The present invention relates to the communications field, and in particular, to an optical time domain reflectometer implementation apparatus and system.
A PON is of a tree structure, and there are multiple ONUs connected to an OLT of one central office. Therefore, how to maintain network stability and how to determine fault liability become current focuses of attention.
Currently, a common means in the industry is performing fault detection and locating in an optical network by using an optical time domain reflectometer (OTDR). The basic principle of the optical time domain reflectometer is that light of a wavelength is incident into a fiber network by means of backward reflection generated when an optical wave is propagated in the fiber network, and then, an optical network status is reflected by measuring energy of corresponding reflected light, which, for example, is described by using the prior art 1 in
For a TWDM-PON (Time Wavelength Division Multiplexing Passive Optical Network) as a next generation PON technology, there is no solution for how to determine a fiber fault by using an OTDR.
Embodiments of the present invention provide an optical time domain reflectometer (OTDR) implementation apparatus and system, so as to resolve a problem of how to detect a fiber fault by using an OTDR in a TWDM-PON and further perform fault rectification.
To achieve the foregoing objective, the following technical solutions are used in the embodiments.
According to a first aspect, an optical time domain reflectometer (OTDR) implementation apparatus includes multiple transmitters, configured to transmit multiple optical waves of different wavelengths. The apparatus also includes an OTDR detection circuit, configured to generate an OTDR detection signal. The apparatus also includes a processor, configured to select at least two random optical waves to load OTDR detection signals, where the OTDR detection signal is a low frequency signal. The apparatus also includes multiple receivers, where a first receiver is connected to an egress link of the multiple transmitters, and is configured to: receive reflected signals of the at least two optical waves carrying the OTDR detection signals, and transmit the reflected information to the OTDR detection circuit for detection, and other receivers are connected to a demultiplexer, and each are configured to receive multiple uplink signals.
According to a second aspect, an OTDR implementation apparatus includes: M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to: load a first downlink optical signal onto a second optical wave, and adjust a receive wavelength of a first optical network unit (ONU), to convert a first wavelength to a second wavelength, where the first ONU corresponds to a first optical wave. The apparatus also includes an OTDR detection circuit, configured to load an OTDR detection signal onto the first optical wave, where the OTDR detection signal is a low frequency signal. The apparatus also includes M+1 receivers, where a first receiver is connected to an egress link of the M transmitters, and is configured to receive a reflected signal of an optical wave carrying an OTDR detection signal, and the other M receivers are connected after a demultiplexer, and each are configured to receive multiple uplink signals.
According to a third aspect, an OTDR implementation apparatus includes M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to control an OTDR detection circuit to load an OTDR detection signal onto a first transmitter, where the first transmitter is configured to only load the OTDR detection signal, and the other M−1 transmitters are configured to transmit a downlink optical signal, where the downlink optical signal is a high frequency signal. The apparatus also includes the OTDR detection circuit, configured to generate the OTDR detection signal, where the OTDR detection signal is a low frequency signal. The apparatus also includes M receivers, where a first receiver is connected to an egress link of the M transmitters, and the other M−1 receivers are connected after a demultiplexer, and are configured to receive multiple uplink signals.
According to a fourth aspect, a passive optical network (PON) includes an optical line terminal (OLT) and an optical network unit (ONU), where the OLT is connected to the ONU by using an optical distribution network (ODN), and the OLT includes the apparatus according to the first aspect, includes the apparatus according to the second aspect, or includes the apparatus according to the third aspect.
By means of the foregoing technical solutions, when a TWDM-PON has a fault, information about a fault of an entire ODN can be obtained from an optical signal received by an OTDR.
To describe the technical solutions in the embodiments of the present invention or in the prior art more clearly, the following briefly describes the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
The following clearly describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are merely some but not all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.
As a next generation PON technology, a TWDM-PON is the inheritance and development of a PON architecture. The same as a PON, an entire ODN structure remains unchanged, and a difference is that a quantity of uplink and downlink wavelengths is increased to four or more. Specific details are shown in
It should be noted that OTDR apparatuses are classified into an external OTDR and an embedded OTDR, as shown in
The following embodiments may be applied to the embedded OTDR, or may be applied to the external OTDR. The following further described the present invention with reference to specific embodiments.
This embodiment provides an OTDR implementation apparatus. The apparatus includes multiple transmitters, configured to transmit multiple optical waves of different wavelengths. The apparatus also includes an OTDR detection circuit, configured to generate an OTDR detection signal. The apparatus also includes a processor, configured to select at least two optical waves to load OTDR detection signals, where the OTDR detection signal is a low frequency signal. The apparatus also includes multiple receivers, where a first receiver is connected to an egress link of the multiple transmitters, and is configured to receive reflected signals of the at least two optical waves carrying the OTDR detection signals, and other receivers are connected after a demultiplexer (Demux), and each are configured to receive multiple normal uplink signals, where a downlink optical signal is loaded onto each of optical waves transmitted by the multiple transmitters, and the downlink optical signal is a high frequency signal.
Optionally, the processor being configured to select at least two optical waves to load OTDR detection signals specifically includes: loading an OTDR detection signal of a first frequency onto a first optical wave of the at least two optical waves; and loading an OTDR detection signal of a second frequency onto a second optical wave of the at least two optical waves, where the first frequency is different from the second frequency.
Optionally, the processor being configured to select at least two optical waves to load OTDR detection signals includes: loading an OTDR detection signal onto a first optical wave of the at least two optical waves at a first time; and loading an OTDR detection signal onto a second optical wave of the at least two optical waves at a second time, where the first time is different from the second time.
Optionally, the OTDR implementation apparatus further includes an optical filter, connected before the first receiver, and configured to receive the reflected signals of the at least two optical waves, transmit the reflected signals to the first receiver, and filter out reflected signals of other multiple optical waves.
Optionally, after the first receiver receives a reflected signal of the loaded OTDR detection signal, the first receiver transmits the reflected signal to the processor for further processing.
Optionally, the optical filter is a tunable filter.
Optionally, the OTDR implementation apparatus further includes an electrical filter, connected before the optical filter, and configured to distinguish the OTDR detection signal of the first frequency from the OTDR detection signal of the second frequency.
Correspondingly, this embodiment further provides an OTDR implementation method, including: loading an OTDR detection signals onto at least two optical waves in multiple downlink optical waves, where the OTDR detection signal is a low frequency signal; and receiving reflected signals of the at least two optical waves.
Optionally, the loading OTDR detection signals onto at least two optical waves in multiple downlink optical waves specifically includes: loading an OTDR detection signal of a first frequency onto a first optical wave of the at least two optical waves; and loading an OTDR detection signal of a second frequency onto a second optical wave of the at least two optical waves.
Optionally, the loading OTDR detection signals onto at least two optical waves in multiple downlink optical waves specifically includes: loading an OTDR detection signal onto a first optical wave of the at least two optical waves at a first time, and sending the first optical wave; and loading an OTDR detection signal onto a second optical wave of the at least two optical waves at a second time, and sending the second optical wave.
Optionally, the receiving reflected signals of the at least two optical waves includes: receiving a reflected signal of the first optical wave; receiving a reflected signal of the second optical wave; and filtering out other reflected signals.
Optionally, the method further includes: separating the reflected signal of the first optical wave and the reflected signal of the second optical wave into two paths, and separately performing processing.
This embodiment is further described below with reference to a specific application scenario.
Specifically, low frequency detection information is loaded onto λ1 and λ2, and is transmitted to the ONU with original high frequency information data. However, the ONU receiving optical waves of λ1 and λ2 extracts only the high frequency information, and discards the low frequency information. Therefore, a downlink signal may be normally received. For some ONUs that do not receive λ1 and λ2, the ONUs reflect all low frequency and high frequency signals back to the OLT. The reflected signal is the same as a downlink signal. Therefore, when arriving at the WDM filter, the reflected signal does not enter a receiver on a right side, and only returns to a transmitter on a left side. To normally receive the reflected signal, a branch needs to be extra added at an egress of the transmitter, so as to enable a reflected optical signal to enter the receiver. In the receiver, only a low frequency detection signal is extracted by using an electrical filter, and the high frequency information data is filtered out. Fault detection is basically completed through the foregoing processes.
In the foregoing solutions, a problem that λ1 and λ2 simultaneously enter the transmit end of the OLT occurs. Consequently, signal interference occurs. Low frequency signals of λ1 and λ2 are alternately modulated in a time division multiplexing manner. That is, when there is a low frequency signal on λ1, a low frequency signal on λ2 is turned off; or when there is a low frequency signal on λ2, a low frequency signal on λ1 is turned off, so as to ensure that only one low frequency signal enters the receiver. Alternatively, low frequency signals of different frequencies are loaded onto λ1 and λ2 in a frequency division multiplexing manner. Therefore, even if two groups of low frequency signals are received, the two can still be distinguished by using an electrical filter.
In addition, although the low frequency signals are loaded onto only λ1 and λ2, λ3 and λ4 also enter the receiver at the transmit end of the OLT. The signal becomes noise and affects a detection effect of the low frequency signal. To further improve performance, an optical filter (in
In this embodiment of the present invention, low frequency detection signals are loaded onto at least two optical waves, and an electrical filter is disposed before a receiver, to obtain the detection signals, thereby performing OTDR detection in a TWDM-PON.
This embodiment further provides an OTDR implementation apparatus. The apparatus includes M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to: load a first downlink optical signal onto a second optical wave, and adjust a receive wavelength of a first optical network unit (ONU), to convert a first wavelength to a second wavelength, where the first ONU corresponds to a first optical wave. The apparatus also includes an OTDR detection circuit, configured to load an OTDR detection signal onto the first optical wave, where the OTDR detection signal is a low frequency signal. The apparatus also includes M+1 receivers, where a first receiver is connected to an egress link of the M transmitters, and is configured to receive a reflected signal of an optical wave carrying an OTDR detection signal, and the other M receivers are connected after a demultiplexer (Demux), and each are configured to receive multiple normal uplink signals.
Optionally, the adjusting a receive wavelength of a first optical network unit (ONU), to convert a first wavelength to a second wavelength specifically includes: delivering, by the processor, a control message to the first ONU, where the control message is used to the first ONU to adjust a wavelength of the first optical wave to a wavelength of the second optical wave.
The control message is sent by using a physical layer operation administration management (PLOAM) message.
A frame format of the control message may be set with reference to a frame format of a PLOAM message in the prior art, which is not described in detail herein again.
Optionally, the apparatus further includes an optical filter, connected before the first receiver, and configured to: obtain the reflected signal of the optical wave carrying the OTDR detection signal, transmit the reflected signal to the first receiver, and filter out reflected signals of other multiple optical waves.
Correspondingly, this embodiment further provides an OTDR implementation method. The method includes adjusting a downlink signal of an OLT, so that a first downlink signal is loaded onto a second optical wave. Loading an OTDR detection signal onto a first optical wave; and receiving a reflected optical signal of the optical wave onto which the OTDR signal is loaded.
Optionally, receiving a reflected optical signal of the optical wave onto which the OTDR signal is loaded includes: receiving the reflected optical signal by using a receiver connected before a transmitter, and filtering out other optical signals.
In this embodiment, there is only an OTDR signal on a wavelength of an OTDR, and there is no high frequency data signal. Therefore, on an OTDR receiver, optionally, an electrical filter may not be used.
An application scenario of this embodiment of the present invention is specifically described below with reference to
As shown in
Optionally, the OLT performs, by using a MAC control protocol, wavelength adjustment for all ONUs, which receive the optical wave of the wavelength λ1 onto which the OTDR signal is loaded, in the system, so that the OLT is configured to receive one of other M−1 signals, for example, a tunable filter of the ONU is adjusted, so that the tunable filter receives the optical wave whose wavelength is λ2. In this case, filters in all ONU devices all have strong reflection for the wavelength onto which the OTDR signal is loaded. Therefore, fault information of a branch link at which all ONUs are located can be reflected on the wavelength.
Optionally, a receiver, which is connected to the transmitter, in an OLT device receives reflected light of the optical wave carrying the OTDR detection signal.
The foregoing technical solutions are applied to a TWDM-PON, so that when a TWDM-PON has a fault, a transmitted optical signal is received by using an OTDR, thereby obtaining information about a fault of an entire ODN.
This embodiment further provides an OTDR implementation apparatus, including: M transmitters, configured to transmit M optical waves of different wavelengths, where M is greater than or equal to 2. The apparatus also includes a processor, configured to control an OTDR detection circuit to load an OTDR detection signal onto a first transmitter, where the first transmitter is configured to only load the OTDR detection signal, and the other M−1 transmitters are configured to transmit a downlink optical signal, where the downlink optical signal is a high frequency signal. The apparatus also includes the OTDR detection circuit, configured to generate the OTDR detection signal, where the OTDR detection signal is a low frequency signal. The apparatus also includes M receivers, where a first receiver is connected to an egress link of the M transmitters, and the other M−1 receivers are connected after a demultiplexer, and are configured to receive multiple uplink signals, where a filter is connected before the first receiver, where a wavelength of the filter is the same as a wavelength of the first receiver, so that only a reflected signal of an optical signal transmitted by the first transmitter can enter the first receiver.
A TWDM-PON is a multi-wavelength system. Therefore, an optical path dedicatedly used for detection is extra added. A downlink optical signal is no longer loaded onto the optical path, which does not obviously affect complexity of the system. As shown in
The foregoing technical solutions are applied to a TWDM-PON, so that when a TWDM-PON has a fault, a transmitted optical signal is received by using an OTDR, thereby obtaining information about a fault of an entire ODN.
Embodiments provide a passive optical network system, including an optical line terminal (OLT) and an optical network unit (ONU), where the OLT is connected to the ONU by using an optical distribution network (ODN), the OLT includes an optical module, and the OTDR implementation apparatus in Embodiment 1, Embodiment 2, or Embodiment 3 is built in the optical module.
Embodiments provide a passive optical network system, including: an optical line terminal (OLT), an OTDR implementation apparatus, and an optical network unit (ONU), where the OLT is connected to the ONU by using an ODN, the OTDR implementation apparatus is connected to the ODN by using an optical splitter, and the OTDR implementation apparatus is the OTDR implementation apparatus in Embodiment 1, Embodiment 2, or Embodiment 3.
The foregoing technical solutions are applied to a TWDM-PON, so that when a TWDM-PON has a fault, a transmitted optical signal can be received by using an OTDR, thereby obtaining information about a fault of an entire ODN.
The foregoing descriptions are merely specific implementation manners of the present invention, but are not intended to limit the protection scope of the present invention. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present invention shall fall within the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.
This application is a continuation of International Patent Application No. PCT/CN2014/075026, filed on Apr. 10, 2014, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2014/075026 | Apr 2014 | US |
Child | 15289398 | US |