Optical tip-tracking systems and methods thereof

Information

  • Patent Grant
  • 11850338
  • Patent Number
    11,850,338
  • Date Filed
    Wednesday, November 25, 2020
    4 years ago
  • Date Issued
    Tuesday, December 26, 2023
    a year ago
Abstract
An optical tip-tracking system is disclosed including a light-emitting stylet, a light detector, and a console configured to operably connect to the light-emitting stylet and the light detector. The light-emitting stylet is configured to be disposed in a lumen of a catheter. The light-emitting stylet includes a light source in a distal-end portion of the light-emitting stylet configured to emit light. The light detector is configured to be placed over a patient. The light detector includes a plurality of photodetectors configured to detect the light emitted from the light source. The console is configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet while the light-emitting stylet is disposed in a vasculature of the patient, the light source is emitting light, the light detector is disposed over the light-emitting stylet, and the photodetectors are detecting the light emitted from the light source.
Description
BACKGROUND

Intravascular guidance of medical devices such as guidewires and catheters typically requires fluoroscopic methods for tracking tips of the medical devices and determining whether the tips are appropriately localized in their target anatomical structures. Such fluoroscopic methods expose clinicians and patients alike to harmful X-ray radiation. In some cases, the patients are exposed to potentially harmful contrast media needed for the fluoroscopic methods. Magnetic and electromagnetic means for tracking the tips of the medical devices obviate some of the foregoing issues with respect to exposure to radiation and potentially harmful contrast media, but the magnetic and electromagnetic means for tracking the tips of the medical devices are prone to interference.


Disclosed herein are optical tip-tracking systems and methods thereof that address the foregoing.


SUMMARY

Disclosed herein is an optical tip-tracking system including, in some embodiments, a light-emitting stylet, a light detector, and a console configured to operably connect to the light-emitting stylet and the light detector. The light-emitting stylet is configured to be disposed in a lumen of a catheter. The light-emitting stylet includes a light source in a distal-end portion of the light-emitting stylet configured to emit light. The light detector is configured to be placed over a patient. The light detector includes a plurality of photodetectors configured to detect the light emitted from the light source. The console includes memory and a processor configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet while the light-emitting stylet is disposed in a vasculature of the patient, the light source is emitting light, the light detector is disposed over the light-emitting stylet, and the photodetectors are detecting the light emitted from the light source.


In some embodiments, the light source is a light-emitting diode (“LED”).


In some embodiments, the light emitted from the light source has a center wavelength between about 650 nm to 1350 nm.


In some embodiments, the light emitted from the light source has a center wavelength between about 650 nm to 950 nm.


In some embodiments, the distal-end portion of the light-emitting stylet is configured to directionally emit light in one or more chosen directions.


In some embodiments, the light detector includes a housing having a patient-facing portion of the housing configured to transmit at least a portion of the light emitted from the light source to the photodetectors.


In some embodiments, the housing has a light-blocking portion of the housing opposite the patient-facing portion configured to block ambient light from the photodetectors.


In some embodiments, the photodetectors are arranged in an array such that the light emitted from the light source remains detectable by at least one photodetector of the photodetectors even when the light emitted from the light source is anatomically blocked from another one or more photodetectors of the photodetectors.


In some embodiments, the optical tip-tracking process is configured to provide tracking information as input to a display server of the console for optically tracking the distal-end portion of the light-emitting stylet in a graphical user interface on a display.


In some embodiments, the light-emitting stylet is configured to directly connect to the console.


In some embodiments, the light-emitting stylet is configured to indirectly connect to the console through an intervening multi-use cable.


In some embodiments, the light-emitting stylet is configured to indirectly connect to the console through the light detector.


In some embodiments, the light detector is configured to be placed over the patient and under a sterile drape. The light-emitting stylet includes a drape-piercing connector having a piercing element configured to pierce the sterile drape and insert into a receptacle of a light-detector connector extending from the light detector under the drape.


Also disclosed herein is an optical tip-tracking system including, in some embodiments, a catheter, a light-emitting stylet for the catheter, a light detector, and a console configured to operably connect to the light-emitting stylet and the light detector. The catheter includes a lumen extending through the catheter. The light-emitting stylet is configured to be disposed in a lumen of a catheter. The light-emitting stylet includes a light-emitting diode (“LED”) in a distal-end portion of the light-emitting stylet configured to emit light having a center wavelength between about 650 nm to 1350 nm. The light detector is configured to be placed over a patient. The light detector includes a plurality of photodetectors configured to detect the light emitted from the LED. The console includes memory and a processor configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet in a graphical user interface on a display while the light-emitting stylet is disposed in a vasculature of the patient, the LED is emitting light, the light detector is disposed over the light-emitting stylet, and the photodetectors are detecting the light emitted from the LED.


In some embodiments, the light detector is configured to be placed over the patient and under a sterile drape. The light-emitting stylet includes a drape-piercing connector configured to pierce the sterile drape and connect with a light-detector connector extending from the light detector under the drape.


Also disclosed herein is an optical tip-tracking system including, in some embodiments, a light-emitting stylet, a light detector, and a console configured to operably connect to the light-emitting stylet and the light detector. The light-emitting stylet is configured to be disposed in a lumen of a catheter. The light-emitting stylet includes an optical fiber configured to convey light to a distal-end portion of the light-emitting stylet for emitting light therefrom. The light detector is configured to be placed over a patient. The light detector includes a plurality of photodetectors configured to detect the light emitted from the light source. The console includes a light source for the light emitting stylet and memory and a processor. The memory and the processor are configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet while the light-emitting stylet is disposed in a vasculature of the patient, the light source is emitting light, the light detector is disposed over the light-emitting stylet, and the photodetectors are detecting the light emitted from the light source.


Also disclosed herein is a method of an optical tip-tracking system including, in some embodiments, a disposing step of disposing a light-emitting stylet of the optical tip-tracking system in a lumen of a catheter. The light-emitting stylet includes a light source in a distal-end portion of the light-emitting stylet. The method also includes a placing step of placing a light detector of the optical tip-tracking system over a patient. The light detector includes a plurality of photodetectors. The method also includes an advancing step of advancing the catheter from an insertion site to a destination within a vasculature of the patient while emitting light from the light source and detecting the light with the photodetectors. The method also includes a viewing step of viewing a display screen of the optical tip-tracking system while the display screen graphically tracks the distal-end portion of the light-emitting stylet through the vasculature of the patient.


In some embodiments, the light source of the light-emitting stylet distally extends beyond a distal end of the catheter while advancing the catheter, thereby enabling the photodetectors of the light detector to detect the light emitted from the light source.


In some embodiments, the method also includes a placing step of placing a sterile drape over both the patient and the light detector. The method also includes a connecting step of connecting a drape-piercing connector of the light-emitting stylet with a light-detector connector extending from the light detector. The connecting step includes piercing the sterile drape with a piercing element of the drape-piercing connector before inserting the piercing element into a receptacle of the light-detector connector.


In some embodiments, the catheter is a central venous catheter (“CVC”). The advancing step includes advancing the CVC with the light-emitting stylet disposed therein through a right internal jugular vein, a right brachiocephalic vein, and into a superior vena cava (“SVC”).


In some embodiments, the catheter is a peripherally inserted central catheter (“PICC”). The advancing step includes advancing the PICC with the light-emitting stylet disposed therein through a right basilic vein, a right axillary vein, a right subclavian vein, a right brachiocephalic vein, and into an SVC.


In some embodiments, the method also includes a ceasing step of ceasing to advance the catheter through the vasculature of the patient after determining the distal-end portion of light-emitting stylet is located at the destination by way of the display screen.


These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.





DRAWINGS


FIG. 1 provides a block diagram of a first optical tip-tracking system in accordance with some embodiments.



FIG. 2 provides a block diagram of a second optical tip-tracking system in accordance with some embodiments.



FIG. 3 illustrates the first optical tip-tracking system in accordance with some embodiments.



FIG. 4 illustrates the first optical tip-tracking system including a catheter in accordance with some embodiments.



FIG. 5A illustrates a distal-end portion of a first light-emitting stylet of the first or second optical tip-tracking system in accordance with some embodiments.



FIG. 5B illustrates a transverse cross section of the first light-emitting stylet disposed in the catheter in accordance with some embodiments.



FIG. 6A illustrates a distal-end portion of a second light-emitting stylet of the first or second optical tip-tracking system in accordance with some embodiments.



FIG. 6B illustrates a transverse cross section of the second light-emitting stylet disposed in the catheter in accordance with some embodiments.



FIG. 7 illustrates a side view of a light detector of the first or second optical tip-tracking system in accordance with some embodiments.



FIG. 8 illustrate the first optical tip-tracking system in use in accordance with some embodiments.



FIG. 9 illustrate the second optical tip-tracking system in use in accordance with some embodiments.



FIG. 10 provides a transmission curve for optical window for biological tissue in accordance with some embodiments.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal-end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal-end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal-end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal-end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal-end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal-end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal-end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal-end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


Again, fluoroscopic methods typically used for tracking tips of medical devices such as guidewires and catheters expose clinicians and patients alike to harmful X-ray radiation. Magnetic and electromagnetic means for tracking the tips of the medical devices obviate some of the foregoing issues with respect to exposure to radiation, but the magnetic and electromagnetic means for tracking the tips of the medical devices are prone to interference.


Disclosed herein are optical tip-tracking systems and methods thereof that address the foregoing.


Optical Tip-Tracking Systems



FIG. 1 provides a block diagram of a first optical tip-tracking system 100, FIG. 3 illustrates the first optical tip-tracking system 100, FIG. 4 illustrates the first optical tip-tracking system 100 including a catheter 450, and FIG. 8 illustrates the first optical tip-tracking system 100 in use, in accordance with some embodiments. FIG. 2 provides a block diagram of a second optical tip-tracking system 200 and FIG. 9 illustrates the second optical tip-tracking system 200 in use, in accordance with some embodiments.


As shown, the optical tip-tracking system 100 or 200 includes a light-emitting stylet 110, a light detector 120, and a console 130 or 230 configured to operably connect to the light-emitting stylet 110 and the light detector 120. Each optical tip-tracking system of the optical tip-tracking systems 100 and 200 also includes a display screen; however, the optical tip-tracking system 100 includes a standalone display screen 140, whereas the optical tip-tracking system 200 includes an integrated display screen 240. Each optical tip-tracking system of the optical tip-tracking systems 100 and 200 can also include a medical device 150 such as the catheter 450 of FIG. 4.


Beginning with the consoles 130 and 230, the console 130 or 230 includes memory 134 such as primary memory 136 and secondary memory 138. The primary memory 136 includes random-access memory (“RAM”). The secondary memory 138 includes non-volatile memory such as read-only memory (“ROM”) including a set of instructions 139 or 239 for loading into the primary memory 136 at runtime of the console 130 or 230.


One or more processors 132 are configured to instantiate an optical tip-tracking process in accordance with the instructions 139 or 239 for optically tracking a distal-end portion of the light-emitting stylet 110 while the light-emitting stylet 110 is disposed in a vasculature of a patient, a light source such as one or more LEDs 112 is emitting light, the light detector 120 is disposed over the light-emitting stylet 110, and a plurality of photodetectors of the light detector 120 such as photodetectors 122 are detecting the light emitted from the light source of the light-emitting stylet 110. The optical tip-tracking process is configured to provide tracking information as input to a display server of the console 130 or 230 for optically tracking the distal-end portion of the light-emitting stylet 110 in a graphical user interface on the display screen 140 or 240. Optically tracking the distal-end portion of the light-emitting stylet 110 can be animated on the display screen 140 or 240 as shown on the display screen 240 of the console 230 in FIGS. 8 and 9.



FIGS. 1 and 2 provide different connection options for connecting at least the light-emitting stylet 110 and the light detector 120 to the console 130 or 230.


The left-hand side of each figure or FIGS. 1 and 2 shows a connection option (“option A”) in which the light-emitting stylet 110 and the light detector 120 are independently connected to the console 130 or 230. For example, the console 130 or 230 and the light-emitting stylet 110 can be mutually configured such that the light-emitting stylet 110 directly connects to the console 130 or 230 or indirectly connects to the console 130 or 230 through an intervening multi-use cable having requisite conveying means for conveying electrical power (e.g., electrical leads), light (e.g., optical fiber), etc. Likewise, the console 130 or 230 and the light detector 120 can be mutually configured such that the light detector 120 directly connects to the console 130 or 230 or indirectly connects to the console 130 or 230 through an intervening multi-use cable.


The right-hand side of each figure of FIGS. 1 and 2 shows a connection option (“option B”) in which the light-emitting stylet 110 is connected to the light detector 120 and, in turn, the light detector 120 is connected to the console 130 or 230. A cable such as the intervening multi-use cable set forth above for connecting the light detector 120 to the console 130 or 230 includes the requisite conveying means for conveying electrical power (e.g., electrical leads), light (e.g., optical fiber), etc. The foregoing connection option is useful in that the light detector 120 is multi-use equipment configured to be placed over a patient P and under a sterile drape 801 outside a sterile field as shown in FIGS. 8 and 9. The light-emitting stylet 110 is single-use equipment intended for use within the foregoing sterile field. As shown in FIG. 9, the light-emitting stylet 110 can include a drape-piercing connector 900 in a proximal-end portion thereof having a piercing element 902 configured to both pierce the sterile drape 801 and insert into a receptacle 904 of a light-detector connector extending from the light detector 120 under the sterile drape 801. So configured, the intervening multi-use cable set forth above through which the light-emitting stylet 110 can be indirectly connected to the console 130 or 230 is not needed. For examples of drape-piercing connectors for the light-emitting stylet 110 and light-detector connectors for the light-detector 120 see U.S. Pat. No. 10,231,753 and children patents or patent applications thereof, each of which patents and patent application are incorporated herein by reference.


Both connection options of FIG. 1 show the display screen 140 connected to the console 130 in the optical tip-tracking system 100. FIG. 2 does not show connection options for connecting the integrated display screen 240 to the console 230 in the optical tip-tracking system 200. This is because the integrated display screen 240 is integrated into the console 240 as shown in FIGS. 3, 4, 8, and 9.


In addition to FIGS. 1-4, FIG. 7 illustrates a side view of the light detector 120 in accordance with some embodiments.


As set forth above, the light detector 120 is configured to be placed over a patient and under a sterile drape such as the sterile drape 801 of FIGS. 8 and 9.


The light detector 120 includes the photodetectors 122 disposed within the light detector 120 configured to detect the light emitted from the light source of the light-emitting stylet 110. The photodetectors 122 are arranged in an array such that the light emitted from the light source of the light-emitting stylet 110 remains detectable by at least one photodetector of the photodetectors 122 even when the light emitted from the light source of the light-emitting stylet 110 is anatomically blocked (e.g. by a rib) from another one or more photodetectors of the photodetectors 122.


The light detector 120 includes a housing having a patient-facing portion 722 of the housing configured to transmit at least a portion of the light emitted from the light source of the light-emitting stylet 110 to the photodetectors 122 disposed within the light detector 120. The housing also has a light-blocking portion 724 of the housing opposite the patient-facing portion 722 of the housing configured to block ambient light from the photodetectors 122 disposed within the light detector 120. In addition to the light-blocking portion 724 of the housing of the light detector 120, the sterile drape 801 also protects the photodetectors 122 from the ambient light while in use.


In addition to FIGS. 1-4, FIG. 5A illustrates the distal-end portion of the light-emitting stylet 110 and FIG. 5B illustrates a transverse cross section of the light-emitting stylet 110 in accordance with some embodiments having the one-or-more LEDs 112 as the light source. FIG. 6A illustrates the distal-end portion of the light-emitting stylet 110 and FIG. 6B illustrates a transverse cross section of the light-emitting stylet 110 in accordance with some embodiments having an external light source.


As set forth in more detail below, the light-emitting stylet 110 is configured to be disposed in a lumen of a catheter.


With respect to the light-emitting stylet 110 having the one-or-more LEDs 112 as the light source, the light-emitting stylet 110 includes the one-or-more LEDs 112 in a distal-end portion (e.g., a tip) of the light-emitting stylet 110 configured to emit light. The light-emitting stylet 110 also includes at least a pair of electrical leads 114 configured to convey electrical power from the console 130 or 230 to power the one-or-more LEDs 112. The distal-end portion of the light-emitting stylet 110 can be configured to directionally emit light from the one-or-more LEDs 112 in one or more chosen directions such as straight ahead in line with the light-emitting stylet 110, radially outward such as toward an extracorporeal surface of a patient, or a combination thereof.


With respect to the light-emitting stylet 110 having the external light source, the light-emitting stylet 110 includes an optical fiber 615 configured to convey light from the external source, for example, a light within the console 130 or 230, to the distal-end portion (e.g., the tip) of the light-emitting stylet 110 to emit light. A ferrule 613 disposed over a distal-end portion of the optical fiber 615 can be configured to directionally emit light from the optical fiber 615 in one or more chosen directions such as straight ahead in line with the light-emitting stylet 110, radially outward such as toward an extracorporeal surface of a patient, or a combination thereof.


The light emitted from the light source can have a center wavelength between about 650 nm to 1350 nm including a center wavelength between about 650 nm to 950 nm or a center wavelength between about 1100 nm to 1350 nm. The light in the foregoing ranges of wavelengths is within an optical window for biological tissue in that such light penetrates biological tissue more deeply than light outside the foregoing ranges of wavelengths. (See FIG. 10 for the optical window for biological tissue.) Each LED of the one-or-more LEDs 112 can include aluminum gallium arsenide (AlGaAs) or gallium arsenide (GaAs) as a semiconductor material. In accordance with the semiconductor material and its composition, each LED of the one-or-more LEDs 112 can be configured to emit light at or within the following wavelengths: 660 nm, 680 nm, 800-850 nm, 850-940 nm, and 940 nm.


Adverting to FIG. 4, the catheter 450 can be a peripherally inserted central catheter (“PICC”), as shown, or a central venous catheter (“CVC”). In an example of a diluminal catheter, the catheter 450 can include a catheter tube 452, a bifurcated hub 454, two extension legs 456, and two Luer connectors 458 operably connected in the foregoing order. Notwithstanding the foregoing example, the catheter 450 can alternatively be a monoluminal catheter or a multi-luminal catheter including three or more lumens.


Continuing with the example of the diluminal catheter, the catheter 450 includes two lumens extending therethrough formed of adjoining lumen portions. Indeed, the catheter tube 452 includes two catheter-tube lumens 553. (See FIGS. 5B and 6B for the two catheter-tube lumens 553). The bifurcated hub 454 has two hub lumens correspondingly fluidly connected to the two catheter-tube lumens 553. Each extension leg of the two extension legs 456 has an extension-leg lumen fluidly connected to a hub lumen of the two hub lumens. Either lumen extending through the catheter 450 can accommodate the light-emitting stylet 110 disposed therein.


Methods


A method of the optical tip-tracking system 100 or 200 includes a disposing step of disposing the light-emitting stylet 110 of the optical tip-tracking system 100 or 200 in a lumen of the catheter 450.


The method also includes a placing step of placing the light detector 120 of the optical tip-tracking system 100 or 200 over the patient P as shown in FIGS. 8 and 9.


The method also includes a placing step of placing the sterile drape 801 over both the patient P and the light detector 120.


As shown in FIG. 8, the method can also include a connecting step of connecting the drape-piercing connector of the light-emitting stylet 110 with the light-detector connector extending from the light detector 120. Such a connecting step includes piercing the sterile drape 801 with the piercing element of the drape-piercing connector before inserting the piercing element into the receptacle of the light-detector connector.


The method also includes an advancing step of advancing the catheter 450 from an insertion site to a destination within a vasculature of the patient P while emitting light from the light source (e.g., the one-or-more LEDs 112) and detecting the light with the photodetectors 122. The light source of the light-emitting stylet 110 should distally extends beyond a distal end of the catheter 450 while advancing the catheter 450, thereby enabling the photodetectors 122 of the light detector 120 to detect the light emitted from the light source of the light-emitting stylet 110.


When the catheter 450 is a CVC, the advancing step includes advancing the CVC with the light-emitting stylet 110 disposed therein through a right internal jugular vein, a right brachiocephalic vein, and into an SVC.


When the catheter 450 is a PICC, the advancing step includes advancing the PICC with the light-emitting stylet 110 disposed therein through a right basilic vein, a right axillary vein, a right subclavian vein, a right brachiocephalic vein, and into an SVC.


The method also includes a viewing step of viewing the display screen 140 or 240 of the optical tip-tracking system 100 or 200 while the display screen 140 or 240 graphically tracks the distal-end portion of the light-emitting stylet 110 through the vasculature of the patient P.


The method also includes a ceasing step of ceasing to advance the catheter 450 through the vasculature of the patient P after determining the distal-end portion of the light-emitting stylet 110 is located at the destination by way of the display screen 140 or 240.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An optical tip-tracking system, comprising: a light-emitting stylet configured to be disposed in a lumen of a catheter, the light-emitting stylet including a light source in a distal-end portion of the light-emitting stylet configured to emit light and an electrical lead configured to convey electrical power to the light source;a light detector configured to be placed over a patient and under a sterile drape, the light detector including a housing, wherein the housing includes a plurality of photodetectors, wherein the plurality of photodetectors are configured to detect the light emitted from the light source, wherein the light-emitting stylet includes a drape-piercing connector having a piercing element configured to pierce the sterile drape and insert into a receptacle of a light-detector connector extending from the light detector under the sterile drape;and a console configured to operably connect to the light-emitting stylet and the light detector, wherein the light-emitting stylet is configured to indirectly connect to the console through the light detector, the console including memory and a processor, wherein memory storing instructions that, when executed by the processor, are configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet while, i) the light source is emitting light, wherein the light-emitting stylet is configured to be disposed in a vasculature of the patient while the light source is emitting light, ii) the light detector is disposed over the light-emitting stylet, and (iii) the plurality of photodetectors are detecting the light emitted from the light source.
  • 2. The optical tip-tracking system of claim 1, wherein the light source is a light-emitting diode (“LED”).
  • 3. The optical tip-tracking system of claim 1, wherein the light emitted from the light source has a center wavelength between about 650 nm to 1350 nm.
  • 4. The optical tip-tracking system of claim 1, wherein the light emitted from the light source has a center wavelength between about 650 nm to 950 nm.
  • 5. The optical tip-tracking system of claim 1, wherein the distal-end portion of the light-emitting stylet is configured to directionally emit light in one or more chosen directions.
  • 6. The optical tip-tracking system of claim 1, wherein the housing includes a patient-facing portion configured to transmit at least a portion of the light emitted from the light source to the plurality of photodetectors.
  • 7. The optical tip-tracking system of claim 6, wherein the housing has a light-blocking portion opposite the patient-facing portion, wherein the light-blocking portion is configured to block ambient light from the plurality of photodetectors.
  • 8. The optical tip-tracking system of claim 1, wherein the plurality of photodetectors are arranged in an array such that the light emitted from the light source remains detectable by at least one photodetector of the plurality of photodetectors when the light emitted from the light source is anatomically blocked from one or more photodetectors of the photodetectors.
  • 9. The optical tip-tracking system of claim 1, wherein the optical tip-tracking process is configured to provide tracking information as input to the console, enabling generation of a graphical user interface on a display, wherein the graphical user interface enables optical tracking of the distal-end portion of the light-emitting stylet.
  • 10. The optical tip-tracking system of claim 1, wherein the light-emitting stylet is configured to directly connect to the console.
  • 11. The optical tip-tracking system of claim 1, wherein the light-emitting stylet is configured to indirectly connect to the console through an intervening multi-use cable.
  • 12. An optical tip-tracking system, comprising: a catheter including a lumen extending through the catheter;a light-emitting stylet configured to be disposed in the lumen of the catheter, the light-emitting stylet including a light-emitting diode (“LED”) in a distal-end portion of the light-emitting stylet configured to emit light and an electrical lead configured to convey electrical power to the LED;a light detector configured to be placed over a patient and under a sterile drape, the light detector including a housing, wherein the housing includes a plurality of photodetectors arranged in an array and configured to detect the light emitted from the LED, wherein the light-emitting stylet includes a drape-piercing connector having a piercing element configured to pierce the sterile drape and insert into a receptacle of a light-detector connector extending from the light detector under the sterile drape;and a console configured to operably connect to the light-emitting stylet and the light detector, wherein the light-emitting stylet is configured to indirectly connect to the console through the light detector, the console including memory and a processor, wherein memory storing instructions that, when executed by the processor, are configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet on a graphical user interface on a display while the LED is emitting light, wherein the light-emitting stylet is configured to be disposed in a vasculature of the patient while the light source is emitting light, (ii) the light detector is disposed over the light-emitting stylet, and {iii) the plurality of photodetectors are detecting the light emitted from the LED.
  • 13. An optical tip-tracking system, comprising: a light-emitting stylet configured to be disposed in a lumen of a catheter, the light-emitting stylet including an optical fiber configured to convey light to a distal-end portion of the light-emitting stylet for emitting light therefrom, and wherein a ferrule is disposed over a distal-end portion of the optical fiber and configured to direct light in one or more directions;a light detector configured to be placed over a patient and under a sterile drape, the light detector including a plurality of photodetectors configured to detect the light emitted from the light-emitting stylet, wherein, the light-emitting stylet includes a drape-piercing connector having a piercing element configured to pierce the sterile drape and insert into a receptacle of a light-detector connector extending from the light detector under the sterile drape;and a console configured to operably connect to the light-emitting stylet and the light detector, wherein the light-emitting stylet is configured to indirectly connect to the console through the light detector, the console including:a light source for the light-emitting stylet;and memory and a processor, wherein memory storing instructions that, when executed by the processor, are configured to instantiate an optical tip-tracking process for optically tracking the distal-end portion of the light-emitting stylet while the light-emitting stylet is disposed in a vasculature of the patient, the light-emitting stylet is emitting light, the light detector is disposed over the light-emitting stylet, and the plurality of photodetectors are detecting the light emitted from the light-emitting stylet.
  • 14. A method of an optical tip-tracking system, comprising: disposing a light-emitting stylet of the optical tip-tracking system in a lumen of a catheter, the light-emitting stylet including a light source in a distal-end portion of the light-emitting stylet and configured to emit light and an electrical lead configured to convey electrical power to the light source;placing a light detector of the optical tip-tracking system over a patient, the light detector including a housing, wherein the housing includes a plurality of photodetectors, and wherein the plurality of photodetectors is configured to detect light emitted from the light source;placing a sterile drape over both the patient and the light detector;connecting a drape-piercing connector of the light-emitting stylet with a light-detector connector extending from the light detector, the connecting including piercing the sterile drape with a piercing element of the drape-piercing connector before inserting the piercing element into a receptacle of the light-detector connector;advancing the catheter from an insertion site toward a destination site while emitting the light from the light source and detecting the light with the plurality of photodetectors, wherein the catheter is configured to be advanced through a vasculature of the patient; and viewing a display screen of the optical tip-tracking system while the display screen graphically tracks the distal-end portion of the light-emitting stylet through the vasculature of the patient.
  • 15. The method of claim 14, wherein anoptical fiber of the light-emitting stylet distally extends beyond a distal end of the catheter while advancing the catheter, thereby enabling the plurality of photodetectors of the light detector to detect the light emitted from the optical fiber.
  • 16. The method of claim 14, wherein the catheter is a central venous catheter (“CVC”), the advancing including advancing the CVC with the light-emitting stylet disposed therein through a right internal jugular vein, a right brachiocephalic vein, and into a superior vena cava (“SVC”).
  • 17. The method of claim 14, wherein the catheter is a peripherally inserted central catheter (“PICC”), the advancing including advancing the PICC with the light-emitting stylet disposed therein through a right basilic vein, a right axillary vein, a right subclavian vein, a right brachiocephalic vein, and into a superior vena cava (“SVC”).
  • 18. The method of claim 14, further comprising ceasing to advance the catheter through the vasculature of the patient after determining the distal-end portion of the light-emitting stylet is located at the destination site by way of the display screen.
PRIORITY

This application claims the benefit of priority to U.S. Patent Application No. 62/940,107 filed Nov. 25, 2019, which is incorporated by reference in its entirety into this application.

US Referenced Citations (207)
Number Name Date Kind
4813429 Eshel et al. Mar 1989 A
5099845 Besz et al. Mar 1992 A
5163935 Black et al. Nov 1992 A
5207672 Roth et al. May 1993 A
5211165 Dumoulin et al. May 1993 A
5275151 Shockey et al. Jan 1994 A
5423321 Fontenot Jun 1995 A
5454807 Lennox et al. Oct 1995 A
5517997 Fontenot May 1996 A
5622170 Schulz Apr 1997 A
5740808 Panescu et al. Apr 1998 A
5872879 Hamm Feb 1999 A
5873842 Brennen et al. Feb 1999 A
5879306 Fontenot et al. Mar 1999 A
5906579 Vander Salm et al. May 1999 A
6069698 Ozawa et al. May 2000 A
6081741 Hollis Jun 2000 A
6178346 Amundson et al. Jan 2001 B1
6208887 Clarke Mar 2001 B1
6319227 Mansouri-Ruiz Nov 2001 B1
6343227 Crowley Jan 2002 B1
6398721 Nakamura et al. Jun 2002 B1
6485482 Belef Nov 2002 B1
6564089 Izatt et al. May 2003 B2
6593884 Gilboa et al. Jul 2003 B1
6597941 Fontenot et al. Jul 2003 B2
6650923 Lesh et al. Nov 2003 B1
6685666 Fontenot Feb 2004 B1
6687010 Horii et al. Feb 2004 B1
6690966 Rava et al. Feb 2004 B1
6701181 Tang et al. Mar 2004 B2
6711426 Benaron et al. Mar 2004 B2
6816743 Moreno et al. Nov 2004 B2
6892090 Verard et al. May 2005 B2
6895267 Panescu et al. May 2005 B2
7132645 Korn Nov 2006 B2
7273056 Wilson et al. Sep 2007 B2
7344533 Pearson et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7366563 Kleen et al. Apr 2008 B2
7396354 Rychnovsky et al. Jul 2008 B2
7406346 Kleen et al. Jul 2008 B2
7515265 Alfano et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7587236 Demos et al. Sep 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7729735 Burchman Jun 2010 B1
7757695 Wilson et al. Jul 2010 B2
7758499 Adler Jul 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7992573 Wilson et al. Aug 2011 B2
8032200 Tearney et al. Oct 2011 B2
8054469 Nakabayashi et al. Nov 2011 B2
8060187 Marshik-Geurts et al. Nov 2011 B2
8073517 Burchman Dec 2011 B1
8078261 Imam Dec 2011 B2
8187189 Jung et al. May 2012 B2
8267932 Baxter et al. Sep 2012 B2
8369932 Cinbis et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8571640 Holman Oct 2013 B2
8597315 Snow et al. Dec 2013 B2
8700358 Parker, Jr. Apr 2014 B1
8781555 Burnside et al. Jul 2014 B2
8798721 Dib Aug 2014 B2
8968331 Sochor Mar 2015 B1
8979871 Tyc et al. Mar 2015 B2
9360630 Jenner et al. Jun 2016 B2
9560954 Jacobs et al. Feb 2017 B2
9622706 Dick et al. Apr 2017 B2
9678275 Griffin Jun 2017 B1
10231753 Burnside et al. Mar 2019 B2
10327830 Grant et al. Jun 2019 B2
10349890 Misener et al. Jul 2019 B2
10492876 Anastassiou et al. Dec 2019 B2
10568586 Begin et al. Feb 2020 B2
10631718 Petroff et al. Apr 2020 B2
10992078 Thompson et al. Apr 2021 B2
11123047 Jaffer et al. Sep 2021 B2
20020198457 Tearney et al. Dec 2002 A1
20030092995 Thompson May 2003 A1
20040242995 Maschke Dec 2004 A1
20050033264 Redinger Feb 2005 A1
20050261598 Banet Nov 2005 A1
20060013523 Childlers et al. Jan 2006 A1
20060036164 Wilson et al. Feb 2006 A1
20060189959 Schneiter Aug 2006 A1
20060200049 Leo et al. Sep 2006 A1
20060241395 Kruger et al. Oct 2006 A1
20060241492 Boese et al. Oct 2006 A1
20070156019 Larkin et al. Jul 2007 A1
20070201793 Askins et al. Aug 2007 A1
20070287886 Saadat Dec 2007 A1
20070299425 Waner et al. Dec 2007 A1
20080039715 Wilson Feb 2008 A1
20080082004 Banet Apr 2008 A1
20080172119 Yamasaki et al. Jul 2008 A1
20080183128 Morriss et al. Jul 2008 A1
20080285909 Younge et al. Nov 2008 A1
20090062634 Say et al. Mar 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090234328 Cox et al. Sep 2009 A1
20090304582 Rousso et al. Dec 2009 A1
20090314925 Van Vorhis et al. Dec 2009 A1
20100016729 Futrell Jan 2010 A1
20100030063 Lee et al. Feb 2010 A1
20100114115 Schlesinger et al. May 2010 A1
20100312095 Jenkins et al. Dec 2010 A1
20110144481 Feer et al. Jun 2011 A1
20110166442 Sarvazyan Jul 2011 A1
20110172680 Younge et al. Jul 2011 A1
20110245662 Eggers et al. Oct 2011 A1
20110295108 Cox et al. Dec 2011 A1
20110313280 Govari Dec 2011 A1
20120046562 Powers et al. Feb 2012 A1
20120143029 Silverstein Jun 2012 A1
20120184827 Shwartz et al. Jul 2012 A1
20120184955 Pivotto et al. Jul 2012 A1
20120321243 Younge et al. Dec 2012 A1
20130028554 Wong et al. Jan 2013 A1
20130096482 Bertrand et al. Apr 2013 A1
20130104884 Vazales et al. May 2013 A1
20130188855 Desjardins et al. Jul 2013 A1
20130204124 Duindam et al. Aug 2013 A1
20130211246 Parasher Aug 2013 A1
20130296693 Wenzel et al. Nov 2013 A1
20130310668 Young Nov 2013 A1
20130324840 Zhongping et al. Dec 2013 A1
20140121468 Eichenholz May 2014 A1
20140221829 Maitland et al. Aug 2014 A1
20140275997 Chopra et al. Sep 2014 A1
20150029511 Hooft et al. Jan 2015 A1
20150031987 Pameijer et al. Jan 2015 A1
20150080688 Cinbis et al. Mar 2015 A1
20150099979 Caves et al. Apr 2015 A1
20150119700 Liang et al. Apr 2015 A1
20150209113 Burkholz et al. Jul 2015 A1
20150209117 Flexman et al. Jul 2015 A1
20150254526 Denissen Sep 2015 A1
20150320977 Vitullo Nov 2015 A1
20160018602 Govari et al. Jan 2016 A1
20160166326 Bakker et al. Jun 2016 A1
20160166341 Iordachita et al. Jun 2016 A1
20160184020 Kowalewski et al. Jun 2016 A1
20160213432 Flexman et al. Jul 2016 A1
20160354038 Demirtas et al. Dec 2016 A1
20170020394 Harrington Jan 2017 A1
20170079681 Burnside et al. Mar 2017 A1
20170082806 Van Der Mark et al. Mar 2017 A1
20170196479 Liu et al. Jul 2017 A1
20170201036 Cohen et al. Jul 2017 A1
20170215973 Flexman et al. Aug 2017 A1
20170231699 Flexman et al. Aug 2017 A1
20170273542 Au Sep 2017 A1
20170273565 Ma et al. Sep 2017 A1
20170273628 Ofek et al. Sep 2017 A1
20170311901 Zhao et al. Nov 2017 A1
20170319279 Fish et al. Nov 2017 A1
20180095231 Lowell et al. Apr 2018 A1
20180113038 Janabi-Sharifi et al. Apr 2018 A1
20180140170 Van Putten et al. May 2018 A1
20180235709 Donhowe et al. Aug 2018 A1
20180239124 Naruse et al. Aug 2018 A1
20180250088 Brennan et al. Sep 2018 A1
20180264227 Flexman et al. Sep 2018 A1
20180279909 Noonan et al. Oct 2018 A1
20180289390 Amorizzo et al. Oct 2018 A1
20180289927 Messerly Oct 2018 A1
20180339134 Leo Nov 2018 A1
20180360545 Cole et al. Dec 2018 A1
20190059743 Ramachandran et al. Feb 2019 A1
20190110844 Misener et al. Apr 2019 A1
20190231272 Yamaji Aug 2019 A1
20190237902 Thompson et al. Aug 2019 A1
20190321110 Grunwald et al. Oct 2019 A1
20190343424 Blumenkranz et al. Nov 2019 A1
20190357875 Qi et al. Nov 2019 A1
20190374130 Bydlon et al. Dec 2019 A1
20200046434 Graetzel et al. Feb 2020 A1
20200054399 Duindam et al. Feb 2020 A1
20200305983 Yampolsky et al. Oct 2020 A1
20210045814 Thompson et al. Feb 2021 A1
20210068911 Walker et al. Mar 2021 A1
20210298680 Sowards et al. Mar 2021 A1
20210244311 Zhao et al. Aug 2021 A1
20210268229 Sowards et al. Sep 2021 A1
20210271035 Sowards et al. Sep 2021 A1
20210275257 Prior et al. Sep 2021 A1
20210401456 Cox et al. Dec 2021 A1
20210401509 Misener et al. Dec 2021 A1
20210402144 Messerly Dec 2021 A1
20220011192 Misener et al. Jan 2022 A1
20220034733 Misener et al. Feb 2022 A1
20220110695 Sowards et al. Apr 2022 A1
20220152349 Sowards et al. May 2022 A1
20220160209 Sowards et al. May 2022 A1
20220211442 McLaughlin et al. Jul 2022 A1
20220233246 Misener et al. Jul 2022 A1
20220369934 Sowards et al. Nov 2022 A1
20230081198 Sowards et al. Mar 2023 A1
20230097431 Sowards et al. Mar 2023 A1
20230101030 Misener et al. Mar 2023 A1
20230108604 Messerly et al. Apr 2023 A1
20230126813 Sowards et al. Apr 2023 A1
20230243715 Misener et al. Aug 2023 A1
20230248444 Misener et al. Aug 2023 A1
20230251150 Misener et al. Aug 2023 A1
Foreign Referenced Citations (36)
Number Date Country
102016109601 Nov 2017 DE
2240111 Oct 2010 EP
3545849 Oct 2019 EP
3705020 Sep 2020 EP
20190098512 Aug 2019 KR
9964099 Dec 1999 WO
1999064099 Dec 1999 WO
2006122001 Nov 2006 WO
2009155325 Dec 2009 WO
2011121516 Oct 2011 WO
2011141830 Nov 2011 WO
2011150376 Dec 2011 WO
2012064769 May 2012 WO
2015074045 May 2015 WO
2016038492 Mar 2016 WO
2016061431 Apr 2016 WO
2016051302 Apr 2016 WO
2018096491 May 2018 WO
2019037071 Feb 2019 WO
2019046769 Mar 2019 WO
2019070423 Apr 2019 WO
2019230713 Dec 2019 WO
2020182997 Sep 2020 WO
2021030092 Feb 2021 WO
2021108688 Jun 2021 WO
2021108697 Jun 2021 WO
2021138096 Jul 2021 WO
2022031613 Feb 2022 WO
2022081723 Apr 2022 WO
2022150411 Jul 2022 WO
2022164902 Aug 2022 WO
2022245987 Nov 2022 WO
2023043954 Mar 2023 WO
2023049443 Mar 2023 WO
2023055810 Apr 2023 WO
2023076143 May 2023 WO
Non-Patent Literature Citations (47)
Entry
PCT/US2020/062396 filed Nov. 25, 2020 International Search Report and Written Opinion dated Mar. 2, 2021.
PCT/US2020/062407 filed Nov. 25, 2020 International Search Report and Written Opinion dated Mar. 11, 2021.
PCT/US2020/062396 filed Nov. 25, 2020 International Preliminary Report on Patentability dated Jan. 29, 2021.
PCT/US2020/062407 filed Nov. 25, 2020 International Preliminary Report on Patentability dated Jan. 25, 2021.
PCT/US2022/011347 filed Jan. 5, 2022 International Search Report and Written Opinion dated May 3, 2022.
PCT/US2022/013897 filed Jan. 26, 2022 International Search Report and Written Opinion dated May 11, 2022.
U.S. Appl. No. 17/371,993, filed Jul. 9, 2021 Non-Final Office Action dated Jul. 12, 2022.
PCT/US2021/054802 filed Oct. 13, 2021 International Search Report and Written Opinion dated Feb. 2, 2022.
PCT/US2021/060849 filed Nov. 24, 2021 International Search Report and Written Opinion dated Mar. 9, 2022.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Apr. 22, 2022.
U.S. Appl. No. 17/185,777, filed Feb. 25, 2021 Non-Final Office Action dated Feb. 9, 2022.
PCT/US2018/026493 filed Apr. 6, 2018 International Search Report and Written Opinion dated Jun. 22, 2018.
PCT/US2020/044801 filed Aug. 3, 2020 International Search Report and Written Opinion dated Oct. 26, 2020.
PCT/US2021/019713 filed Feb. 25, 2021 International Search Report and Written Opinion dated Jul. 6, 2021.
PCT/US2021/020079 filed Feb. 26, 2021 International Search Report and Written Opinion dated Jun. 4, 2021.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Jun. 30, 2021.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Nov. 10, 2020.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated Mar. 12, 2021.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated May 29, 2020.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated Oct. 13, 2021.
PCT/US2022/029894 filed May 18, 2022, International Search Report and Written Opinion dated Sep. 1, 2022.
U.S. Appl. No. 17/105,259, filed Nov. 25, 2020, Notice of Allowance dated Jul. 20, 2022.
U.S. Appl. No. 17/357,561, filed Jun. 24, 2021 Non-Final Office Action dated Aug. 11, 2022.
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Non-Final Office Action dated Sep. 12, 2022.
PCT/US2021/020732 filed Mar. 3, 2021 International Search Report and Written Opinion dated Jul. 5, 2021.
PCT/US2021/038899 filed Jun. 24, 2021 International Search Report and Written Opinion dated Oct. 6, 2021.
PCT/US2021/038954 filed Jun. 24, 2021 International Search Report and Written Opinion dated Oct. 28, 2021.
PCT/US2021/041128 filed Jul. 9, 2021 International Search Report and Written Opinion dated Oct. 25, 2021.
PCT/US2021/044216 filed Aug. 2, 2021 International Search Report and Written Opinion dated Nov. 18, 2021.
Jackle Sonja et al. “Three dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair.” International Journal of Computer Assisted Radiology and Surgery, Springer DE. vol. 15, No. 6, May 7, 2020.
PCT/US2022/043706 filed Sep. 16, 2022 International Search Report and Written Opinion dated Nov. 24, 2022.
PCT/US2022/044696 filed Sep. 26, 2022 International Search Report and Written Opinion dated Jan. 23, 2023.
PCT/US2022/045051 filed Sep. 28, 2022 International Search Report and Written Opinion dated Jan. 2, 2023.
PCT/US2022/047538 filed Oct. 24, 2022 International Search Report and Written Opinion dated Jan. 26, 2023.
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Examiner's Answer dated Novemeber 28, 2022.
U.S. Appl. No. 17/357,561, filed Jun. 24, 2021 Notice of Allowance dated Dec. 9, 2022.
U.S. Appl. No. 17/371,993, filed Jul. 9, 2021 Notice of Allowance dated Nov. 3, 2022.
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Notice of Allowance dated Jan. 19, 2023.
Fiber Optic RealShape (FORS) technology—research. Philips. (Oct. 18, 2018). Retrieved Feb. 28, 2023, from https:// www.philips.com/a-w/research/research-programs/fors.html (Year: 2018).
U.S. Appl. No. 16/984,104, filed Aug. 3, 2020 Restriction Requirement dated Mar. 13, 2023.
U.S. Appl. No. 17/357,186, filed Jun. 24, 2021 Restriction Requirement dated Mar. 7, 2023.
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Corrected Notice of Allowability dated Feb. 23, 2023.
U.S. Appl. No. 17/500,678, filed Oct. 13, 2021 Non-Final Office Action dated Mar. 15, 2023.
EP 20853352.1 filed Mar. 7, 2022 Extended European Search Report dated Jul. 27, 2023.
PCT/US2023/019239 filed Apr. 20, 2023 International Search Report and Written Opinion dated Jul. 20, 2023.
U.S. Appl. No. 16/984,104, filed Aug. 3, 2020 Non-Final Office Action dated Jun. 22, 2023.
U.S. Appl. No. 17/357,186, filed Jun. 24, 2021 Non Final Office Action dated May 30, 2023.
Related Publications (1)
Number Date Country
20210154440 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62940107 Nov 2019 US