Optical system with compact coupling from a projector into a waveguide

Information

  • Patent Grant
  • 11860369
  • Patent Number
    11,860,369
  • Date Filed
    Tuesday, March 1, 2022
    2 years ago
  • Date Issued
    Tuesday, January 2, 2024
    a year ago
Abstract
An optical system includes a light-guide optical element (LOE) (10) having mutually-parallel first and second major external surfaces (11, 12) for guiding light by internal reflection, and a projector (100) that projects illumination corresponding to a collimated image from an aperture (101). The projector injects light in to the LOE via a coupling prism (30) attached to the first major external surface (11) that projects an image injection surface. A reflective polarizing beam splitter (51) is deployed at an interface between the major external surface (11) and the coupling prism (30) parallel to the major external surfaces, to selectively transmit illumination from the coupling prism into the LOE while trapping light already within the LOE so as to propagate within the LOE by internal reflection.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to optical systems and, in particular, it concerns an optical system with compact coupling of an image from a projector into a waveguide.


Many virtual reality and augmented reality displays employ a light-guide optical element (LOE) with two major parallel planar surfaces within which an image propagates by internal reflection. Illumination corresponding to a collimated image is generated by a projector, and is introduced into the LOE at a coupling-in region. The illumination propagates within the LOE by internal reflection until reaching a coupling-out region where it is coupled out of the LOE towards the viewer's eye. Coupling out of the illumination toward the eye may be by use of a set of obliquely angled partially reflective internal surfaces, or by use of one or more diffractive optical element, all as well-known in the art. Coupling of the image illumination from the projector into the LOE may be achieved via a coupling prism.


SUMMARY OF THE INVENTION

The present invention is an optical system with compact coupling of an image from a projector into a waveguide.


According to the teachings of an embodiment of the present invention there is provided, an optical system comprising: (a) a light-guide optical element (LOE) formed from transparent material and having mutually-parallel first and second major external surfaces for guiding light by internal reflection; (b) a projector configured to project illumination corresponding to a collimated image from an aperture, the illumination exiting the aperture with a chief ray defining an optical axis of the projector and with an angular field about the chief ray; (c) a coupling prism attached to the first major external surface of the LOE, the coupling prism providing at least part of an image injection surface angled obliquely to the major external surfaces, the projector being associated with the image injection surface and oriented such that the chief ray and the angular field about the chief ray are injected through the image injection surface at angles of incidence relative to the major external surfaces greater than a critical angle for internal reflection at the major external surfaces; and (d) a reflective polarizing beam splitter deployed at an interface between the major external surface and the coupling prism parallel to the major external surfaces, at least part of the illumination being incident on the beam splitter with a first polarization and being transmitted by the beam splitter from the coupling prism into the LOE, light corresponding to a conjugate image of the collimated image and having a second polarization incident on the beam splitter from within the LOE being reflected from the beam splitter so as to propagate within the LOE by internal reflection.


According to a further feature of an embodiment of the present invention, there is also provided a waveplate deployed in a path of at least a part of the illumination to convert the illumination between the first polarization and the second polarization.


According to a further feature of an embodiment of the present invention, the waveplate is a quarter-wave plate associated with at least part of the second major external surface of the LOE.


According to a further feature of an embodiment of the present invention, the waveplate is a half-wave plate deployed in overlapping relation to a first part of the aperture without overlapping a second part of the aperture.


According to a further feature of an embodiment of the present invention, the first part of the aperture projects illumination through a part of the image injection surface from which light passes into the LOE without traversing the beam splitter.


According to a further feature of an embodiment of the present invention, the projector is configured to project illumination of the second polarization, wherein the first part of the aperture projects illumination through a part of the image injection surface from which light passes through the beam splitter, the half-wave plate converting illumination of the second polarization into illumination of the first polarization.


According to a further feature of an embodiment of the present invention, the image injection surface is provided in part by the coupling prism and in part by a surface of the LOE.


According to a further feature of an embodiment of the present invention, the image injection surface is provided entirely by the coupling prism.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic side view of a projector injecting an image into a waveguide via an edge surface, indicating incomplete filling of the waveguide with the image;



FIGS. 2A and 2B are schematic side views of a projector injecting an image into a waveguide via a coupling prism so as to fill the thickness of the waveguide with the image, illustrating a shallow extremity of the projected angular field and a steepest extremity of the projected angular field, respectively;



FIGS. 3A-3C are schematic side views of an optical system according to an embodiment of the present invention including a projector injecting an image into a waveguide via a coupling prism with a reflective polarizing beam splitter, illustrating a shallow extremity, a middle-field, and a steepest extremity of the projected angular field, respectively;



FIG. 4 is a graph illustrating transmissivity to p-polarization and reflectivity to s-polarization as a function of angle of incidence for a polarizing beam splitter suitable for use in an embodiment of the present invention;



FIGS. 5A and 5B are schematic side views of an optical system according to a variant embodiment of the present invention, illustrating a shallow extremity, and a steepest extremity of the projected angular field, respectively;



FIGS. 6A and 6B are schematic side views of an optical system according to a further variant embodiment of the present invention, illustrating a shallow extremity, and a steepest extremity of the projected angular field, respectively;



FIGS. 7A-7C are schematic side views of an optical system according to any of the above embodiments, illustrating possible deployments of a retarder element to reduce polarization-related banding effects; and



FIGS. 8A and 8B are schematic side views of an optical system according to any of the above embodiments, illustrating possible deployments of one or two internal partial-reflectors, respectively, to achieve mixing to reduce polarization-related banding effects.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is an optical system with compact coupling of an image from a projector into a waveguide.


The principles and operation of optical systems according to the present invention may be better understood with reference to the drawings and the accompanying description.


By way of introduction, FIG. 1 shows rays propagating inside a light-guide optical element (LOE) 10 (referred to herein interchangeably as a “waveguide”) by internal reflection at mutually-parallel first and second major external surfaces 11 and 12. In this example, the rays are coupled out towards an eye 40 of an observer by embedded partially reflective mirrors 20, that are obliquely angled to the major external surfaces of the LOE. The invention is equally applicable to displays employing diffractive optical elements for coupling-out image illumination towards the eye of the observer, as is well-known in the art.


Illumination from a projector 100 corresponding to a collimated image is here shown injected into the waveguide at surface 13 in a simple manner that does not duplicate the injected image, and therefore a conjugated image is not generated. As a result, the rays propagating inside the waveguide contain ‘holes’, i.e., regions which the image illumination does not reach, and the rays reaching the observer's eye 40 are not uniform. The intensity distribution detected by the observer is therefore not uniform, and would change with different positions of the eye within an “eye motion box” (permissible viewing positions of the eye), and would depend on the specific field being observed.


In order to achieve uniform illumination of the outcoupled light, more advanced coupling-in configurations are often used, such as the one presented in FIGS. 2A and 2B. Here a projector 100 provides a larger aperture and is coupled to the LOE via a prism 30 so that rays injected into the waveguide and reflected by the lower surface of the waveguide 12 overlap rays that are injected directly from the projector. This assures that both the image and its conjugate are fully present inside the waveguide, referred to as “filling” the waveguide with the image illumination. Of course, this must be true for all fields supported by the waveguide. FIGS. 2A and 2B show the two extreme cases of a typical field of view, of about 20° wide inside the media, corresponding to about 30° wide in air. It will be noted that a significant proportion of the illumination for each field is lost (represented by ray directions which terminate at the back surface of the coupling prism rather than entering the LOE, due to falling outside the LOE aperture).


In principle, advanced projectors could be designed such that each field would be comprised only of rays that would eventually be coupled into the waveguide. However, these are difficult to design and suggest many technical complications (for instance, the apertures in such a system are at oblique angles to the chief ray, and are far from the projector, typically requiring a large projector). Furthermore, a projector of this type would have to be designed for a specific waveguide, and generic projectors of ‘one fits all’ are not possible.


Referring now generically to certain particularly preferred implementations of the present invention, there is provided an optical system including a light-guide optical element (LOE) 10 formed from transparent material and having mutually-parallel first and second major external surfaces 11, 12 for guiding light by internal reflection. A projector 100 is configured to project illumination corresponding to a collimated image from an aperture 101, the illumination exiting the aperture with a chief ray defining an optical axis 102 of the projector and with an angular field about the chief ray. FIG. 3B illustrates a set of rays parallel to the chief ray, while FIGS. 3A and 3C illustrate the shallowest-angle and steepest-angle rays of the angular field, respectively.


A coupling prism 30, attached to first major external surface 11 of the LOE, provides at least part of an image injection surface 32 angled obliquely to the major external surfaces 11 and 12. In the non-limiting example of FIGS. 3A-3C, image injection surface 32 is provided in part by coupling prism 30 and in part by an edge of LOE 10, polished together to form a continuous surface. Projector 100 is associated with image injection surface 32 and oriented such that the chief ray and the angular field about the chief ray are injected through the image injection surface at angles of incidence relative to the major external surfaces that are greater than a critical angle for internal reflection at the major external surfaces. In other words, the orientation of the projector and coupling prism are such that the image illumination can propagate within the LOE by internal reflection at the angles at which they were projected.


It is a particular feature of certain preferred implementations of the present invention that a reflective polarizing beam splitter 51 is deployed at an interface between the first major external surface 11 and the coupling prism 30, parallel to the major external surfaces. At least part of the illumination from projector 100 is incident on beam splitter 51 with a first polarization that is transmitted by the beam splitter from coupling prism 30 into LOE 10, while light corresponding to a conjugate image of the collimated image and having a second polarization is incident on the beam splitter from within the LOE and is reflected from the beam splitter so as to propagate within the LOE by internal reflection. The beam splitter thus differentiates between image illumination from projector 100, which is allowed to enter the LOE, and image illumination already within the LOE, which is prevented from escaping, and begins its propagation via internal reflection along the LOE.


Various arrangements can be used to effect the polarization conditioning which achieves the aforementioned functionality. In a particularly preferred subset of examples, a waveplate is deployed in a path of at least a part of the image illumination to convert the illumination between the first polarization and the second polarization. FIGS. 3A-3C illustrate one example of this, in which the waveplate is implemented as a quarter-wave plate 52 associated with at least part of the second major external surface 12 of the LOE.


Operation of this implementation is as follows. Light is projected from the projector 100 into the waveguide 10 p-polarized. (The option of employing p-polarized projected illumination is chosen arbitrarily for this example, but it should be understood that this example could equally be presented with projection of s-polarized illumination, and the p/s polarization designations interchanged throughout.) Reflective polarizing beam splitter 51 that (in this example) transmits p-polarized light and reflects s-polarized light is deployed between coupling prism 30 and upper surface 11. Optical retarder (quarter-wave plate) 52 is placed on at least part of lower surface 12 and acts to change the polarization of the incident rays.



FIG. 4 presents a plot of reflectivity and transmissivity of s and p polarizations (respectively) as a function of incident angle, describing a typical coating layer for surface 51, as is known in the field of polarizing beam splitters. Alternatively, a suitable effect may be achieved using a wire grid polarizer. Preferably, the retarder 52 would be a quarter waveplate, such that the polarization of light transmitted by the retarder back and forth would rotate, and would be converted from p-polarized to s-polarized light (or vice versa). As a result of this structure, rays projected by projector 100 are transmitted by beam splitter 51 and pass into the waveguide. Rays that impinge on 52 change their polarization, and are reflected by beam splitter 51 if they impinge on the beam splitter a second time, as illustrated in FIG. 3C. The selective properties of the beam splitter allow a much greater proportion of the injected image illumination to be coupled into the waveguide, with greatly reduced loss of energy. Additionally, the required size of the projector aperture is significantly smaller than in FIGS. 2A and 2B.


The retarder 52 could be implemented in many ways, including but not limited to crystalline zero-order crystalline retarders, thin film polycrystalline true-zero-order retarders, subwavelength structures and advanced dielectric layers coated directly onto the waveguide.


Optimally, the system is implemented so that rays of all fields are reflected from surface 51 only once before reaching the end of the coupling prism. Otherwise, some loss of light will typically occur.


In this embodiment, the steeper-propagating rays (FIG. 3C) may in some cases suffer from a non-uniform intensity profile. This may be mitigated in different ways, for instance, by using an embedded mixer element (namely, a partially reflected surface parallel to the major axes of the waveguide, described below with reference to FIGS. 8A and 8B), or by placing closely-spaced coupling-out facets in the waveguide. The non-uniformity may be reduced or even eliminated by careful design of the projector aperture and geometry of the coupling configuration.


Retarder 52 may be deployed only in the coupling-in region, or may extend over part or all of the waveguide. The retarder may also serve to rotate and mix the polarization along the waveguide, and mitigate any polarization artifacts that may arise, for instance, by the polarization-dependent coupling-in configuration of this embodiment. The retarder could be located on the external surface of the waveguide, or between the waveguide 10 and external thin cover-plates (not shown), which may be used to enhance uniformity of out-coupled illumination.


In this and other embodiments described herein, trapping of light within the LOE by beam splitter 51 relatively close to the image injection surface provides advantages for design of image projector 100. Specifically, for optical efficiency, the entrance aperture of the waveguide is preferably imaged by the projector optics (illumination optics plus collimating optics, not shown) to the illuminations stop of the projector. In the design for FIGS. 2A and 2B, the effective aperture to the waveguide is at the end of the coupling prism, far from the image injection surface. In contrast, the design of FIGS. 3A-3C and the subsequent examples herein provide an effective waveguide aperture that is much closer to the image injection surface 32, allowing the use of a generic projector design in which the illumination stop is imaged to the projector exit aperture and typically facilitating the use of a smaller overall size of the projector.



FIGS. 5A and 5B show an alternative implementation of an embodiment of the invention where the image injection surface 32 is provided entirely by coupling prism 30, resulting in projector 100 being placed on top of the waveguide. Such a configuration would be significantly easier to manufacture, but results in a slightly larger aperture. In all other respects, the structure and operation of the implementation of FIGS. 5A and 5B are analogous to those of FIGS. 3A-3C.



FIGS. 6A and 6B illustrate an alternative implementation which, instead of employing a retarder on the second major surface of the waveguide, employs a retarder 52 in the form of a half-wave plate deployed in overlapping relation to a first part of the aperture 101 without overlapping a second part of the aperture. In the case illustrated here, the “first” part of the aperture projects illumination through a part of the image injection surface 32 from which light passes through beam splitter 51. This is suited to a case in which the projector projects a polarization which is reflected by the beam splitter. The polarization which is reflected by the beam splitter is introduced directly into the LOE in the lower part of the coupling-in surface, as shown, and is therefore trapped by the beam splitter and propagates by internal reflection along the LOE, while the half-wave plate 52 converts the illumination of the second polarization into illumination of the first polarization in the upper part of the aperture as shown, allowing that part of the image illumination to be transmitted by the beam splitter and to enter the LOE.


Thus, by way of a specific example, in the case of FIGS. 6A and 6B where the beam splitter passes p-polarization and reflects s-polarization, the rays of the lower part of the image injection surface that are injected directly into the waveguide and that do not propagate through the retarder 51 are s-polarized, while the rays of the upper part of the image injection surface, that do propagate through the retarder 51, (which here preferably acts as a half waveplate) are injected into the waveguide at p-polarization.


Clearly, an equivalent effect can be achieved by using a projector which generates the polarization that is transmitted by the beam splitter, and deploying the half-wave plate 52 on the part of the image injection surface 32 through which light is coupled directly into the LOE without traversing the beam splitter (the lower part, in the orientation illustrated here).


In all of the embodiments described herein, the beam splitter is described as being at an interface between the first major external surface 11 and the coupling prism 30, and parallel to the major external surfaces. The “interface” for this purpose is defined functionally as the region in which light passes from coupling prism 30 into LOE 10. Most preferably, the beam splitter is deployed coplanar with the first major external surface 11, typically either as a coating applied to one or other of the facing surfaces of coupling prism 30 into LOE 10 prior to bonding, or as a film or other layer sandwiched between the coupling prism 30 and LOE 10. However, deployment of the beam splitter embedded within coupling prism 30 or within LOE 10 would also be considered to be “at the interface” so long as it is sufficiently close to the interface to provide the functionality described above. In all of the illustrated cases, parallelism of the beam splitter to the major surfaces of the LOE is essential in order to avoid generating ghost images as the image illumination propagates along the LOE.


The various coupling-in arrangements described above inherently couple light into the waveguide in a mixed polarization state, i.e., with a superposition of p and s polarized light, such that for a certain field some regions of the input aperture are composed of p-polarized light and other regions of the input aperture are composed of s-polarized light. Since the embedded (refractive or diffractive) components that couple light out of the waveguide are typically polarization sensitive, this could potentially result in striped (non-uniform intensity) images at the output.


In principle, the embedded elements could be designed and optimized to maximize uniformity by matching the conditions of both polarization states, but this is usually very difficult to achieve; and would come at the price of efficiency, color uniformity etc. Therefore, a number of alternative approaches are proposed below to ameliorate effects of the mixed-polarization illumination coupled into the waveguide.


As presented in FIGS. 7A-7C, a polarization retarder 201 can be placed inside the waveguide so that it controls the polarization state of the light inside the waveguide. The retarder can be made from a birefringent crystal, from a thin layer of polymer or from a structural or spatially varying coating or spatially varying grating. Such an element can be embedded inside the waveguide (as described in coassigned PCT patent application no. PCT/IL2021/051143), or it can be bonded separately between the waveguide and the coupling-in wedge, if these are produced separately. The thickness of the retarder can be set to a preferred thickness. For instance, it can be thin, such that it would operate as a true quarter waveplate for the relevant wavelengths and considering the angle of incidence of all fields in the field of view (FOV), such that s and p polarized light transmitted by the retarder would be converted to (approximately) circularly polarized (but with opposite handedness).


In an alternative but conceptually-related implementation, the projector 100 may be configured to generate circularly polarized image illumination, and the polarized beam splitter 51 can correspondingly be implemented as a circular-polarized beam splitter. In this manner, light coupled into the waveguide would be either right or left-handed circularly polarized, and the uniformity of the output light would be significantly improved.


Alternatively, the retarder can be made “thick”, defined by







d
>


Δ

λ


Δ

n



,





where d is the thickness of the retarder, Δλ is the spectral bandwidth of each transmitted color and Δn=|ne−no| where ne and no are the extraordinary and ordinary refractive indices of the retarder. Typically, d˜0.1-1 mm is sufficient for the retarder to provide a “depolarizing” effect. Specifically, different wavelengths within a given color spectral bandwidth are rotated to different polarization states, and the superposition of all wavelengths behaves effectively as unpolarized light.


A thick retarder may cause unwanted artifacts in the configurations of FIGS. 7B and 7C, due to the different optical paths through the retarder that would generate ghost images. This can be resolved if the retarder is placed perpendicular to the waveguide with sufficient accuracy, as in FIG. 7A. In this case, the angular orientation of all rays propagating through the retarder is maintained, and no ghost images are expected.


If the projector outputs image illumination in a polarization state that is not orthogonal to the waveguide, i.e., not pure s or p polarized light according to the waveguide axes, but rather a linear superposition of the two, the polarization of each wavelength would rotate at each reflection of TIR on the major surfaces of the waveguide. This would effectively have a similar effect to the thick retarder in FIG. 7. This mixing of the coating could be further enhanced by coating the major surfaces of the waveguide with a dedicated coating, as in patent WO2021105978A1.


Another approach could be to place a partially reflective layer 202 in the middle of the waveguide and parallel to the major external surfaces (as disclosed in PCT patent application publication no. WO 2021/079372), that would mix the light. Examples of such a structure are illustrated in FIGS. 8A and 8B. According to this option, the light of each field would be uniform throughout the waveguide, however the proportion of p and s polarized light might still vary from one field to another. This effect would need to be accounted for when designing the properties of the diffractive or refractive elements that are embedded inside the waveguide.


The various implementations of the present invention described here are applicable in a wide range of contexts, and employing any type of waveguide and any type of projector. For example, projectors 100 may employ any suitable image-generating technology including, but not limited to, liquid crystal transmissive or reflective (LCOS) projectors, scanned-laser projectors or DLP projectors, all employing any suitable collimating optics.


It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.

Claims
  • 1. An optical system comprising: (a) a light-guide optical element (LOE) formed from transparent material and having mutually-parallel first and second major external surfaces for guiding light by internal reflection;(b) a projector configured to project illumination corresponding to a collimated image from an aperture, the illumination exiting said aperture with a chief ray defining an optical axis of said projector and with an angular field about the chief ray;(c) a coupling prism attached to said first major external surface of said LOE, said coupling prism providing at least part of an image injection surface angled obliquely to said major external surfaces, said projector being associated with said image injection surface and oriented such that the chief ray and the angular field about the chief ray are injected through said image injection surface at angles of incidence relative to said major external surfaces greater than a critical angle for internal reflection at said major external surfaces; and(d) a reflective polarizing beam splitter deployed at an interface between said major external surface and said coupling prism parallel to said major external surfaces, at least part of the illumination being incident on said beam splitter with a first polarization and being transmitted by said beam splitter from said coupling prism into said LOE, light corresponding to a conjugate image of the collimated image and having a second polarization incident on said beam splitter from within said LOE being reflected from said beam splitter so as to propagate within said LOE by internal reflection.
  • 2. The optical system of claim 1, further comprising a waveplate deployed in a path of at least a part of the illumination to convert the illumination between said first polarization and said second polarization.
  • 3. The optical system of claim 2, wherein said waveplate is a quarter-wave plate associated with at least part of said second major external surface of said LOE.
  • 4. The optical system of claim 2, wherein said waveplate is a half-wave plate deployed in overlapping relation to a first part of said aperture without overlapping a second part of said aperture.
  • 5. The optical system of claim 4, wherein said first part of said aperture projects illumination through a part of said image injection surface from which light passes into said LOE without traversing said beam splitter.
  • 6. The optical system of claim 4, wherein said projector is configured to project illumination of said second polarization, wherein said first part of said aperture projects illumination through a part of said image injection surface from which light passes through said beam splitter, said half-wave plate converting illumination of said second polarization into illumination of said first polarization.
  • 7. The optical system of claim 1, wherein said image injection surface is provided in part by said coupling prism and in part by a surface of said LOE.
  • 8. The optical system of claim 1, wherein said image injection surface is provided entirely by said coupling prism.
PCT Information
Filing Document Filing Date Country Kind
PCT/IL2022/050226 3/1/2022 WO
Publishing Document Publishing Date Country Kind
WO2022/185306 9/9/2022 WO A
US Referenced Citations (355)
Number Name Date Kind
2748659 Geffcken et al. Jun 1956 A
2795069 Hardesty Jun 1957 A
2886911 Hardesty May 1959 A
3491245 Hardesty Jan 1970 A
3626394 Nelson et al. Dec 1971 A
3667621 Barlow Jun 1972 A
3677621 Smith Jul 1972 A
3737212 Antonson et al. Jun 1973 A
3802763 Cook et al. Apr 1974 A
3857109 Pilloff Dec 1974 A
3873209 Schinke et al. Mar 1975 A
3940204 Withrington Feb 1976 A
3969023 Brandt Jul 1976 A
4084883 Eastman et al. Apr 1978 A
4191446 Arditty et al. Mar 1980 A
4309070 St Leger Searle Jan 1982 A
4331387 Wentz May 1982 A
4355864 Soref Oct 1982 A
4516828 Steele May 1985 A
4613216 Herbec et al. Sep 1986 A
4711512 Upatnieks Dec 1987 A
4715684 Gagnon Dec 1987 A
4775217 Ellis Oct 1988 A
4798448 Van Raalte Jan 1989 A
4805988 Dones Feb 1989 A
4932743 Isobe et al. Jun 1990 A
4978952 Irwin Dec 1990 A
5033828 Haruta Jul 1991 A
5076664 Migozzi Dec 1991 A
5096520 Faris Mar 1992 A
5157526 Kondo et al. Oct 1992 A
5231642 Scifres et al. Jul 1993 A
5301067 Bleier et al. Apr 1994 A
5353134 Michel et al. Oct 1994 A
5367399 Kramer Nov 1994 A
5369415 Richard et al. Nov 1994 A
5453877 Gerbe et al. Sep 1995 A
5543877 Takashi et al. Aug 1996 A
5555329 Kuper et al. Sep 1996 A
5619601 Akashi et al. Apr 1997 A
5650873 Gal et al. Jul 1997 A
5680209 Meinrad Oct 1997 A
5724163 David Mar 1998 A
5751480 Kitagishi May 1998 A
5764412 Suzuki et al. Jun 1998 A
5829854 Jones Nov 1998 A
5870159 Sharp Feb 1999 A
5883684 Millikan et al. Mar 1999 A
5896232 Budd et al. Apr 1999 A
5919601 Nguyen et al. Jul 1999 A
5966223 Yaakov et al. Oct 1999 A
5982536 Swan Nov 1999 A
6021239 Minami et al. Feb 2000 A
6052500 Takano et al. Apr 2000 A
6091548 Chen Jul 2000 A
6144347 Mizoguchi et al. Nov 2000 A
6222676 Togino et al. Apr 2001 B1
6231992 Niebauer et al. May 2001 B1
6285420 Mizumo et al. Sep 2001 B1
6322256 Inada et al. Nov 2001 B1
6324330 Stites Nov 2001 B1
6349001 Spitzer Feb 2002 B1
6362861 Hertz et al. Mar 2002 B1
6384982 Spitzer May 2002 B1
6388814 Tanaka May 2002 B2
6404550 Yajima Jun 2002 B1
6404947 Matsuda Jun 2002 B1
6421031 Ronzani et al. Jul 2002 B1
6490104 Gleckman et al. Dec 2002 B1
6509982 Steiner Jan 2003 B2
6542307 Gleckman Apr 2003 B2
6556282 Jamieson et al. Apr 2003 B2
6580529 Amitai et al. Apr 2003 B1
6577411 David Jun 2003 B1
6671100 McRuer Dec 2003 B1
6690513 Hulse et al. Feb 2004 B2
6710902 Takeyama Mar 2004 B2
6775432 Basu Aug 2004 B2
6791760 Janeczko et al. Sep 2004 B2
6798579 Robinson et al. Sep 2004 B2
6799859 Ida et al. Oct 2004 B1
6829095 Amitai Dec 2004 B2
6927694 Smith et al. Aug 2005 B1
6942925 Lazarev et al. Sep 2005 B1
7016113 Choi et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7088664 Kim et al. Aug 2006 B2
7175304 Wadia et al. Feb 2007 B2
7205960 David Apr 2007 B2
7355795 Yamazaki et al. Apr 2008 B1
7418170 Mukawa et al. Aug 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7448170 Milovan et al. Nov 2008 B2
7589901 DeJong et al. Sep 2009 B2
7643214 Amitai Jan 2010 B2
7672055 Amitai Mar 2010 B2
7724443 Amitai May 2010 B2
7778508 Hirayama Aug 2010 B2
7949214 Dejong May 2011 B2
7995275 Maeda et al. Aug 2011 B2
8000020 Amitai Aug 2011 B2
8035872 Ouchi Oct 2011 B2
8107351 Oto Jan 2012 B2
8369019 Baker Feb 2013 B2
8405573 Lapidot et al. Mar 2013 B2
8655178 Capron et al. Feb 2014 B2
8665178 Wang Mar 2014 B1
8666208 Amirparviz et al. Mar 2014 B1
8718437 Sullivan et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8743464 Amirparviz Jun 2014 B1
8760762 Kelly Jun 2014 B1
8913865 Bennett Dec 2014 B1
8917453 Bohn Dec 2014 B2
8965152 Simmonds Feb 2015 B2
9170425 Harrison et al. Oct 2015 B1
9285591 Gupta et al. Mar 2016 B1
9348143 Gao et al. May 2016 B2
9513479 Komatsu et al. Dec 2016 B2
9551880 Amitai Jan 2017 B2
9740006 Gao Aug 2017 B2
9805633 Zheng Oct 2017 B2
9927614 Vallius Mar 2018 B2
9933684 Brown et al. Apr 2018 B2
10007115 Greenhalgh Jun 2018 B2
10198865 Kezele et al. Feb 2019 B2
10209517 Popovich et al. Feb 2019 B2
10326983 Hua Jun 2019 B2
10345903 Robbins et al. Jul 2019 B2
10409064 Lee Sep 2019 B2
10416452 Cheng et al. Sep 2019 B2
10551622 Robbins et al. Feb 2020 B2
11226261 Lobachinsky et al. Jan 2022 B2
11728901 Kowalevicz Aug 2023 B2
20020015233 Park Feb 2002 A1
20020191297 Gleckman et al. Dec 2002 A1
20030007157 Hulse et al. Jan 2003 A1
20030020006 Janeczko et al. Jan 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030072160 Kuepper et al. Apr 2003 A1
20030090439 Spitzer et al. May 2003 A1
20030165017 Amitai et al. Sep 2003 A1
20030197938 Schmidt et al. Oct 2003 A1
20030218718 Moliton et al. Nov 2003 A1
20040085649 Repetto May 2004 A1
20040137189 Tellini et al. Jul 2004 A1
20040233534 Nakanishi et al. Nov 2004 A1
20050018308 Cassarly et al. Jan 2005 A1
20050084210 Cha Apr 2005 A1
20050174641 Greenberg Aug 2005 A1
20050174658 Long et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050248852 Yamasaki Nov 2005 A1
20050265044 Chen et al. Dec 2005 A1
20060052146 Ou Mar 2006 A1
20060061555 Mullen Mar 2006 A1
20060103590 Divon May 2006 A1
20060126182 Levola Jun 2006 A1
20060268421 Shimizu et al. Nov 2006 A1
20060291021 Kawa Dec 2006 A1
20070007157 Buschmann et al. Jan 2007 A1
20070064310 Mukawa et al. Mar 2007 A1
20070070859 Hirayama Mar 2007 A1
20070091445 Amitai Apr 2007 A1
20070165192 Prior Jul 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20080094586 Hirayama Apr 2008 A1
20080106775 Amitai et al. May 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080192239 Otosaka Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080239422 Noda Oct 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090097127 Amitai Apr 2009 A1
20090122414 Amitai May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20100020204 Fleischer et al. Jan 2010 A1
20100067110 Hadad et al. Mar 2010 A1
20100111472 DeJong May 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100201953 Freeman et al. Aug 2010 A1
20100202128 Saccomanno Aug 2010 A1
20100278480 Vasylyev et al. Nov 2010 A1
20100291489 Moskovits et al. Nov 2010 A1
20110194163 Shimizu et al. Aug 2011 A1
20110227661 Numata et al. Sep 2011 A1
20110242661 Simmonds Oct 2011 A1
20120039576 Dangel et al. Feb 2012 A1
20120306940 Machida Feb 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120120498 Harrison May 2012 A1
20120127062 Zeev et al. May 2012 A1
20120147361 Mochizuki et al. Jun 2012 A1
20120179369 Lapidot et al. Jun 2012 A1
20120194781 Agurok Aug 2012 A1
20130002122 Bell Jan 2013 A1
20130022316 Pelletier et al. Jan 2013 A1
20130012022 Cajigas et al. May 2013 A1
20130165017 Liu Jun 2013 A1
20130229717 Amitai Sep 2013 A1
20130257832 Hammond Oct 2013 A1
20130276960 Amitai Oct 2013 A1
20130279017 Amitai Oct 2013 A1
20130321432 Burns Dec 2013 A1
20130334504 Thompson et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140043688 Schrader et al. Feb 2014 A1
20140118813 Amitai et al. May 2014 A1
20140118836 Amitai et al. May 2014 A1
20140118837 Amitai et al. May 2014 A1
20140126051 Amitai et al. May 2014 A1
20140126052 Amitai et al. May 2014 A1
20140126056 Amitai et al. May 2014 A1
20140126057 Amitai et al. May 2014 A1
20140126175 Amitai et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140160577 Dominici et al. Jun 2014 A1
20140185142 Gupta et al. Jul 2014 A1
20140226215 Komatsu et al. Aug 2014 A1
20140226361 Vasylyev Aug 2014 A1
20150016777 Abovitz et al. Jan 2015 A1
20150081313 Boross et al. Mar 2015 A1
20150138451 Amitai May 2015 A1
20150138646 Tatsugi May 2015 A1
20150153569 Yonekubo Jun 2015 A1
20150160460 Komatsu et al. Jun 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150198805 Mansharof et al. Jul 2015 A1
20150205140 Mansharof et al. Jul 2015 A1
20150205141 Mansharof et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150241619 Richards et al. Aug 2015 A1
20150260992 Luttmann et al. Sep 2015 A1
20150277127 Amitai Oct 2015 A1
20150293360 Amitai Oct 2015 A1
20150293434 Matsuo Oct 2015 A1
20160018654 Haddick et al. Jan 2016 A1
20160109712 Harrison et al. Apr 2016 A1
20160116743 Amitai Apr 2016 A1
20160161740 Bar-Zeev et al. Jun 2016 A1
20160170212 Amitai Jun 2016 A1
20160170213 Amitai Jun 2016 A1
20160170214 Amitai Jun 2016 A1
20160187656 Amitai Jun 2016 A1
20160189432 Bar-Zeev et al. Jun 2016 A1
20160198949 Spitzer Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160234485 Robbins et al. Aug 2016 A1
20160238844 Dobschal Aug 2016 A1
20160266387 Tekolste et al. Sep 2016 A1
20160282622 Hiraide Sep 2016 A1
20160314564 Jones Oct 2016 A1
20160341964 Amitai Nov 2016 A1
20160349518 Amitai et al. Dec 2016 A1
20160370693 Watanabe Dec 2016 A1
20170003504 Vallius Jan 2017 A1
20170017095 Fricker et al. Jan 2017 A1
20170045743 Dobschal et al. Feb 2017 A1
20170045744 Amitai Feb 2017 A1
20170052376 Amitai Feb 2017 A1
20170052377 Amitai Feb 2017 A1
20170075119 Schultz et al. Mar 2017 A1
20170242249 Wall Apr 2017 A1
20170122725 Yeoh May 2017 A1
20170248790 Cheng Aug 2017 A1
20170336636 Amitai et al. Nov 2017 A1
20170343822 Border et al. Nov 2017 A1
20170357095 Amitai Dec 2017 A1
20170363799 Ofir et al. Dec 2017 A1
20180039082 Amitai Feb 2018 A1
20180045960 Palacios et al. Feb 2018 A1
20180067315 Amitai et al. Mar 2018 A1
20180157057 Gelberg et al. Jun 2018 A1
20180188631 Lu et al. Jul 2018 A1
20180210202 Danziger Jul 2018 A1
20180267317 Amitai Sep 2018 A1
20180275384 Danziger et al. Sep 2018 A1
20180292592 Danziger Oct 2018 A1
20180292599 Ofir et al. Oct 2018 A1
20180335629 Checng et al. Nov 2018 A1
20180373039 Amitai Dec 2018 A1
20190011710 Amitai Jan 2019 A1
20190018247 Gao et al. Jan 2019 A1
20190025053 Slotwinski Jan 2019 A1
20190026864 Chen et al. Jan 2019 A1
20190056600 Danziger et al. Feb 2019 A1
20190064518 Danziger Feb 2019 A1
20190064519 Ben-Asher et al. Feb 2019 A1
20190086674 Sinay et al. Mar 2019 A1
20190008667 Sinay et al. May 2019 A1
20190155035 Amitai May 2019 A1
20190162976 Sondermann et al. May 2019 A1
20190170327 Eisenfeld et al. Jun 2019 A1
20190187482 Lanman Jun 2019 A1
20190208187 Danziger Jul 2019 A1
20190212487 Danziger et al. Jul 2019 A1
20190227215 Danziger et al. Jul 2019 A1
20190278086 Ofir Sep 2019 A1
20190285900 Amitai Sep 2019 A1
20190293856 Danziger Sep 2019 A1
20190322382 Mackin Oct 2019 A1
20190339530 Amitai Nov 2019 A1
20190346609 Eisenfeld Nov 2019 A1
20190361240 Gelberg Nov 2019 A1
20190361241 Amitai Nov 2019 A1
20190377187 Rubin et al. Dec 2019 A1
20190391408 Mansharof Dec 2019 A1
20200033572 Danziger et al. Jan 2020 A1
20200041713 Danziger Feb 2020 A1
20200089001 Amitai et al. Mar 2020 A1
20200110211 Danziger et al. Apr 2020 A1
20200120329 Danziger Apr 2020 A1
20200133008 Amitai Apr 2020 A1
20200150330 Danziger et al. May 2020 A1
20200150332 Nakamura et al. May 2020 A1
20200159030 Ayres May 2020 A1
20200183159 Danziger Jun 2020 A1
20200183170 Amitai et al. Jun 2020 A1
20200200963 Eisenfeld et al. Jun 2020 A1
20200209667 Sharlin et al. Jul 2020 A1
20200241308 Danziger et al. Jul 2020 A1
20200249481 Danziger et al. Aug 2020 A1
20200278557 Greenstein et al. Sep 2020 A1
20200285060 Amitai Sep 2020 A1
20200292417 Lobachinsky et al. Sep 2020 A1
20200292744 Danziger Sep 2020 A1
20200292819 Danziger et al. Sep 2020 A1
20200310024 Danziger et al. Oct 2020 A1
20200326545 Amitai et al. Oct 2020 A1
20200371311 Lobachinsky et al. Nov 2020 A1
20210003849 Amitai et al. Jan 2021 A1
20210018755 Amitai Jan 2021 A1
20210033773 Danziger et al. Feb 2021 A1
20210033774 Tanaka Feb 2021 A1
20210033862 Danziger et al. Feb 2021 A1
20210033872 Rubin et al. Feb 2021 A1
20210055218 Aldaag et al. Feb 2021 A1
20210055466 Eisenfeld Feb 2021 A1
20210055561 Danziger et al. Feb 2021 A1
20210063733 Ronen Mar 2021 A1
20210072553 Danziger et al. Mar 2021 A1
20210099691 Danziger Apr 2021 A1
20220004007 Bhakta Jan 2022 A1
20220004014 Ronen et al. Jan 2022 A1
20220035021 Billaud et al. Feb 2022 A1
20220082838 Grabarnik et al. Mar 2022 A1
20220107499 Amitai Apr 2022 A1
20220329326 Kowalevicz Oct 2022 A1
Foreign Referenced Citations (11)
Number Date Country
104503087 Apr 2015 CN
102019205138 Oct 2019 DE
S61140925 Dec 1984 JP
2003140081 May 2003 JP
2017108370 Jun 2017 JP
2012123936 Jun 2021 JP
WO 2013145147 Aug 2015 WO
2021009766 Jan 2021 WO
2021152602 Aug 2021 WO
2022070197 Apr 2022 WO
WO2022120262 Jun 2022 WO
Non-Patent Literature Citations (3)
Entry
International Commission on Non-Ionizing Radiation Protection “ICNIRP Guidelines for Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 Ghz)” Published In: Health Physics 74 (4):494-522; 1998.
Charles B. Owen et all; “Display-Relative Calibration for Optical See-Through Head-Mounted Displays”; Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality, Nov. 2-5, Arlington,VA, USA, IEEE, Piscataway, NJ, USA, Nov. 2, 2004 (Nov. 2, 2004), pp. 70-78,XP058382672.
Da-Yong et al., “A Continuous Membrance Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, vol. 16, No. 10, May 20, 2010 pp. 1765-1769.
Related Publications (1)
Number Date Country
20230350204 A1 Nov 2023 US
Provisional Applications (1)
Number Date Country
63154870 Mar 2021 US