This application claims priority of Taiwanese Application No. 099126915, filed on Aug. 12, 2010.
1. Field of the Invention
The present invention relates to a correction method for a touch panel, more particularly to a coordinate information correction method for an optical touch panel.
2. Description of the Related Art
Conventional touch panels include resistive touch panels, capacitive touch panels, and optical touch panels. The resistive touch panel, compared to the capacitive touch panel, is less expensive but has a slower response.
One example of an optical touch panel uses an infrared LED module, which emits infrared beams, and photodetector pairs around a periphery of the touch panel for detecting an interruption in a pattern of the infrared beams. Another optical touch panel uses an infrared backlight module and at least two image sensors (CCD or CMOS sensor elements) placed around the periphery of the touch panel for detecting a shadow, which is produced by an object approaching the touch panel, in a light curtain region defined by the infrared backlight module so as to locate the object.
A conventional optical touch panel disclosed in U.S. Patent Application Publication No. 2009/0146972 teaches the use of a processor to determine distortion parameters of lenses during calibration for correcting pointer coordinate data associated with a position of the pointer relative to a touch surface. Since the techniques proposed therein adopt nonlinear equations, the solutions obtained are only approximations, and the calculations involved are relatively complicated.
Therefore, an object of the present invention is to provide a coordinate information correction method which is applied to an optical touch panel, and which permits correction of different kinds of distortion of the optical touch panel by calculating relatively simple equations.
Accordingly, a coordinate information correction method of this invention is for an optical touch panel that includes a touch surface, a light source module, at least two light detectors, and a processor. The light source module is disposed to define a light curtain region on one side of the touch surface. The at least two light detectors are disposed at at least one edge of a periphery of the touch surface, and are spaced apart from each other. Each of the light detectors has a field of detection along the touch surface. The light detectors are arranged in a manner that at least portions of the fields of detection of the light detectors overlap with each other and that the light detectors are able to detect changes in intensity of the light received from the light source module that are produced as a result of the presence of an object in the light curtain region. The processor receives output signals from the at least light detectors.
The coordinate information correction method comprises:
Preferably, in step b), the processor is configured calculate the set of correction values (Δα1, Δα2, . . . Δαk) according to the following equation
in which k represents a total number of the light detectors in the optical touch panel, j represents a jth one of the light detectors, i is a power of the equation, Ajo˜Aji are predetermined correction coefficients, and αj
Preferably, in step c), the processor is configured to calculate a jth one of the corrected included angle values (α1
Preferably, for each of the light detectors, the connecting line is a line passing through a lens of the light detector and the location of the object in the light curtain region, and the base line passes through the lens of the light detector.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
Referring to
The detecting device 2 includes two light detectors 3, and a processor 20. The light detectors 3 are disposed respectively adjacent to a first corner and a second corner, wherein the first corner and the second corner are located at two ends of a long edge of the touch surface 10. Each of light detectors 3 includes a sensor 32, a lens 30, and an optical filter 34. The optical filters 34 have a light filtering capability such that only light of a specific wavelength is able to pass therethrough and reach the sensors 32 for subsequent detection thereby, thus obtaining more accurate detection results.
Referring to
Referring to
Moreover, each connecting line is a line passing through the lens 30 of the respective light detector 3 and the location of the object 9 in the light curtain region, and the base line (P) passes through the lenses 30 of the two light detectors 3 in this embodiment.
Furthermore, each sensing element of the sensors 32 is associated with a corresponding detection angle for detecting the changes in light intensity along an extension line at the corresponding detection angle. For example, referring once again to
Referring to
in which k represents a total number of the light detectors 3 in the optical touch panel 100, j represents a jth one of the light detectors 3, i is a power of the equation, Ajo˜Aji are correction coefficients, and αj
α1
α2
Regression algorithms are used to find A10˜A15 and A20˜A25 that would make a summation of |α1
In this way, when the optical touch panel 100 has input from the object 9, the optical touch panel 100 may detect, calculate and generate corrected coordinate information associated with the location of the object 9, such that the response of the optical touch panel 100 corresponds correctly to the input.
Moreover, numbers and placement positions of the light detectors 3 are not limited to the closure this embodiment, as long as the light detectors 3 are not less than two in number, and any adjacent two of which are disposed at a periphery of the touch surface 10 and are spaced apart from each other. The processor 20 may process the output signals received from any of the light detectors 3 using the same coordinate information correction method.
In summary, the optical touch panel 100 of the present invention may correct deviation angles first, and then generate coordinate information from the corrected angle values. The technique utilized by the present invention may replace a conventional correction method, which requires complicated calculations to obtain rectangular coordinates. Furthermore, deviation errors may be corrected regardless of what components the deviation errors attributed to.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
99126915 A | Aug 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5317140 | Dunthorn | May 1994 | A |
6570103 | Saka et al. | May 2003 | B1 |
6674424 | Fujioka | Jan 2004 | B1 |
6919880 | Morrison et al. | Jul 2005 | B2 |
20010019325 | Takekawa | Sep 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20120038591 A1 | Feb 2012 | US |