 A
6091548 Chen Jul 2000 A
6144347 Mizoguchi et al. Nov 2000 A
6222676 Takayoshi et al. Apr 2001 B1
6231992 Niebauer et al. May 2001 B1
6239092 Papasso et al. May 2001 B1
6322256 Inada et al. Nov 2001 B1
6324330 Stites Nov 2001 B1
6349001 Spitzer Feb 2002 B1
6362861 Hertz et al. Mar 2002 B1
6490087 Fulkerson et al. Mar 2002 B1
6384982 Spitzer May 2002 B1
6388814 Tanaka May 2002 B2
6404550 Yajima Jun 2002 B1
6404947 Matsuda Jun 2002 B1
6440550 Hacker Aug 2002 B1
6490104 Gleckman et al. Dec 2002 B1
6509982 Steiner Jan 2003 B2
6542307 Gleckman Apr 2003 B2
6556282 Jamieson et al. Apr 2003 B2
6577411 David Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6592224 Ito et al. Jul 2003 B2
6611385 Song Aug 2003 B2
6671100 McRuer Dec 2003 B1
6690513 Hulse et al. Feb 2004 B2
6710902 Takeyama Mar 2004 B2
6775432 Basu Aug 2004 B2
6791760 Janeczko et al. Sep 2004 B2
6798579 Robinson et al. Sep 2004 B2
6829095 Amitai Dec 2004 B2
6880931 Moliton et al. Apr 2005 B2
6942925 Lazarev et al. Sep 2005 B1
7016113 Choi et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7088664 Kim et al. Aug 2006 B2
7175304 Wadia et al. Feb 2007 B2
7205960 David Apr 2007 B2
7355795 Yamazaki et al. Apr 2008 B1
7391573 Amitai Jun 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7448170 Milovan et al. Nov 2008 B2
7724441 Amitai May 2010 B2
7751122 Amitai Jul 2010 B2
7778508 Hirayama Aug 2010 B2
7949214 Dejong May 2011 B2
7995275 Maeda et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8035872 Ouchi Oct 2011 B2
8187481 Hobbs May 2012 B1
8369019 Baker Feb 2013 B2
8655178 Capron et al. Feb 2014 B2
8665178 Wang Mar 2014 B1
8666208 Amirparviz et al. Mar 2014 B1
8718437 Coe-Sullivan May 2014 B2
8736963 Robbins et al. May 2014 B2
8743464 Amirparviz Jun 2014 B1
8913865 Bennett Dec 2014 B1
8965152 Simmonds Feb 2015 B2
9039906 Schulz et al. May 2015 B2
9248616 Amitai Feb 2016 B2
9523852 Brown et al. Dec 2016 B1
9541762 Mukawa et al. Jan 2017 B2
9551880 Amitai Jan 2017 B2
9568738 Mansharof et al. Feb 2017 B2
9709809 Miyawaki et al. Jul 2017 B2
9804396 Yaakov Oct 2017 B2
9805633 Zheng Oct 2017 B2
9933684 Brown et al. Apr 2018 B2
9946069 Valera et al. Apr 2018 B2
10048499 Amitai Aug 2018 B2
10222535 Remhof et al. Mar 2019 B2
10302957 Sissom May 2019 B2
10466479 Shih et al. Nov 2019 B2
20010030860 Kimura et al. Oct 2001 A1
20020015233 Park Feb 2002 A1
20020176173 Song Nov 2002 A1
20020191297 Gleckman et al. Dec 2002 A1
20030007157 Hulse et al. Jan 2003 A1
20030020006 Janeczko et al. Jan 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030072160 Kuepper et al. Apr 2003 A1
20030090439 Spitzer et al. May 2003 A1
20030165017 Amitai Sep 2003 A1
20030197938 Schmidt et al. Oct 2003 A1
20030218718 Moliton et al. Nov 2003 A1
20040032660 Amitai Feb 2004 A1
20040033528 Amitai Feb 2004 A1
20040085649 Repetto et al. May 2004 A1
20040137189 Tellini et al. Jul 2004 A1
20040233534 Nakanishi et al. Nov 2004 A1
20050018308 Cassarly et al. Jan 2005 A1
20050024849 Parker et al. Feb 2005 A1
20050078388 Amitai Apr 2005 A1
20050083592 Amitai Apr 2005 A1
20050084210 Cha Apr 2005 A1
20050174641 Greenberg Aug 2005 A1
20050174658 Long et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050265044 Chen et al. Dec 2005 A1
20060126182 Levola Jun 2006 A1
20060268421 Shimizu et al. Nov 2006 A1
20070015967 Freeman et al. Jan 2007 A1
20070070859 Hlrayama Mar 2007 A1
20070091445 Amitai Apr 2007 A1
20070097513 Amitai May 2007 A1
20070155277 Amitai Jul 2007 A1
20070165192 Prior Jul 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20080025667 Amitai Jan 2008 A1
20080094586 Hirayama Apr 2008 A1
20080106775 Amitai et al. May 2008 A1
20080151375 Lin Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080192239 Otosaka Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080247150 Itoh et al. Oct 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20090010023 Kanade et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090097127 Amitai Apr 2009 A1
20090122414 Amitai May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090251788 Dejong et al. Oct 2009 A1
20100027289 Aiki et al. Feb 2010 A1
20100053148 Khazeni et al. Mar 2010 A1
20100111472 DeJong May 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100202128 Saccomanno Aug 2010 A1
20100214635 Sasaki et al. Aug 2010 A1
20100278480 Vasylyev et al. Nov 2010 A1
20100291489 Moskovits et al. Nov 2010 A1
20110019250 Aiki et al. Jan 2011 A1
20110096566 Tsai et al. Apr 2011 A1
20110176218 Noui Jul 2011 A1
20110227661 Numata et al. Sep 2011 A1
20110242661 Simmonds Oct 2011 A1
20120039576 Dangel et al. Feb 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120147361 Mochizuki et al. Jun 2012 A1
20120179369 Lapidot et al. Jun 2012 A1
20120194781 Agurok Aug 2012 A1
20120306940 Machida Dec 2012 A1
20130016292 Miao et al. Jan 2013 A1
20130022316 Pelletier et al. Jan 2013 A1
20130070344 Takeda et al. Mar 2013 A1
20130135749 Akutsu et al. May 2013 A1
20130229717 Amitai Sep 2013 A1
20130242392 Amirparviz et al. Sep 2013 A1
20130250430 Robbuns et al. Sep 2013 A1
20130276960 Amitai Oct 2013 A1
20130279017 Amitai Oct 2013 A1
20130321432 Burns et al. Dec 2013 A1
20130334504 Thompson et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140043688 Schrader et al. Feb 2014 A1
20140118813 Amitai et al. May 2014 A1
20140118836 Amitai et al. May 2014 A1
20140118837 Amitai et al. May 2014 A1
20140126051 Amitai et al. May 2014 A1
20140126052 Amitai et al. May 2014 A1
20140126056 Amitai et al. May 2014 A1
20140126057 Amitai et al. May 2014 A1
20140126175 Amitai et al. May 2014 A1
20140160577 Dominici et al. Jun 2014 A1
20140185142 Gupta et al. Jul 2014 A1
20140226215 Komatsu et al. Aug 2014 A1
20140226361 Vasylyev Aug 2014 A1
20140311570 Raymond Oct 2014 A1
20140334777 Dubroca et al. Nov 2014 A1
20150003796 Bennett Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150081313 Boross et al. Mar 2015 A1
20150138451 Amitai May 2015 A1
20150138646 Tatsugi May 2015 A1
20150153569 Yonekubo Jun 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150182348 Siegal et al. Jul 2015 A1
20150198805 Mansharof et al. Jul 2015 A1
20150205140 Mansharof et al. Jul 2015 A1
20150205141 Mansharof et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150235473 Schowengerdt Aug 2015 A1
20150241619 Richards et al. Aug 2015 A1
20150277127 Amitai Oct 2015 A1
20150309316 Osterhout et al. Oct 2015 A1
20150338655 Sawada et al. Nov 2015 A1
20150293360 Amitai Dec 2015 A1
20160116743 Amitai Apr 2016 A1
20160170212 Amitai Jun 2016 A1
20160170213 Amitai Jun 2016 A1
20160170214 Amitai Jun 2016 A1
20160187656 Amitai Jun 2016 A1
20160024731 Nowatzyk et al. Aug 2016 A1
20160234485 Robbins et al. Aug 2016 A1
20160238844 Dobschal Aug 2016 A1
20160313567 Kurashige Oct 2016 A1
20160314564 Jones Oct 2016 A1
20160341964 Amitai Nov 2016 A1
20160349518 Amitai et al. Dec 2016 A1
20160370693 Watanabe Dec 2016 A1
20170003504 Vallius et al. Jan 2017 A1
20170045743 Dobschal et al. Feb 2017 A1
20170045744 Amitai Feb 2017 A1
20170052376 Amitai Feb 2017 A1
20170052377 Amitai Feb 2017 A1
20170075119 Schultz et al. Mar 2017 A1
20170122725 Yeoh May 2017 A1
20170242249 Wall Aug 2017 A1
20170276947 Yokoyama Sep 2017 A1
20170285349 Ayres et al. Oct 2017 A1
20170299871 Totani et al. Oct 2017 A1
20170299891 Odaira et al. Oct 2017 A1
20170336636 Amitai et al. Nov 2017 A1
20170343822 Border et al. Nov 2017 A1
20170357095 Amitai Dec 2017 A1
20170363799 Ofir et al. Dec 2017 A1
20180039082 Amitai Feb 2018 A1
20180067315 Amitai et al. Mar 2018 A1
20180088337 Yoshida et al. Mar 2018 A1
20180157057 Gelberg et al. Jun 2018 A1
20180210202 Danziger Jul 2018 A1
20180267317 Amitai Sep 2018 A1
20180275384 Danziger et al. Sep 2018 A1
20180284448 Matsuki et al. Oct 2018 A1
20180292592 Danziger Oct 2018 A1
20180292599 Ofir et al. Oct 2018 A1
20180373039 Amitai Dec 2018 A1
20190011710 Amitai Jan 2019 A1
20190056600 Danziger et al. Feb 2019 A1
20190064518 Danziger Feb 2019 A1
20190155035 Amitai May 2019 A1
20190170327 Eisenfeld et al. Jun 2019 A1
20190208187 Danziger Jul 2019 A1
20190212487 Danziger et al. Jul 2019 A1
20190227215 Danziger et al. Jul 2019 A1
20190278086 Ofir Sep 2019 A1
20190285900 Amitai Sep 2019 A1
20190293856 Danziger Sep 2019 A1
20190339530 Amitai Nov 2019 A1
20190346609 Eisenfeld Nov 2019 A1
20190361240 Gelberg Nov 2019 A1
20190361241 Amitai Nov 2019 A1
20190377187 Rubin et al. Dec 2019 A1
20190391408 Mansharof Dec 2019 A1
20200033572 Danziger et al. Jan 2020 A1
20200041713 Danziger Feb 2020 A1
20200089001 Amitai et al. Mar 2020 A1
20200110211 Danziger et al. Apr 2020 A1
20200120329 Danziger Apr 2020 A1
20200133008 Amitai Apr 2020 A1
20200150330 Danziger et al. May 2020 A1
20200183159 Danziger Jun 2020 A1
20200183170 Amitai et al. Jun 2020 A1
20200200963 Eisenfeld et al. Jun 2020 A1
20200209667 Sharlin et al. Jul 2020 A1
20200241308 Danziger et al. Jul 2020 A1
20200249481 Danziger et al. Aug 2020 A1
20200278557 Greenstein et al. Sep 2020 A1
20200285060 Amitai Sep 2020 A1
20200292417 Lobachinsky et al. Sep 2020 A1
20200292744 Danziger Sep 2020 A1
20200292819 Danziger et al. Sep 2020 A1
20200310024 Danziger et al. Oct 2020 A1
20200326545 Amitai Oct 2020 A1
20200371311 Lobachinsky et al. Nov 2020 A1
20210003849 Amitai et al. Jan 2021 A1
20210018755 Amitai Jan 2021 A1
20210033773 Danziger et al. Feb 2021 A1
20210033862 Danziger et al. Feb 2021 A1
20210033872 Rubin et al. Feb 2021 A1
20210055218 Aldaag et al. Feb 2021 A1
20210055466 Eisenfeld Feb 2021 A1
20210055561 Danziger et al. Feb 2021 A1
20210063733 Ronen Mar 2021 A1
20210072553 Danziger et al. Mar 2021 A1
20210099691 Danziger Apr 2021 A1
20210109351 Danziger et al. Apr 2021 A1
20210116367 Gelberg et al. Apr 2021 A1
20210141141 Danziger et al. May 2021 A1
20210157150 Amitai May 2021 A1
20210165231 Gelberg et al. Jun 2021 A1
20210173480 Osterhout et al. Jun 2021 A1
20210215941 Schultz et al. Jul 2021 A1
20210239898 Danziger et al. Aug 2021 A1
20210271006 Ronen et al. Sep 2021 A1
20220003914 Danziger et al. Jan 2022 A1
20220004001 Danziger et al. Jan 2022 A1
20220004007 Bhakta et al. Jan 2022 A1
20220004014 Ronen et al. Jan 2022 A1
20220137274 Sharlin et al. May 2022 A1
Foreign Referenced Citations (69)
Number Date Country
200941530 Sep 2007 CN
101542346 Sep 2009 CN
101846799 Sep 2010 CN
106104569 Nov 2016 CN
107238928 Oct 2017 CN
1422172 Nov 1970 DE
19725262 Dec 1998 DE
102013106392 Dec 2014 DE
0365406 Apr 1990 EP
0380035 Aug 1990 EP
0399865 Nov 1990 EP
0543718 May 1993 EP
0566004 Oct 1993 EP
1158336 Nov 2001 EP
1180711 Feb 2002 EP
1326102 Jul 2003 EP
1385023 Jan 2004 EP
1485747 Dec 2004 EP
1562066 Aug 2005 EP
0770818 Apr 2007 EP
2530510 Dec 2012 EP
2496905 Jun 1982 FR
2638242 Apr 1990 FR
2721872 Jan 1996 FR
2220081 Dec 1989 GB
2272980 Jun 1994 GB
2278222 Nov 1994 GB
2278888 Dec 1994 GB
H1994242260 Mar 1996 JP
2001021448 Jan 2001 JP
2002539498 Nov 2002 JP
2003140081 May 2003 JP
2003149643 May 2003 JP
2004527801 Sep 2004 JP
2005084522 Mar 2005 JP
2006003872 Jan 2006 JP
2006145644 Jun 2006 JP
2010044172 Feb 2010 JP
2010060770 Mar 2010 JP
2010170606 Aug 2010 JP
2011221235 Nov 2011 JP
2012058404 Mar 2012 JP
2012163659 Aug 2012 JP
2013076847 Apr 2013 JP
201809798 Mar 2018 TW
9510106 Apr 1995 WO
9815868 Apr 1998 WO
1998058291 Dec 1998 WO
9952002 Oct 1999 WO
0004407 Jan 2000 WO
0063738 Oct 2000 WO
0127685 Apr 2001 WO
0195025 Dec 2001 WO
02082168 Oct 2002 WO
03058320 Jul 2003 WO
2004109349 Dec 2004 WO
2005093493 Oct 2005 WO
2006085308 Aug 2006 WO
2006098097 Sep 2006 WO
2009009268 Jan 2009 WO
2009074638 Jun 2009 WO
2011130720 Oct 2011 WO
2013065656 May 2013 WO
2013188464 Dec 2013 WO
2015081313 Jun 2015 WO
2015158828 Oct 2015 WO
2016132347 Aug 2016 WO
2017106873 Jun 2017 WO
2021051068 Sep 2021 WO
Non-Patent Literature Citations (7)
Entry
Jan vad de Kraats et al. “Directional and nondirectional spectral reflection from the human fovea” Journal of Biomedical Optics. 13(2). 024010 (Mar./Apr. 2008).
International Commission Non-Ionizing Radiation Protection “ICNIRP Guidelines for Limiting Exosure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 GHZ)” Published in: Health Physics 74 (4): 494-522; 1998.
Da-Yong et al., “A Continuous Membrance Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, vol. 16, No. 10, May 20, 2010 pp. 1765-1769.
Da-Yong et al., “A Continuous Membrane Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, Springer, vol. 16, No. IO, May 20, 2010 pp. 1765-1769 (abstract only).
Amotchkina T. et al; “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22, 30387-30393 (2014) Amotchkina T. et al. Dec. 31, 2014 (Dec. 31, 2014).
Mori H. et al., “Reflective coatings forthe future x-ray mirror substrates”, Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 1069941 (Jul. 6, 2018); available at URL <http://doi.org/10.1117/12.2313469> Mori H. et al. Jul. 6, 2018 (Jul. 6, 2018).
Chalifoux B.D. et al., “Compensating film stress in thin silicon substrates using ion implantation,” Opt. Express 27, 11182-11195 (Jan. 21, 2019) Chalifoux B.D. et al. Jan. 21, 2019 (Jan. 21, 2019).
Related Publications (1)
Number Date Country
20210063733 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62675205 May 2018 US