Optical touchscreen with improved illumination

Information

  • Patent Grant
  • 8432377
  • Patent Number
    8,432,377
  • Date Filed
    Friday, August 29, 2008
    15 years ago
  • Date Issued
    Tuesday, April 30, 2013
    11 years ago
Abstract
In an optical touch display system, light from a primary source can be retroreflected to a detector in the absence of an object in the detection area. When an object is present, its position can be triangulated based on the direction of its shadows at the detectors. Accuracy can be improved with a secondary light source positioned off-axis from the primary light sources so that minimal light from the secondary source is retroreflected to the detectors. Instead, when an object is present, light from the secondary source may be reflected directly from the object. Each detector signal representing light due to the primary light source can be corrected to remove light reflected directly from the object based on identifying and removing a signal component representing light from the secondary light source. In some embodiments, this is facilitated by phasing the primary and secondary light sources.
Description
PRIORITY CLAIM

This application claims priority to New Zealand Provisional Patent Application No. 561,037, filed on Aug. 30, 2007, and entitled OPTICAL TOUCHSCREEN WITH IMPROVED ILLUMINATION, which is hereby incorporated by reference herein in its entirety.


TECHNICAL FIELD

The present subject matter generally pertains to touch display systems that allow a user to interact with one or more processing devices by touching on or near a surface.


BACKGROUND

Digitizers and tablets can be incorporated as a coordinate input apparatus in processing units. For instance, the digitizer or tablet can be used alongside one or more display devices (e.g. CRT, LCD, or other display technology) in a touch enabled display system. Generally speaking, various systems for detecting an angle (direction) or a position of an object relative to the display area can be used, such as pressure sensitive resistance membrane systems, capacitance systems, electromagnetic induction systems, and the like. As another example, optical systems capable of detecting the angle or the position of the object can be used. More particularly, touch screen input devices include resistive, surface capacitive, surface acoustic wave (SAW), infrared (IR), Frustrated Total Internal Reflection (FTIR), Projected capacitive, optical and bending wave. Often, the foregoing touch screen devices (aside from some optical and infrared technologies) require use of a touch enabled transparent cover layer that adds height to the display assembly.


Certain optical and infrared systems rely on detection of light traveling in optical paths that lie in one or more detection planes above the touched surface. For example, optical imaging for touch screens can use a combination of line-scan or area image cameras, digital signal processing, front or back illumination, and algorithms to determine a point or area of touch. Components used to emit and detect light in the detection plane(s) can be positioned along one or more edges of the touch screen area as part of a bezel surrounding the touch screen area.


Optical touch technology often uses line-scanning or area cameras orientated along one or more edges of the touch surface to image the bezel and track the movement of any object close to the surface of the touch screen by detecting the interruption of an infrared light source. For example, the light can be emitted across the surface of the touch screen by IR-LED emitters aligned along the optical axis of the camera to detect the intensity of light reflected by a retro-reflective border. Light can be projected from each of two optical units in a fan shape above the touch surface, with a linear photoreceptive sensor in each optical unit measuring the intensity of light detected by the optical units. If a finger, pen, or other object interrupts a portion of the light, the system can detect the direction of the shadow. Since the optical units are at known positions, the coordinates of the finger or pen can be calculated based on the triangulation principle.


SUMMARY

Objects and advantages of the present subject matter will be apparent to one of ordinary skill in the art upon careful review of the present disclosure and/or practice of one or more embodiments of the claimed subject matter.


In accordance with one or more aspects of the present subject matter, the performance of an optical touch display system can be improved through refinements to the light emitted across a touch surface bounded by a touch area. In a system that detects objects based on the intensity of light from a primary light source retroreflected to a detection system, accuracy can be improved for detection of an object close to the detection system by adjusting detected light to remove a component representative of light that reached the detector directly from the object. This can be achieved in some embodiments through the use of an error signal generated based on detected light that ultimately originated from a secondary light source positioned off-axis relative to the detection system.


For example, in some embodiments, a touch detection system comprises a light detection system having an optical center, a retroreflector positioned along at least one edge of a touch area, a primary illumination system, and a secondary illumination system. The primary illumination system can be positioned remote from the retroreflector, such as at a different edge of the touch area. The primary illumination system can be configured to emit light across the touch area so that, in the absence of an object in the touch area, at least some light originating from the primary illumination system is retroreflected to the detection system. For instance, the light may be emitted in a fan-shaped pattern having an apex, with the apex of the fan from the primary illumination system aligned with the optical center of the detection system. Perfect alignment would be desirable, but generally the alignment should be as close to the optical center of the detection system as is feasible.


In the absence of an object in the touch area (i.e. an object on or near the touch surface), light travels across the touch surface and is returned by the retroreflector to the light detection system. If an object is present, a shadow cast by the object can be detected as a variance in the pattern of detected light.


The secondary illumination system can also be positioned remote from the retroreflector and is also configured to emit light across the touch surface in a fan-shaped pattern having an apex. The secondary illumination system is configured so that, in comparison to the primary illumination system, less light (or even no light) from the secondary illumination system reaches the detection system in the absence of an object. For example, in some embodiments, the apex of the fan from the secondary illumination system is not aligned with the optical center of a detection system.


The touch detection system can comprise one or more computing devices interfaced with the primary illumination system, secondary illumination system, and light detection system. At least one computing device can be configured to determine the position at which an object has interfered with light traveling across the touch surface based on evaluating the patterns of light detected by the light detection system.


The pattern of light detected by the light detection system can be due to light that ultimately originated from either or both the primary and secondary illumination systems. The phrase “ultimately originated” is meant to refer to the ultimate source of the light prior to retroreflection of the light by the edges of the touch area, reflection of the light by an object in the touch area, or other interference that results in the light reaching the detection system.


In certain embodiments, a computing device or other components are configured to separate a pattern of detected light that ultimately originated from a primary illumination system from a pattern of detected light that ultimately originated from the secondary illumination system. For example, the patterns can be separated by phasing the secondary illumination system and primary illumination system and correlating the detected patterns to the particular time at which an illumination system is active.


By separating the detected patterns, the computing device(s) can adjust the pattern of light used in triangulating or otherwise determining the position at which an object has interfered with light traveling across the touch surface. If an object is interfering with light relatively close to the point at which the primary pattern of light is emitted, the magnitude of the detected signal due to light reflected or otherwise scattered to the detector by the object could skew the results. Namely, light from the object can lead to a reduction or elimination of the shadow effect of the object relative to the retroreflected light returned to the detection system.


However, the pattern of detected light that ultimately originated from the secondary illumination system can be used to account for some or all of the light from the primary illumination system that is reflected by the object. For example, the computing device(s) may be configured to subtract the detected pattern of light that ultimately originated from the secondary illumination system from the detected pattern of light that ultimately originated from the primary illumination system. The pattern of light that is subtracted features little to no retroreflected component due to the positioning of the secondary illumination system. Therefore, it is possible to “correct” the measured pattern of light that ultimately originated from the primary illumination system to remove components representing light reflected from the object without removing components properly returned due to retroreflection. The correction can result in complete or partial removal of the components due to direct reflection or other scattering by the object.


Phasing of the light sources and/or other separation operations may be carried out by the same computing device(s) that ultimately perform the triangulation operations or may be carried out by separate computing device or devices. For instance, a microcontroller, DSP, or other suitable components or circuitry may control phasing of the sources and adjusting the detected pattern, with triangulation performed by a computer interfaced to the microcontroller, DSP or other components.


In some embodiments, the light detection system and primary illumination system are incorporated into a single optical unit. The touch detection system can comprise two or more of the combined optical units, with each optical unit positioned remote from the retroreflector and each other. Each optical unit may include a secondary illumination system in some embodiments, while in other embodiments, one or more secondary illumination systems are included in the touch detection system but are separate from the optical units used for primary illumination and detection.


Either or both the primary and secondary illumination systems can comprise any suitable type or arrangement of light sources. In some embodiments, an illumination system includes a plurality of light sources configured to emit light as if they were a point source. An illumination system can include diffuser optics, such as a light-shaping diffuser, to better obtain a fan-like distribution of light from a discrete number of sources. In some embodiments, use of the diffuser allows fewer sources to be used in the illumination system.


Certain embodiments of a method of detecting the position of an object in a touch area are discussed herein. For instance, some such methods can comprise emitting light in a primary pattern across a touch surface towards one or more edges of a touch area bounding the surface. The primary pattern can be centered on an optical axis of a detection system positioned to detect a retroreflected pattern of light. Multiple primary patterns can be emitted, each from a corresponding location and each centered on an optical axis of a corresponding detection system.


The method can also comprise emitting light in a secondary pattern across the touch surface, with the secondary pattern off-center relative to the optical axis of the detection system or systems, or otherwise emitted so that, in the absence of an object, less light ultimately originating from the secondary pattern is received by the detection system relative to the amount of light from the primary pattern. The method can comprise detecting light detected by the detection system(s) and generating a detected light signal. If multiple detection systems are used, each detection system generates a respective detected light signal.


The method can further comprise adjusting a detected light signal to yield a corrected light signal, with the corrected light signal representing detected light adjusted to partially or completely remove one or more components due to reflection or other scattering of light from an object in the touch area. The method can comprise determining the location of an object interfering with transmission of light in the touch area.


For example, multiple primary patterns may be emitted, and the location of an object can be determined by determining the direction of a shadow cast by an object interfering with light in the touch area relative to two or more detection systems. The method can comprise triangulating the location of the object in the touch area based on the direction of the shadow and spatial arrangement of the detection systems.


In some embodiments, adjusting the detected light signal comprises subtracting a detected light signal representing detected light that originated from the secondary pattern from a detected light signal representing detected light that originated from the primary pattern. This may be facilitated in some embodiments by phasing the primary and secondary patterns so that, for at least part of a time during which the primary pattern is emitted, a secondary pattern is not emitted. The detected light that originated from the respective primary and secondary illumination patterns can be separated by correlating the detected light signal to the time during which the illumination patterns were emitted.


In some embodiments, the system includes one or more display devices, the display device(s) having a surface positioned parallel to or corresponding to the touch surface. For example, an LCD display or a protective covering on the display may correspond to the touch surface. The display device can, in some embodiments, be interfaced with at least one computing device. Accordingly, the computing device(s), in conjunction with the touch detection system and displays, can provide a touch-enabled display for use in operating and/or otherwise interacting with the computing device(s).


In some embodiments, a computer system is configured to be interfaced with a touch detection system, the computer system comprising at least one computing device configured to direct a primary illumination source and a secondary illumination source to emit light across a touch surface having a touch area. The computing device(s) can further be configured to receive, from each of at least two detectors, data representing a pattern of light impinging on the detector from the touch area. The computing device(s) can be configured to perform a correction operation on the data representing the patterns of light from the touch area and, based on the data from the correction operation, determine the location of an object relative to the touch area if an object is present.


In some embodiments, the correction operation can comprise removing a component of light representative of light directly reflected from an object in the touch area. Of course, in some instances, such as when an object is not present or the object is remote from the detectors receiving the light, it will be understood that the correction operation will yield data representing a pattern of light that is the same as, or nearly the same as, the initially received pattern.


In certain implementations, the computing device(s) are configured to separate (a) a pattern of light received from the touch area that ultimately originated from the primary source and (b) a pattern of light received from the touch area and that ultimately originated from the secondary source. In performing the correction operation, pattern (b) can be subtracted from pattern (a). Patterns (b) and (a) may be identified in some embodiments based on the time at which a pattern is detected relative to the operation of the illumination sources. For instance, the primary and secondary illumination sources can be directed to emit light in a phased manner so that, for at least part of the time a primary source is active, a secondary source is not active, and vice-versa.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure including the best mode of practicing the appended claims and directed to one of ordinary skill in the art is set forth more particularly in the remainder of the specification. The specification makes reference to the following appended figures, in which use of like reference numerals in different features is intended to illustrate like or analogous components:



FIG. 1 is a diagram illustrating an exemplary touch detection system comprising primary and secondary illumination sources in a touch detection system according to some embodiments.



FIG. 2 is an exploded view illustrating the behavior of light from the primary and secondary illumination sources of FIG. 1 in closer detail.



FIGS. 3 and 4 are diagrams showing hypothetical signals representative of light received by a detection system in certain embodiments.



FIG. 5 is a diagram illustrating an exemplary optical unit comprising an illumination system and a detection system.



FIG. 6 is a flowchart showing exemplary steps in a method of touch detection.



FIG. 7 is a flowchart showing exemplary steps in a method for correcting a signal representing light received by a detector.



FIG. 8 is a block diagram illustrating an exemplary touch panel display system interfaced with an exemplary computing device.





DETAILED DESCRIPTION

Reference will now be made in detail to various and alternative exemplary embodiments and to the accompanying drawings, with like numerals representing substantially identical structural elements. Each example is provided by way of explanation, and not as a limitation. It will be apparent to those skilled in the art that modifications and variations can be made without departing from the scope or spirit of the disclosure and claims. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the instant disclosure includes modifications and variations as come within the scope of the appended claims and their equivalents.



FIG. 1 is a diagram illustrating an exemplary touch detection system 10. In this example, a touch area 31 is bounded by edges 32. For instance, touch area 31 may correspond to a touch surface, such as the top of a display or protective layer on a display to be used in a touch-enabled display system. Edges 32 may correspond to a bezel that surrounds the display area.



FIG. 1 further illustrates two optical units 30A and 30B; in practice, optical units 30A and 30B may be smaller than illustrated in FIG. 1 and may be mounted in or under a bezel at the edges of touch area 31. In this example, optical units 30A and 30B are positioned remote from one another and edges 32, for instance, at or near the upper corners of touch area 31. Of course, optical units 30A and 30B could be positioned elsewhere, and more optical units could be used in other embodiments.


Each optical unit 30 includes a primary illumination system 34 (comprising a set of diodes 43 in a fan-shaped arrangement in this example) and detection system 42, with light relayed to detection system 42 via lens 44. Primary illumination system 34 emits light in a fan-shaped pattern 36 (a “primary illumination pattern”) having an apex 38. It will be understood that each illumination system 34 is configured to emit light in a fan-shaped pattern, and pattern 36 is shown solely in conjunction with unit 30B in FIG. 1 only for purposes of clarity. The apex 38 of the pattern from each primary illumination system is aligned with the optical center 40 of the respective detection system 42.



FIG. 1 further illustrates a secondary illumination system 46 which is also configured to emit light in a fan-shaped pattern 48 (a “secondary illumination pattern”) having an apex 50. In contrast to the apex of light from a primary illumination system 34, light from a secondary illumination system 46 is not aligned with the optical center 40 of a detection system 42.


Either illumination system can comprise any suitable type or number of illumination components. For example, LEDs or diodes may be used, and in some embodiments, the illumination sources comprise infrared (IR) sources. Detection system 42 can comprise any suitable type or arrangement of components suitable for detecting light detected by the optical unit and thereby imaging the edges of the touch area. For example, detection system 42 may comprise a photodetector or photodiode. As another example, a line detector or area detector based on CMOS or other technology may be used.


Light from a primary illumination source can be emitted across touch area 31 and retroreflected so that the light returns to the point of origin. For example, primary illumination system 34 can be configured to emit light as if the light were from a point source. The returning light is then directed via an aperture to detection system 42. For example, two optical paths 52 and 54 are shown in FIG. 1. In the absence of an object on or near the touch surface, light travels from source 34, across touch area 31, and is then reflected by retroreflective components positioned along edges 32. The pattern of the light is then detected by detection system 42 and converted into a signal.


If an object interferes with the transmission of light across touch area 31, the object's location can be determined from changes in the characteristics of the light detected by detection systems 42. For example, if an object is positioned on or near the touch surface at location 33, then both exemplary optical paths 52 and 54 will be interrupted. Specifically, light from primary illumination systems 34 will reach the object at location 33, but will not be retroreflected. Put another way, the object at location 33 will cast a shadow in the retroreflected light. The optics associated with detection systems 42 are configured so that the location of the shadow relative to the detector geometry corresponds to a particular direction for the shadow. Based on the direction of the shadow as detected by detection systems 42A and 42B and the known spatial relationship between detection systems 42A and 42B, location 33 can be identified through triangulation.


Turning ahead to FIG. 3, the effect of the object on received light can be observed in signal diagram 62. In this example, signal diagram 62 represents a pattern of light received at a detection system 42 that ultimately originated from a primary illumination source. For example, diagram 62 can represent the intensity of detected light (vertical axis of 62) along the length of the detector (horizontal axis of 62). Variance 64 indicates where the intensity of the light is decreased due to the shadow of an object.


Certain problems may arise, however, depending on the position of an object relative to a detection system. FIG. 2 is an exploded view illustrating the behavior of light in some exemplary touch detection systems. In this example, an optical unit 30 comprising a primary illumination system 34 and a detection system 42 is shown, along with a generalized view of a secondary illumination system 46 and a retroreflector positioned along edges 32. Ray trace 56 indicates an optical path followed by light emitted from primary illumination source 34 as it travels across the touch area and is returned to detection system 42. As was noted above, if this path is interrupted by an object, then the shadow of the object can be used to determine the object's location within the touch area.



FIG. 2 illustrates an object 33 interrupting another optical path, with the results of the interruption illustrated as ray trace 58. Object 33 prevents retroreflection of light originating from primary illumination system and traveling along ray trace 58. However, in this example, object 33 is relatively close to optical unit 30, which can introduce additional complications. Because object 33's location is closer to primary illumination system 34, object 33 may itself reflect light from primary illumination system 34 as shown by the return path of ray trace 58. Thus, although retroreflected light is blocked by object 33, its shadow effect on detection system 42 may be reduced or eliminated. The shadow may be “filled in” by light directly reflected from the closely-positioned object. Although in this example, light is reflected from the closely-positioned object, the light may be refracted or otherwise scattered by the object so that the light is received by detection system 42. Loss of the ability to accurately identify and/or track the shadow can lead to a loss in accuracy for the touch detection system.


Turning again to FIG. 3, this effect can be seen in signal diagrams 66 and 70. Diagram 66 represents primary illumination received at the detection system when an object is closer to the illumination source/detection system than that illustrated in signal diagram 62. In diagram 66, the reduction in intensity due to object 33 is shown at 68. Although still visible in FIG. 3, intensity variance 68 is not as pronounced as variance 64 of diagram 62. Diagram 70 represents an even more extreme case, with the object moved even closer than in diagram 66. In this example, the variance illustrated at 72 is barely perceptible relative to the remainder of the signal.


Turning back to FIG. 2, the role of secondary illumination system 46 can be described in further detail. As was noted above, secondary illumination system 46 can be configured to emit light in a fan-shaped pattern with an apex not aligned with the optical center of a detection system 42. This configuration can advantageously allow for secondary illumination system 46 to be used to generate an error signal. Since secondary illumination system 46 is not aligned with a detection system 42, light retroreflected from edges 32 does not return to detection system 42 as light from primary illumination system 34 does. Rather, in the absence of an object in the touch area, less light from the secondary illumination system reaches the detection system than from the primary illumination system. In some embodiments, in the absence of an object in the touch area, little or no light from secondary illumination system 46 will reach detection system 42. Instead, the light will be retroreflected towards its origin, secondary illumination system 46.


However, if an object is in the touch area, light from secondary illumination system 46 nonetheless may be detected. Ray trace 60 in FIG. 2 represents an example of an optical path followed by light emitted from secondary illumination system 46. In this example, light is emitted from illumination system 46 and is detected by detection system 42 after being reflected from object 33. This effect is also shown in signal diagram 74 of FIG. 4. In this example, variance 76 represents an increase in signal intensity due to the reflected light from object 33 ultimately originating from secondary source 46.


The signal representing detected light that ultimately originated from the secondary illumination system can be used to correct the signal representing light that ultimately originated from the primary illumination system. For example, signal diagram 78 represents the outcome of a correction operation in which the detected pattern of light that ultimately originated from the secondary illumination system is subtracted from the detected pattern of light that ultimately originated from the primary illumination system.


In this example, signal diagram 74 has been subtracted from signal diagram 70 to yield signal diagram 78. Variance 80 of signal diagram 78 more accurately represents the shadow cast by object 33 in the retroreflected light from primary illumination system 34. Due to the correction, the shadow is no longer overwhelmed. However, since the detected pattern based on light ultimately originating from the secondary illumination system has a negligible retroreflected component, the subtraction operation has minimal or no impact on the remainder of the pattern of detected light that ultimately originated from the primary illumination system.


Detected patterns of light representing light ultimately originating from the primary and secondary sources can be isolated in any suitable manner. In some embodiments, the primary illumination system 34 and secondary illumination system 46 can be phased so that, for at least part of the time that light is emitted from primary illumination system 34, light is not emitted from secondary illumination system 46, and vice versa. The patterns representing detected light ultimately originating from the respective sources can be identified by reference to the time at which a measurement was made. The phasing can occur at any suitable rate, and may be a part of another phasing scheme (i.e. if multiple primary illumination systems are phased relative to one another, all primary illumination may be phased relative to one or more secondary illumination systems, and so on).


In some embodiments, phasing of the illumination sources and correction of the detected patterns is carried out through the use of a computer system comprising one or more computing devices. The use of the term “computing device” is meant to not only include processor-based devices, but also other arrangements of hardware (including analog components) that can provide an output signal from one or more inputs.


The computing device(s) can direct the primary and secondary illumination sources to emit light and can receive data representing a pattern of light detected by the light detectors of the system. It should be understood that the data may be in any suitable form, including, but not limited to, digital representations of the light patterns and analog signals. The computing devices can separate the signals resulting from light from the primary and secondary illumination sources and perform a correction operation on the data representing the patterns of light detected by each detector. For instance, the correction operation can comprise the subtraction operation noted above.


In some circumstances, the “correction” may have little or no effect on the actual signal used to triangulate an object's position. For instance, when an object is relatively far from an illumination/detection system, the effect of light reflected from the object on the pattern of detected light from the primary illumination system will usually be minimal or nonexistent. If the secondary illumination system is properly positioned, the amount of detected light that ultimately originated from the secondary illumination system should also be minimal or nonexistent, resulting in a “correction” of little to no magnitude where none is needed.



FIG. 5 is a diagram illustrating an exemplary optical unit 130 comprising an illumination system 134 and a detection system 142. Optical unit 130 may be suitable for use in some embodiments of the present subject matter. Light is returned via an aperture in wall 145 via lens 144. Optical unit 130 includes a set of diffuser optics 147 which may advantageously reduce the number of sources required to obtain the fan-shaped pattern. Diffuser optics 147 may comprise, for example, a light shaping diffuser, such as a diffuser available from Luminit LLC, 20600 Gramercy Place Building 203 Torrance, Calif., USA. Similar diffuser optics could be used in a secondary illumination system, as well.



FIG. 6 is a flowchart showing exemplary steps in a method 200 for determining location of an object relative to a touch area. At step 202, a primary pattern of light is emitted across a touch surface and centered on an optical axis of a detection system. In some embodiments, step 202 represents emitting a primary pattern of light from each of a plurality of primary illumination systems, each primary illumination system emitting a pattern centered on an optical axis of a respective detection system.


At step 204, a secondary pattern of light is emitted across the touch surface, with the secondary pattern emitted so as to be off-center relative to the detection axis of a detection system. If multiple primary illumination systems and associated detection systems are used, the secondary pattern may be off-center relative to the optical axis of all the detection systems for which the secondary pattern will be used to generate a pattern of detected light for use in error correction. Multiple secondary patterns may be emitted or a single secondary pattern may be used for purposes of multiple detection systems.


As was noted above, in some embodiments, light in the primary pattern(s) and secondary pattern or patterns can be phased to facilitate separation of patterns of detected light. Thus, steps 202 and 204 may be carried out so that light in the primary and secondary patterns are emitted at different times from one another.


At step 206, light received by the detection system(s) is detected and one or more detected light signals is generated. As was noted above, multiple detection systems may be used for triangulation purposes; in such cases, a detected light signal is generated from each respective detection system.


Each detected light signal represents the pattern of light detected by the detection system, and may be in any suitable form. For instance, an analog or digital intensity signal may be provided. If a linear detector is used, the signal can represent the intensity of light detected along the length of the detector. Although several examples herein relate to a line detector, it will be understood that area detectors/cameras could be used as well.


Step 208 represents adjusting each detected light signal to obtain a corrected light signal. Use of the term “corrected” and “adjust” is not meant to imply that the detected light signal must always be changed. Instead, as was mentioned previously, a “corrected” light signal may not vary significantly or at all from the detected light signal in some circumstances, such as when an object is positioned in the touch area but far from the detector optics.


Ultimately, the degree of change will depend on factors including the positioning of the object (if any) in the touch area and its resulting effect on transmission of light across the touch area. Moreover, in some embodiments, each detection system has its own detected light signal that is adjusted based on an error signal generated by the same detection system. For instance, in a system comprising multiple detection systems, if an object is much closer to a first detector than a second detector, the correction to a pattern of light detected at the first detector may be much larger than the correction to a pattern of light detected at the second detector.


At step 210, the location of an object (if any) interfering with transmission across the touch area is determined using the corrected light signals from one or more detection systems. For example, the triangulation principle may be used to determine the location of an object based on the direction of at least two shadows cast by the object due to the object blocking or preventing retroreflection of light emitted from the primary illumination systems. Since the triangulation is based on the corrected signals, accuracy is improved as compared to signals that include a component of light reflected from the object itself.



FIG. 7 is a flowchart showing exemplary steps in a method 212 for adjusting a detected light signal to obtain a corrected light signal. At 214, a first pattern is detected, the first pattern comprising light received by a detection system while the primary illumination system emits light. At 216, a second pattern is detected, the second pattern comprising light received by the detection system while the secondary illumination system emits light. At 218, the second pattern is subtracted from the first pattern. For example, if the patterns are represented as intensity signals, the intensity signals for corresponding areas of the detector are subtracted. If the patterns are represented as rows or grids of pixels, then the pixel values for the second pattern can be subtracted from the pixel values for the first pattern.



FIG. 8 is a block diagram illustrating an exemplary touch detection system 310 as interfaced to an exemplary display and computing device 301 to yield a touch screen system 300. Computing device 301 may be functionally coupled to touch screen system 310, by hardwire and/or wireless connections. Computing device 301 may be any suitable computing device, including, but not limited to a processor-driven device such as a personal computer, a laptop computer, a handheld computer, a personal digital assistant (PDA), a digital and/or cellular telephone, a pager, a video game device, etc. These and other types of processor-driven devices will be apparent to those of skill in the art. As used in this discussion, the term “processor” can refer to any type of programmable logic device, including a microprocessor or any other type of similar device.


Computing device 301 may include, for example, a processor 302, a system memory 304, and various system interface components 306. The processor 302, system memory 304, a digital signal processing (DSP) unit 305 and system interface components 306 may be functionally connected via a system bus 308. The system interface components 306 may enable the processor 302 to communicate with peripheral devices. For example, a storage device interface 310 can provide an interface between the processor 302 and a storage device 311 (e.g., removable and/or non-removable), such as a disk drive. A network interface 312 may also be provided as an interface between the processor 302 and a network communications device (not shown), so that the computing device 301 can be connected to a network.


A display screen interface 314 can provide an interface between the processor 302 and display device of the touch screen system. For instance, interface 314 may provide data in a suitable format for rendering by the display device over a DVI, VGA, or other suitable connection.


In this example, touch screen 100 is bounded by edges 332A, 332B, 332C, and 332D. For instance, a bezel may be positioned along each edge to protect the edges of the screen. In this example, the edges of touch area 331 correspond to edges 332. As was noted above, a touch surface may correspond to the outer surface of the display or may correspond to the outer surface of a protective material positioned on the display.



FIG. 8 further illustrates a plurality of optical units 330, in this example units 330A and 330B, positioned in the corners of the display along edge 332D. Optical units 330A and 330B comprise a primary illumination system configured to emit a fan-shaped pattern of light centered on an optical axis of a detection system for each respective optical unit. FIG. 8 also illustrates a secondary illumination system 346 positioned along edge 332D between optical units 330A and 330B.


One or more input/output (“I/O”) port interfaces 316 may be provided as an interface between the processor 302 and various input and/or output devices. For example, the detection systems and primary illumination systems of each optical unit 330 may be connected to the computing device 301 and may provide input signals representing patterns of light detected by the detectors to the processor 302 via an input port interface 316. Similarly, the primary illumination systems of the optical units 330 and the secondary illumination system 346 may be connected to the computing device 301 and may receive output signals from the processor 302 via an output port interface 316.


A number of program modules may be stored in the system memory 304, any other computer-readable media associated with the storage device 311 (e.g., a hard disk drive), and/or any other data source accessible by computing device 301. The program modules may include an operating system 317. The program modules may also include an information display program module 319 comprising computer-executable instructions for displaying images or other information on a display screen. Other aspects of the exemplary embodiments of the invention may be embodied in a touch screen control program module 321 for controlling the primary and secondary illumination systems, detector assemblies, and/or for calculating touch locations and discerning interaction states relative to the touch screen based on signals received from the detectors.


In some embodiments, a DSP unit is included for performing some or all of the functionality ascribed to the Touch Panel Control program module 321. As is known in the art, a DSP unit 305 may be configured to perform many types of calculations including filtering, data sampling, and triangulation and other calculations and to control the modulation and/or other characteristics of the illumination systems. The DSP unit 305 may include a series of scanning imagers, digital filters, and comparators implemented in software. The DSP unit 305 may therefore be programmed for calculating touch locations and discerning other interaction characteristics as known in the art.


The processor 302, which may be controlled by the operating system 317, can be configured to execute the computer-executable instructions of the various program modules. Methods in accordance with one or more aspects of the present subject matter may be carried out due to execution of such instructions. Furthermore, the images or other information displayed by the information display program module 319 may be stored in one or more information data files 323, which may be stored on any computer readable medium associated with or accessible by the computing device 301.


When a user touches on or near the touch screen, a variation will occur in the intensity of the energy beams that are directed across the surface of the touch screen in one or more detection planes. The detectors are configured to detect the intensity of the energy beams reflected or otherwise scattered across the surface of the touch screen and should be sensitive enough to detect variations in such intensity. Information signals produced by the detector assemblies and/or other components of the touch screen display system may be used by the computing device 301 to determine the location of the touch relative to the touch area 331. Computing device 301 may also determine the appropriate response to a touch on or near the screen.


In accordance with some implementations, data from the detection system may be periodically processed by the computing device 301 to monitor the typical intensity level of the energy beams directed along the detection plane(s) when no touch is present. This allows the system to account for, and thereby reduce the effects of, changes in ambient light levels and other ambient conditions. The computing device 301 may optionally increase or decrease the intensity of the energy beams emitted by the primary and/or secondary illumination systems as needed. Subsequently, if a variation in the intensity of the energy beams is detected by the detection systems, computing device 301 can process this information to determine that a touch has occurred on or near the touch screen.


The location of a touch relative to the touch screen may be determined, for example, by processing information received from each detection system and performing one or more well-known triangulation calculations. The location of the area of decreased energy beam intensity relative to each detection system be determined in relation to the coordinates of one or more pixels, or virtual pixels, of the display screen. The location of the area of increased or decreased energy beam intensity relative to each detector may then be triangulated, based on the geometry between the detection systems to determine the actual location of the touch relative to the touch screen. Any such calculations to determine touch location can include algorithms to compensation for discrepancies (e.g., lens distortions, ambient conditions, damage to or impediments on the touch screen or other touched surface, etc.), as applicable.


The above examples referred to various illumination sources and it should be understood that any suitable radiation source can be used. For instance, light emitting diodes (LEDs) may be used to generate infrared (IR) radiation that is directed over one or more optical paths in the detection plane. However, other portions of the EM spectrum or even other types of energy may be used as applicable with appropriate sources and detection systems.


Several of the above examples were presented in the context of a touch-enabled display. However, it will be understood that the principles disclosed herein could be applied even in the absence of a display screen when the position of an object relative to an area is to be tracked.


The various systems discussed herein are not limited to any particular hardware architecture or configuration. As was noted above, a computing device can include any suitable arrangement of components that provide a result conditioned on one or more inputs. Suitable computing devices include multipurpose microprocessor-based computer systems accessing stored software, but also application-specific integrated circuits and other programmable logic, and combinations thereof. Any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein in software.


Embodiments of the methods disclosed herein may be executed by one or more suitable computing devices. Such system(s) may comprise one or more computing devices adapted to perform one or more embodiments of the methods disclosed herein. As noted above, such devices may access one or more computer-readable media that embody computer-readable instructions which, when executed by at least one computer, cause the at least one computer to implement one or more embodiments of the methods of the present subject matter. When software is utilized, the software may comprise one or more components, processes, and/or applications. Additionally or alternatively to software, the computing device(s) may comprise circuitry that renders the device(s) operative to implement one or more of the methods of the present subject matter.


Any suitable computer-readable medium or media may be used to implement or practice the presently-disclosed subject matter, including, but not limited to, diskettes, drives, magnetic-based storage media, optical storage media, including disks (including CD-ROMS, DVD-ROMS, and variants thereof), flash, RAM, ROM, and other memory devices, and the like.


While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.

Claims
  • 1. A touch detection system, comprising: a light detection system having an optical center and configured to detect patterns of light received from a touch area;a retroreflector positioned along at least one edge of a touch surface in the touch area;a primary illumination system configured to emit light across the touch surface towards the retroreflector so that at least some of the light ultimately originating from the primary illumination system is retroreflected to the light detection system in the absence of an object in the touch area;a secondary illumination system configured to emit light across the touch surface so that, in the presence of the object in the touch area at least some of the light ultimately originating from the secondary illumination system is reflected by the object to the light detection system; andat least one computing device interfaced with the light detection system and configured to determine a position at which the object present in the touch area has interfered with light traveling across the touch surface by: generating an error signal based on a secondary detected pattern of the light ultimately originating from the secondary illumination system, wherein the error signal is indicative of the object being sufficiently close to the light detection system to cause a variance in a primary detected pattern of the light ultimately originating from the primary illumination system, andsubtracting the intensity of the error signal from the intensity of the primary detected pattern.
  • 2. The touch detection system set forth in claim 1, wherein: the primary illumination system is positioned remote from the retroreflector and emits light in a fan-shaped pattern having a first apex, the first apex aligned with the optical center of the light detection system; andthe secondary illumination system is positioned remote from the retroreflector and configured to emit light across the touch surface in a fan-shaped pattern having a second apex, the second apex not aligned with the optical center of the light detection system.
  • 3. The touch detection system set forth in claim 1, wherein the light detection system and the primary illumination system are incorporated into a single optical unit and the touch detection system comprises at least two of the optical units, each optical unit positioned remote from the retroreflector and each other.
  • 4. The touch detection system set forth in claim 3, wherein, for each optical unit, the at least one computing device is configured to: identify the primary detected pattern; andidentify the secondary detected pattern.
  • 5. The touch detection system set forth in claim 4, wherein the at least one computing device is configured to identify a light pattern as being either the primary detected pattern or the secondary detected pattern based on the time the light pattern was detected relative to the time at which the primary and secondary illumination systems were emitting light.
  • 6. The touch detection system set forth in claim 1, wherein the primary illumination system comprises a plurality of light sources configured to mimic the light emission of a point source.
  • 7. The touch detection system set forth in claim 1, wherein the primary illumination system and the secondary illumination system are phased such that, for at least part of the time that the secondary illumination system is emitting light, the primary illumination system is not emitting light.
  • 8. A method of detecting a position of an object in a touch area, the method comprising: emitting light in a primary pattern towards one or more edges defining the touch area of a touch surface, the primary pattern emitted so that, in the absence of the object in the touch area, at least some of the light will be retroreflected to a detection system;emitting light in a secondary pattern across the touch surface, the secondary pattern emitted so that, in the presence of the object in the touch area, at least some of the light from the secondary pattern will be reflected to the detection system;detecting light received by the detection system and generating a detected light signal;adjusting the detected light signal to yield a corrected light signal based on the intensity of detected light that ultimately originated from the secondary pattern by: generating an error signal based on a secondary light signal representing light ultimately originating from the secondary pattern, wherein the error signal is indicative of the object being sufficiently close to the light detection system to cause a variance in a primary light signal representing light ultimately originating from the primary pattern, andsubtracting the error signal from the primary light signal; anddetermining, from the corrected light signal, that the object is interfering with the transmission of light in the touch area and a location of the object relative to the touch area.
  • 9. The method set forth in claim 8, wherein, for at least part of a time the secondary pattern is emitted, the primary pattern is not emitted.
  • 10. The method set forth in claim 8, wherein determining the location of the object relative to the touch area comprises: identifying the direction of a shadow cast by the object at first and second detector locations; andtriangulating the location of the object based on the direction of the shadow relative to each detector and the spatial arrangement of the first and second detector locations.
  • 11. The method set forth in claim 8, wherein emitting light in the primary pattern comprises emitting light in a primary pattern from a plurality of primary sources, each source associated with a respective detection system so that, in the absence of the object in the touch area, at least some of the light from each source will be retroreflected to its associated detection system.
  • 12. The method set forth in claim 8, wherein subtracting the error signal from the primary light signal comprises subtracting a secondary pixel value corresponding to the secondary pattern from a primary pixel value corresponding to the primary pattern.
  • 13. The method set forth in claim 8, wherein subtracting the error signal from the primary light signal comprises subtracting a secondary intensity signal corresponding to the secondary pattern from a primary intensity signal corresponding to the primary pattern.
  • 14. A computer system configured to be interfaced with a touch detection system, the computer system comprising at least one computing device configured to: direct a primary illumination source and a secondary illumination source to emit light across a touch surface having a touch area;receive, from each of at least two detectors, data representing a pattern of light received from the touch area by each detector;perform a correction operation on the data representing each pattern of received light, wherein the correction operation comprises: generating an error signal based on a component of light representative of light directly reflected from an object in the touch area, wherein the error signal is indicative of the object being sufficiently close to the light detection system to cause a variance in the pattern of light received from the touch area, andsubtracting the intensity of the error signal from the intensity of a signal representing the pattern of light received from the touch area; andbased on correction data resulting from the correction operation, determine a location of the object relative to the touch area.
  • 15. The computer system set forth in claim 14, wherein the at least one computing device is configured to direct the primary illumination source and secondary illumination source to emit light in a phased manner.
  • 16. The computer system set forth in claim 15, wherein the at least one computing device is configured to: separate a first pattern of light returned from the touch area while the primary illumination source is emitting light and a second pattern of light returned from the touch area while the secondary illumination source is emitting light; andin performing a correction operation, subtract the second pattern from the first pattern.
  • 17. The computer system set forth in claim 16, wherein the at least one computing device is configured to, in separating the first pattern and the second pattern, correlate the first pattern to an interval during which the primary illumination source is emitting light and correlate the second pattern to an interval during which the secondary illumination source is emitting light.
Priority Claims (1)
Number Date Country Kind
561037 Aug 2007 NZ national
US Referenced Citations (520)
Number Name Date Kind
844152 Little Feb 1907 A
2407680 Palmquist et al. Sep 1946 A
2769374 Sick Nov 1956 A
3025406 Stewart et al. Mar 1962 A
3128340 Harmon Apr 1964 A
3187185 Milnes Jun 1965 A
3360654 Muller Dec 1967 A
3478220 Milroy Nov 1969 A
3563771 Tung Feb 1971 A
3613066 Cooreman Oct 1971 A
3764813 Clement et al. Oct 1973 A
3775560 Ebeling et al. Nov 1973 A
3810804 Rowland May 1974 A
3830682 Rowland Aug 1974 A
3857022 Rebane et al. Dec 1974 A
3860754 Johnson et al. Jan 1975 A
4107522 Walter Aug 1978 A
4144449 Funk et al. Mar 1979 A
4243618 Van Arnam Jan 1981 A
4243879 Carroll et al. Jan 1981 A
4247767 O'Brien et al. Jan 1981 A
4329037 Caviness May 1982 A
4420261 Barlow et al. Dec 1983 A
4459476 Weissmueller et al. Jul 1984 A
4468694 Edgar Aug 1984 A
4486363 Pricone et al. Dec 1984 A
4507557 Tsikos et al. Mar 1985 A
4542375 Alles et al. Sep 1985 A
4550250 Mueller et al. Oct 1985 A
4553842 Griffin Nov 1985 A
4558313 Garwin et al. Dec 1985 A
4601861 Pricone et al. Jul 1986 A
4672364 Lucas Jun 1987 A
4673918 Adler et al. Jun 1987 A
4688933 Lapeyre Aug 1987 A
4703316 Sherbeck Oct 1987 A
4710760 Kasday Dec 1987 A
4737631 Sasaki et al. Apr 1988 A
4742221 Sasaki et al. May 1988 A
4746770 McAvinney May 1988 A
4762990 Caswell et al. Aug 1988 A
4766424 Adler et al. Aug 1988 A
4782328 Denlinger Nov 1988 A
4811004 Person et al. Mar 1989 A
4818826 Kimura Apr 1989 A
4820050 Griffin Apr 1989 A
4822145 Staelin Apr 1989 A
4831455 Ishikawa et al. May 1989 A
4851664 Rieger Jul 1989 A
4868551 Arditty et al. Sep 1989 A
4868912 Doering Sep 1989 A
4888479 Tamaru Dec 1989 A
4893120 Doering et al. Jan 1990 A
4916308 Meadows Apr 1990 A
4928094 Smith May 1990 A
4943806 Masters et al. Jul 1990 A
4980547 Griffin Dec 1990 A
4990901 Beiswenger Feb 1991 A
5025314 Tang et al. Jun 1991 A
5025411 Tallman et al. Jun 1991 A
5043751 Rice Aug 1991 A
5097516 Amir Mar 1992 A
5103085 Zimmerman Apr 1992 A
5103249 Keene Apr 1992 A
5105186 May Apr 1992 A
5109435 Lo et al. Apr 1992 A
5130794 Ritchey Jul 1992 A
5140647 Ise et al. Aug 1992 A
5148015 Dolan Sep 1992 A
5162618 Knowles Nov 1992 A
5162783 Moreno Nov 1992 A
5164714 Wehrer Nov 1992 A
5168531 Sigel Dec 1992 A
5177328 Ito et al. Jan 1993 A
5179369 Person et al. Jan 1993 A
5196835 Blue et al. Mar 1993 A
5196836 Williams Mar 1993 A
5200851 Coderre et al. Apr 1993 A
5200861 Moskovich Apr 1993 A
5233502 Beatty et al. Aug 1993 A
5239152 Caldwell et al. Aug 1993 A
5239373 Tang et al. Aug 1993 A
5272470 Zetts Dec 1993 A
5317140 Dunthorn May 1994 A
5359155 Helser Oct 1994 A
5374971 Clapp et al. Dec 1994 A
5414413 Tamaru et al. May 1995 A
5422494 West et al. Jun 1995 A
5448263 Martin Sep 1995 A
5457289 Huang et al. Oct 1995 A
5483261 Yasutake Jan 1996 A
5483603 Luke et al. Jan 1996 A
5484966 Segen Jan 1996 A
5490655 Bates Feb 1996 A
5502568 Ogawa et al. Mar 1996 A
5525764 Junkins et al. Jun 1996 A
5528263 Platzker et al. Jun 1996 A
5528290 Saund Jun 1996 A
5537107 Funado Jul 1996 A
5541372 Baller et al. Jul 1996 A
5554828 Primm Sep 1996 A
5581276 Cipolla et al. Dec 1996 A
5581637 Cass et al. Dec 1996 A
5591945 Kent Jan 1997 A
5594469 Freeman et al. Jan 1997 A
5594502 Bito et al. Jan 1997 A
5617312 Iura et al. Apr 1997 A
5638092 Eng et al. Jun 1997 A
5670755 Kwon Sep 1997 A
5686942 Ball Nov 1997 A
5698845 Kodama et al. Dec 1997 A
5712024 Okuzaki et al. Jan 1998 A
5729704 Stone et al. Mar 1998 A
5734375 Knox et al. Mar 1998 A
5736686 Perret, Jr. et al. Apr 1998 A
5737740 Henderson et al. Apr 1998 A
5739479 Davis-Cannon et al. Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5764223 Chang et al. Jun 1998 A
5771039 Ditzik Jun 1998 A
5784054 Armstrong et al. Jul 1998 A
5785439 Bowen Jul 1998 A
5786810 Knox et al. Jul 1998 A
5790910 Haskin Aug 1998 A
5801704 Oohara et al. Sep 1998 A
5804773 Wilson et al. Sep 1998 A
5818421 Ogino et al. Oct 1998 A
5818424 Korth Oct 1998 A
5819201 DeGraaf Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5831602 Sato et al. Nov 1998 A
5877459 Prater Mar 1999 A
5909210 Knox et al. Jun 1999 A
5911004 Ohuchi et al. Jun 1999 A
5914709 Graham et al. Jun 1999 A
5920342 Umeda et al. Jul 1999 A
5936615 Waters Aug 1999 A
5936770 Nestegard et al. Aug 1999 A
5940065 Babb et al. Aug 1999 A
5943783 Jackson Aug 1999 A
5963199 Kato et al. Oct 1999 A
5982352 Pryor Nov 1999 A
5988645 Downing Nov 1999 A
5990874 Tsumura et al. Nov 1999 A
6002808 Freeman Dec 1999 A
6008798 Mato, Jr. et al. Dec 1999 A
6015214 Heenan et al. Jan 2000 A
6020878 Robinson Feb 2000 A
6031524 Kunert Feb 2000 A
6031531 Kimble Feb 2000 A
6061177 Fujimoto May 2000 A
6067080 Holtzman May 2000 A
6075905 Herman et al. Jun 2000 A
6076041 Watanabe Jun 2000 A
6091406 Kambara et al. Jul 2000 A
6100538 Ogawa Aug 2000 A
6104387 Chery et al. Aug 2000 A
6118433 Jenkin et al. Sep 2000 A
6122865 Branc et al. Sep 2000 A
6128003 Smith et al. Oct 2000 A
6141000 Martin Oct 2000 A
6147678 Kumar et al. Nov 2000 A
6153836 Goszyk Nov 2000 A
6161066 Wright et al. Dec 2000 A
6179426 Rodriquez, Jr. et al. Jan 2001 B1
6188388 Arita et al. Feb 2001 B1
6191773 Maruno et al. Feb 2001 B1
6208329 Ballare Mar 2001 B1
6208330 Hasegawa et al. Mar 2001 B1
6209266 Branc et al. Apr 2001 B1
6215477 Morrison et al. Apr 2001 B1
6222175 Krymski Apr 2001 B1
6226035 Korein et al. May 2001 B1
6229529 Yano et al. May 2001 B1
6252989 Geisler et al. Jun 2001 B1
6256033 Nguyen Jul 2001 B1
6262718 Findlay et al. Jul 2001 B1
6285359 Ogasawara et al. Sep 2001 B1
6310610 Beaton et al. Oct 2001 B1
6320597 Ieperen Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6326954 Van Ieperen Dec 2001 B1
6328270 Elberbaum Dec 2001 B1
6335724 Takekawa et al. Jan 2002 B1
6337681 Martin Jan 2002 B1
6339748 Hiramatsu Jan 2002 B1
6346966 Toh Feb 2002 B1
6352351 Ogasahara et al. Mar 2002 B1
6353434 Akebi et al. Mar 2002 B1
6359612 Peter et al. Mar 2002 B1
6362468 Murakami et al. Mar 2002 B1
6377228 Jenkin et al. Apr 2002 B1
6384743 Vanderheiden May 2002 B1
6406758 Bottari et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6414673 Wood et al. Jul 2002 B1
6421042 Omura et al. Jul 2002 B1
6427389 Branc et al. Aug 2002 B1
6429856 Omura et al. Aug 2002 B1
6429857 Masters et al. Aug 2002 B1
6480187 Sano et al. Nov 2002 B1
6496122 Sampsell Dec 2002 B2
6497608 Ho et al. Dec 2002 B2
6498602 Ogawa Dec 2002 B1
6501461 Holtzman Dec 2002 B2
6504532 Ogasahara et al. Jan 2003 B1
6507339 Tanaka Jan 2003 B1
6512838 Rafii et al. Jan 2003 B1
6517266 Saund Feb 2003 B2
6518600 Shaddock Feb 2003 B1
6518960 Omura et al. Feb 2003 B2
6522830 Yamagami Feb 2003 B2
6529189 Colgan et al. Mar 2003 B1
6530664 Vanderwerf et al. Mar 2003 B2
6531999 Trajkovic Mar 2003 B1
6532006 Takekawa et al. Mar 2003 B1
6537673 Sada et al. Mar 2003 B2
6540366 Keenan et al. Apr 2003 B2
6540679 Slayton et al. Apr 2003 B2
6545669 Kinawi et al. Apr 2003 B1
6559813 DeLuca et al. May 2003 B1
6563491 Omura May 2003 B1
6567078 Ogawa May 2003 B2
6567121 Kuno May 2003 B1
6570103 Saka et al. May 2003 B1
6570612 Saund et al. May 2003 B1
6577299 Schiller et al. Jun 2003 B1
6587099 Takekawa Jul 2003 B2
6590568 Astala et al. Jul 2003 B1
6594023 Omura et al. Jul 2003 B1
6597348 Yamazaki et al. Jul 2003 B1
6597508 Seino et al. Jul 2003 B2
6603867 Sugino et al. Aug 2003 B1
6608619 Omura et al. Aug 2003 B2
6614422 Rafii et al. Sep 2003 B1
6624833 Kumar et al. Sep 2003 B1
6626718 Hiroki Sep 2003 B2
6630922 Fishkin et al. Oct 2003 B2
6633328 Byrd et al. Oct 2003 B1
6650318 Arnon Nov 2003 B1
6650822 Zhou Nov 2003 B1
6664952 Iwamoto et al. Dec 2003 B2
6670985 Karube et al. Dec 2003 B2
6674424 Fujioka Jan 2004 B1
6683584 Ronzani et al. Jan 2004 B2
6690357 Dunton et al. Feb 2004 B1
6690363 Newton Feb 2004 B2
6690397 Daignault, Jr. Feb 2004 B1
6710770 Tomasi et al. Mar 2004 B2
6714311 Hashimoto Mar 2004 B2
6720949 Pryor et al. Apr 2004 B1
6727885 Ishino et al. Apr 2004 B1
6736321 Tsikos et al. May 2004 B2
6738051 Boyd et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6741267 Leperen May 2004 B1
6747636 Martin Jun 2004 B2
6756910 Ohba et al. Jun 2004 B2
6760009 Omura et al. Jul 2004 B2
6760999 Branc et al. Jul 2004 B2
6767102 Heenan et al. Jul 2004 B1
6774889 Zhang et al. Aug 2004 B1
6803906 Morrison et al. Oct 2004 B1
6828959 Takekawa et al. Dec 2004 B2
6864882 Newton Mar 2005 B2
6909425 Matsuda et al. Jun 2005 B2
6911972 Brinjes Jun 2005 B2
6919880 Morrison et al. Jul 2005 B2
6927384 Reime et al. Aug 2005 B2
6933981 Kishida et al. Aug 2005 B1
6947029 Katagiri et al. Sep 2005 B2
6947032 Morrison et al. Sep 2005 B2
6952202 Hirabayashi Oct 2005 B2
6954197 Morrison et al. Oct 2005 B2
6972401 Akitt et al. Dec 2005 B2
6972753 Kimura et al. Dec 2005 B1
7002555 Jacobsen et al. Feb 2006 B1
7007236 Dempski et al. Feb 2006 B2
7015418 Cahill et al. Mar 2006 B2
7030861 Westerman et al. Apr 2006 B1
7057647 Monroe Jun 2006 B1
7058204 Hildreth et al. Jun 2006 B2
7075054 Iwamoto et al. Jul 2006 B2
7084857 Lieberman et al. Aug 2006 B2
7084868 Farag et al. Aug 2006 B2
7098392 Sitrick et al. Aug 2006 B2
7113174 Takekawa et al. Sep 2006 B1
7121470 McCall et al. Oct 2006 B2
7133032 Cok Nov 2006 B2
7151533 Van Ieperen Dec 2006 B2
7176904 Satoh Feb 2007 B2
7184030 McCharles et al. Feb 2007 B2
7187489 Miles Mar 2007 B2
7190496 Klug et al. Mar 2007 B2
7202860 Ogawa Apr 2007 B2
7227526 Hildreth et al. Jun 2007 B2
7230608 Cok Jun 2007 B2
7232986 Worthington et al. Jun 2007 B2
7236132 Lin et al. Jun 2007 B1
7236154 Kerr et al. Jun 2007 B1
7236162 Morrison et al. Jun 2007 B2
7237937 Kawashima et al. Jul 2007 B2
7242388 Lieberman et al. Jul 2007 B2
7265748 Ryynanen Sep 2007 B2
7268692 Lieberman Sep 2007 B1
7274356 Ung et al. Sep 2007 B2
7283126 Leung Oct 2007 B2
7283128 Sato Oct 2007 B2
7289113 Martin Oct 2007 B2
7302156 Lieberman et al. Nov 2007 B1
7305368 Lieberman et al. Dec 2007 B2
7330184 Leung Feb 2008 B2
7333094 Lieberman et al. Feb 2008 B2
7333095 Liberman et al. Feb 2008 B1
7355593 Hill et al. Apr 2008 B2
7372456 McLintock May 2008 B2
7375720 Tanaka May 2008 B2
RE40368 Arnon Jun 2008 E
7411575 Hill et al. Aug 2008 B2
7414617 Ogawa Aug 2008 B2
7432914 Kobayashi et al. Oct 2008 B2
7460110 Ung et al. Dec 2008 B2
7477241 Lieberman et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7492357 Morrison et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7515138 Sullivan Apr 2009 B2
7515141 Kobayashi Apr 2009 B2
7522156 Sano et al. Apr 2009 B2
7538759 Newton May 2009 B2
7557935 Baruch Jul 2009 B2
7559664 Walleman et al. Jul 2009 B1
7619617 Morrison et al. Nov 2009 B2
7629967 Newton Dec 2009 B2
7692625 Morrison et al. Apr 2010 B2
7751671 Newton et al. Jul 2010 B1
7755613 Morrison et al. Jul 2010 B2
7777732 Herz et al. Aug 2010 B2
7781722 Lieberman et al. Aug 2010 B2
20010019325 Takekawa Sep 2001 A1
20010022579 Hirabayashi Sep 2001 A1
20010026268 Ito Oct 2001 A1
20010033274 Ong Oct 2001 A1
20010048169 Nilsen et al. Dec 2001 A1
20010050677 Tosaya Dec 2001 A1
20010055006 Sano et al. Dec 2001 A1
20020008692 Omura et al. Jan 2002 A1
20020015159 Hashimoto Feb 2002 A1
20020036617 Pryor Mar 2002 A1
20020041327 Hildreth et al. Apr 2002 A1
20020050979 Oberoi et al. May 2002 A1
20020064382 Hildreth et al. May 2002 A1
20020067922 Harris Jun 2002 A1
20020075243 Newton Jun 2002 A1
20020080123 Kennedy et al. Jun 2002 A1
20020118177 Newton Aug 2002 A1
20020145595 Satoh Oct 2002 A1
20020145596 Vardi Oct 2002 A1
20020163505 Takekawa Nov 2002 A1
20020163530 Takakura et al. Nov 2002 A1
20030001825 Omura et al. Jan 2003 A1
20030025951 Pollard et al. Feb 2003 A1
20030034439 Reime et al. Feb 2003 A1
20030043116 Morrison et al. Mar 2003 A1
20030046401 Abbott et al. Mar 2003 A1
20030063073 Geaghan et al. Apr 2003 A1
20030071858 Morohoshi Apr 2003 A1
20030085871 Ogawa May 2003 A1
20030095112 Kawano et al. May 2003 A1
20030137494 Tulbert Jul 2003 A1
20030142880 Hyodo Jul 2003 A1
20030147016 Lin et al. Aug 2003 A1
20030151532 Chen et al. Aug 2003 A1
20030151562 Kulas Aug 2003 A1
20030156118 Ayinde Aug 2003 A1
20030161524 King Aug 2003 A1
20030227492 Wilde et al. Dec 2003 A1
20040001144 McCharles et al. Jan 2004 A1
20040012573 Morrison et al. Jan 2004 A1
20040021633 Rajkowski Feb 2004 A1
20040031779 Cahill et al. Feb 2004 A1
20040032401 Nakazawa et al. Feb 2004 A1
20040046749 Ikeda Mar 2004 A1
20040051709 Ogawa et al. Mar 2004 A1
20040108990 Lieberman et al. Jun 2004 A1
20040125086 Hagermoser et al. Jul 2004 A1
20040149892 Akitt et al. Aug 2004 A1
20040150630 Hinckley et al. Aug 2004 A1
20040169639 Pate et al. Sep 2004 A1
20040178993 Morrison et al. Sep 2004 A1
20040178997 Gillespie et al. Sep 2004 A1
20040179001 Morrison et al. Sep 2004 A1
20040189720 Wilson et al. Sep 2004 A1
20040201575 Morrison Oct 2004 A1
20040204129 Payne et al. Oct 2004 A1
20040218479 Iwamoto et al. Nov 2004 A1
20040221265 Leung et al. Nov 2004 A1
20040252091 Ma et al. Dec 2004 A1
20050020612 Gericke Jan 2005 A1
20050030287 Sato Feb 2005 A1
20050052427 Wu et al. Mar 2005 A1
20050057524 Hill et al. Mar 2005 A1
20050077452 Morrison et al. Apr 2005 A1
20050083308 Homer et al. Apr 2005 A1
20050104860 McCreary et al. May 2005 A1
20050128190 Ryynanen Jun 2005 A1
20050151733 Sander et al. Jul 2005 A1
20050156900 Hill et al. Jul 2005 A1
20050178953 Worthington et al. Aug 2005 A1
20050190162 Newton Sep 2005 A1
20050218297 Suda et al. Oct 2005 A1
20050241929 Auger et al. Nov 2005 A1
20050243070 Ung et al. Nov 2005 A1
20050248539 Morrison et al. Nov 2005 A1
20050248540 Newton Nov 2005 A1
20050270781 Marks Dec 2005 A1
20050276448 Pryor Dec 2005 A1
20060012579 Sato Jan 2006 A1
20060022962 Morrison et al. Feb 2006 A1
20060028456 Kang Feb 2006 A1
20060033751 Keely et al. Feb 2006 A1
20060034486 Morrison et al. Feb 2006 A1
20060070187 Chilson Apr 2006 A1
20060132432 Bell Jun 2006 A1
20060139314 Bell Jun 2006 A1
20060152500 Weng Jul 2006 A1
20060158437 Blythe et al. Jul 2006 A1
20060170658 Nakamura et al. Aug 2006 A1
20060197749 Popovich Sep 2006 A1
20060202953 Pryor et al. Sep 2006 A1
20060202974 Thielman Sep 2006 A1
20060227120 Eikman Oct 2006 A1
20060232568 Tanaka et al. Oct 2006 A1
20060232830 Kobayashi Oct 2006 A1
20060244734 Hill et al. Nov 2006 A1
20060274067 Hidai Dec 2006 A1
20060279558 Van Delden et al. Dec 2006 A1
20060284858 Rekimoto Dec 2006 A1
20070002028 Morrison et al. Jan 2007 A1
20070019103 Lieberman et al. Jan 2007 A1
20070059520 Hatin et al. Mar 2007 A1
20070075648 Blythe et al. Apr 2007 A1
20070075982 Morrison et al. Apr 2007 A1
20070089915 Ogawa et al. Apr 2007 A1
20070116333 Dempski et al. May 2007 A1
20070126755 Zhang et al. Jun 2007 A1
20070132742 Chen et al. Jun 2007 A1
20070139932 Sun et al. Jun 2007 A1
20070152977 Ng et al. Jul 2007 A1
20070152984 Ording et al. Jul 2007 A1
20070152986 Ogawa Jul 2007 A1
20070160362 Mitsuo et al. Jul 2007 A1
20070165007 Morrison et al. Jul 2007 A1
20070167709 Slayton et al. Jul 2007 A1
20070205994 Ieperen Sep 2007 A1
20070215451 Sasloff et al. Sep 2007 A1
20070236454 Ung et al. Oct 2007 A1
20070247435 Benko et al. Oct 2007 A1
20070273842 Morrison et al. Nov 2007 A1
20080012835 Rimon et al. Jan 2008 A1
20080029691 Han Feb 2008 A1
20080042999 Martin Feb 2008 A1
20080055262 Wu et al. Mar 2008 A1
20080055267 Wu et al. Mar 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080062149 Baruk Mar 2008 A1
20080068352 Worthington et al. Mar 2008 A1
20080083602 Auger Apr 2008 A1
20080103267 Hurst et al. May 2008 A1
20080106706 Holmgren et al. May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080129707 Pryor Jun 2008 A1
20080143682 Shim et al. Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080158170 Herz et al. Jul 2008 A1
20080259050 Lin et al. Oct 2008 A1
20080259052 Lin et al. Oct 2008 A1
20080259053 Newton Oct 2008 A1
20090030853 De La Motte Jan 2009 A1
20090058832 Newton Mar 2009 A1
20090058833 Newton Mar 2009 A1
20090077504 Bell et al. Mar 2009 A1
20090122027 Newton May 2009 A1
20090135162 Van De Wijdeven et al. May 2009 A1
20090141002 Sohn et al. Jun 2009 A1
20090146972 Morrison et al. Jun 2009 A1
20090207144 Bridger Aug 2009 A1
20090213093 Bridger Aug 2009 A1
20090213094 Bridger Aug 2009 A1
20090219256 Newton Sep 2009 A1
20090237376 Bridger Sep 2009 A1
20090278816 Colson Nov 2009 A1
20090284495 Geaghan et al. Nov 2009 A1
20090295755 Chapman et al. Dec 2009 A1
20090309844 Woo et al. Dec 2009 A1
20090309853 Hildebrandt et al. Dec 2009 A1
20100009098 Bai et al. Jan 2010 A1
20100045629 Newton Feb 2010 A1
20100045634 Su et al. Feb 2010 A1
20100079412 Chiang et al. Apr 2010 A1
20100085330 Newton Apr 2010 A1
20100090985 Newton Apr 2010 A1
20100090987 Lin et al. Apr 2010 A1
20100097353 Newton Apr 2010 A1
20100103143 Newton et al. Apr 2010 A1
20100177052 Chang et al. Jul 2010 A1
20100182279 Juni Jul 2010 A1
20100193259 Wassvik Aug 2010 A1
20100207911 Newton Aug 2010 A1
20100225588 Newton et al. Sep 2010 A1
20100229090 Newton et al. Sep 2010 A1
20100315379 Allard et al. Dec 2010 A1
20110019204 Bridger Jan 2011 A1
20110050649 Newton et al. Mar 2011 A1
20110199335 Li et al. Aug 2011 A1
20110199387 Newton Aug 2011 A1
20110205151 Newton et al. Aug 2011 A1
20110205155 Newton et al. Aug 2011 A1
20110205185 Newton et al. Aug 2011 A1
20110205186 Newton et al. Aug 2011 A1
Foreign Referenced Citations (212)
Number Date Country
7225001 Jan 2002 AU
2003233728 Dec 2003 AU
2004211738 Aug 2004 AU
2006243730 Nov 2006 AU
2058219 Apr 1993 CA
2367864 Apr 1993 CA
2219886 Apr 1999 CA
2251221 Apr 1999 CA
2267733 Oct 1999 CA
2268208 Oct 1999 CA
2252302 Apr 2000 CA
2412878 Jan 2002 CA
2341918 Sep 2002 CA
2350152 Dec 2002 CA
2386094 Dec 2002 CA
2372868 Aug 2003 CA
2390503 Dec 2003 CA
2390506 Dec 2003 CA
2432770 Dec 2003 CA
2493236 Dec 2003 CA
2448603 May 2004 CA
2453873 Jul 2004 CA
2460449 Sep 2004 CA
2521418 Oct 2004 CA
2481396 Mar 2005 CA
2491582 Jul 2005 CA
2563566 Nov 2005 CA
2564262 Nov 2005 CA
2501214 Sep 2006 CA
2606863 Nov 2006 CA
2580046 Sep 2007 CA
2515955 Jan 2011 CA
1277349 Dec 2000 CN
1407506 Apr 2003 CN
1440539 Sep 2003 CN
1774692 May 2006 CN
1784649 Jun 2006 CN
1310126 Apr 2007 CN
101019096 Aug 2007 CN
101023582 Aug 2007 CN
101663637 Mar 2010 CN
101802759 Aug 2010 CN
101802760 Aug 2010 CN
3836429 May 1990 DE
19810452 Dec 1998 DE
60124549 Sep 2007 DE
102007021537 Jun 2008 DE
0125068 Nov 1984 EP
0181196 May 1986 EP
0279652 Aug 1988 EP
0347725 Dec 1989 EP
0420335 Apr 1991 EP
0657841 Jun 1995 EP
0762319 Mar 1997 EP
0829798 Mar 1998 EP
0843202 May 1998 EP
0897161 Feb 1999 EP
0911721 Apr 1999 EP
1059605 Dec 2000 EP
1262909 Dec 2002 EP
1297488 Apr 2003 EP
1420335 May 2004 EP
1450243 Aug 2004 EP
1457870 Sep 2004 EP
1471459 Oct 2004 EP
1517228 Mar 2005 EP
1550940 Jul 2005 EP
1577745 Sep 2005 EP
1599789 Nov 2005 EP
1611503 Jan 2006 EP
1674977 Jun 2006 EP
1736856 Dec 2006 EP
1739528 Jan 2007 EP
1739529 Jan 2007 EP
1741186 Jan 2007 EP
1759378 Mar 2007 EP
1766501 Mar 2007 EP
1830248 Sep 2007 EP
1877893 Jan 2008 EP
2135155 Dec 2009 EP
2195726 Jun 2010 EP
2250546 Nov 2010 EP
2279823 Sep 2007 ES
2521330 Aug 1983 FR
1575420 Sep 1980 GB
2176282 May 1986 GB
2204126 Nov 1988 GB
2263765 Aug 1993 GB
57211637 Dec 1982 JP
58146928 Sep 1983 JP
61196317 Aug 1986 JP
61260322 Nov 1986 JP
62-005428 Jan 1987 JP
63223819 Sep 1988 JP
1061736 Mar 1989 JP
1154421 Jun 1989 JP
3054618 Mar 1991 JP
3244017 Oct 1991 JP
4350715 Dec 1992 JP
4355815 Dec 1992 JP
5181605 Jul 1993 JP
5189137 Jul 1993 JP
5197810 Aug 1993 JP
6110608 Apr 1994 JP
7110733 Apr 1995 JP
7160403 Jun 1995 JP
7230352 Aug 1995 JP
8016931 Feb 1996 JP
8108689 Apr 1996 JP
8506193 Jul 1996 JP
8240407 Sep 1996 JP
8315152 Nov 1996 JP
9091094 Apr 1997 JP
9224111 Aug 1997 JP
9319501 Dec 1997 JP
10031546 Feb 1998 JP
10105324 Apr 1998 JP
10162698 Jun 1998 JP
10254623 Sep 1998 JP
11045155 Feb 1999 JP
11051644 Feb 1999 JP
11064026 Mar 1999 JP
11085376 Mar 1999 JP
11110116 Apr 1999 JP
11203042 Jul 1999 JP
11212692 Aug 1999 JP
11338687 Dec 1999 JP
2000105671 Apr 2000 JP
2000132340 May 2000 JP
2000259347 Sep 2000 JP
2001014091 Jan 2001 JP
2001075735 Mar 2001 JP
2001142642 May 2001 JP
2001166874 Jun 2001 JP
2001282445 Oct 2001 JP
2001282456 Oct 2001 JP
2001282457 Oct 2001 JP
2002055770 Feb 2002 JP
2002116428 Apr 2002 JP
2002196874 Jul 2002 JP
2002236547 Aug 2002 JP
2002287886 Oct 2002 JP
200365716 Mar 2003 JP
2003158597 May 2003 JP
2003167669 Jun 2003 JP
2003173237 Jun 2003 JP
2003303046 Oct 2003 JP
2003533786 Nov 2003 JP
2004030003 Jan 2004 JP
2004502261 Jan 2004 JP
2005108211 Apr 2005 JP
2005182423 Jul 2005 JP
2005202950 Jul 2005 JP
2006522967 Oct 2006 JP
2007536652 Dec 2007 JP
1020050111324 Nov 2005 KR
WO8901677 Feb 1989 WO
WO9807112 Feb 1998 WO
WO9908897 Feb 1999 WO
WO9921122 Apr 1999 WO
WO9928812 Jun 1999 WO
WO9936805 Jul 1999 WO
WO9940562 Aug 1999 WO
WO0021023 Apr 2000 WO
WO0124157 Apr 2001 WO
WO0131570 May 2001 WO
WO0163550 Aug 2001 WO
WO0186586 Nov 2001 WO
WO0191043 Nov 2001 WO
WO0203316 Jan 2002 WO
WO0207073 Jan 2002 WO
WO0208881 Jan 2002 WO
WO0221502 Mar 2002 WO
WO0227461 Apr 2002 WO
WO03104887 Dec 2003 WO
WO03105074 Dec 2003 WO
WO2004072843 Aug 2004 WO
WO2004090706 Oct 2004 WO
WO2004102523 Nov 2004 WO
WO2004104810 Dec 2004 WO
WO2005031554 Apr 2005 WO
WO2005034027 Apr 2005 WO
WO-2005106775 Nov 2005 WO
WO2005107072 Nov 2005 WO
WO2005109396 Nov 2005 WO
WO2006002544 Jan 2006 WO
WO2006092058 Sep 2006 WO
WO2006095320 Sep 2006 WO
WO2006096962 Sep 2006 WO
WO2006116869 Nov 2006 WO
WO2007003196 Jan 2007 WO
WO2007019600 Feb 2007 WO
WO2007037809 Apr 2007 WO
WO2007064804 Jun 2007 WO
WO2007079590 Jul 2007 WO
WO2007132033 Nov 2007 WO
WO2007134456 Nov 2007 WO
WO2008007276 Jan 2008 WO
WO2008085789 Jul 2008 WO
WO2008128096 Oct 2008 WO
WO-2009029764 Mar 2009 WO
WO-2009029767 Mar 2009 WO
WO2009035705 Mar 2009 WO
WO2009102681 Aug 2009 WO
WO2009137355 Nov 2009 WO
WO2009146544 Dec 2009 WO
WO2010039663 Apr 2010 WO
WO2010039932 Apr 2010 WO
WO2010044575 Apr 2010 WO
WO2010051633 May 2010 WO
WO2010110681 Sep 2010 WO
WO2010110683 Sep 2010 WO
Non-Patent Literature Citations (107)
Entry
International Application Serial No. PCT/US2008/074755, International Search Report and Written Opinion mailed Jan. 29, 2009, 28 pages.
Co-pending U.S. Appl. No. 12/201,410, filed Aug. 29, 2008.
International Application Serial No. PCT/US2008/074749, Search Report & Written Opinion mailed Feb. 11, 2009, 15 pgs.
International Application Serial No. PCT/US2008/074755, Search Report & Written Opinion mailed Jan. 29, 2009, 13 pgs.
Chinese Patent Application No. 200880105040.5, Office Action, at least as early as Aug. 11, 2011, 6 pages. (English Translation Not Available).
Anon, “Smart Board Specifications Model 680i”, XP7915047 Retrieved from the Internet: URL:http://www2.smarttech.com/kbdoc/74231 [retrieved on Sep. 23, 2010], 2008, pp. 1-5.
Benko, et al., “Precise Selection Techniques for Multi-Touch Screens”, Conference on Human Factors in Computing Systems—Proceedings 2006, 2: 1263-1273.
Buxton, et al., “Issues and Techniques in Touch-Sensitive Tablet Input”, Computer Graphics, Proceedings of SIGGRAPH'85, 1985, 19(3): 215-223.
Canadian Patent Application No. 2412878, Office Action, mailed May 12, 2009, 4 pages.
“Composite List of Projects 1983 to 1989”, NASA Small Business Innovation Research Program, Aug. 1990, 132 pages.
“Digital Vision Touch Technology”, White Paper, SMART Technologies Inc., Feb. 2003, 10 pages.
European Application No. 02253594.2, European Search Report, mailed Jan. 5, 2006, 3 pages.
European Application No. 03257166.3, Partial European Search Report, mailed May 29, 2006, 4 pages.
European Application No. 04251392.9, European Search Report, mailed Jan. 18, 2007, 3 pages.
European Application No. 04711522.5, Office Action, mailed Jun. 29, 2010, 8 pages.
European Application No. 04711522.5, Office Action, mailed Mar. 22, 2010, 1 page.
European Application No. 04711522.5, Supplementary European Search Report, mailed Mar. 3, 2010, 3 pages.
European Application No. 06019268.9, European Search Report and Search Opinion, mailed Nov. 24, 2006, 5 pages.
European Application No. 06019269.7, European Search Report and Search Opinion, mailed Nov. 23, 2006, 5 pages.
European Application No. 07250888.0, European Search Report and Search Opinion, mailed Jun. 22, 2007, 6 pages.
European Application No. 07701682.2, Supplementary European Search Report and Search Opinion, mailed Dec. 7, 2010, 10 pages.
European Application No. 08745663.8, Office Action, mailed Dec. 27, 2010, 13 pages.
European Application No. 08745663.8, Office Action, mailed Jul. 6, 2010, 6 pages.
Förstner, “On Estimating Rotations”, Institut für Photogrammetrie, Universität Bonn, 12 pages, 1999.
Fukushige, et al., “Interactive 3D Pointing Device Using Mirror Reflections”, Graduate School of Engineering, Osaka University, 2006, 231-235.
Funk, “CCDs in optical touch panels deliver high resolution”, Electronic Design, Sep. 27, 1980, pp. 139-143.
Geer, “Will Gesture-Recognition Technology Point the Way?”, Industry Trends, Oct. 2004, 20-23.
Hartley, “Multiple View Geometry in Computer Vision”, Cambridge University Press First published 2000, Reprinted (with corrections) 2001, pp. 70-73, 92-93, and 98-99.
Heddier Electronic, “Store Window Presentations”, Feb. 2, 2011, 2 pages.
Herot, et al., “One-Point Touch Input of Vector Information for Computer Displays”, Architecture Machine Group Massachusetts Institute of Technology Cambridge, Massachusetts, Oct. 31, 1977, pp. 210-216.
Herrero, et al., “Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis”, Advanced Concepts for Intelligent Vision Systems, Springer-Verlag Berlin Heidelberg, Sep. 2009, pp. 33-42.
Hu, et al., “Multiple-view 3-D Reconstruction Using a Mirror”, The University of Rochester, May 2005, 14 pages.
International Application No. PCT/CA2001/00980, International Search Report, mailed Oct. 22, 2001, 3 pages.
International Application No. PCT/CA2004/001759, International Search Report and Written Opinion, mailed Feb. 21, 2005, 7 pages.
International Application No. PCT/CA2007/002184, International Search Report, mailed Mar. 13, 2008, 3 pages.
International Application No. PCT/CA2008/001350, International Search Report, mailed Oct. 17, 2008, 5 pages.
International Application No. PCT/CA2009/000733, International Search Report and Written Opinion, mailed Sep. 10, 2009, 6 pages.
International Application No. PCT/CA2010/001085, International Search Report, mailed Oct. 12, 2010, 4 pages.
International Application No. PCT/NZ2004/000029, International Preliminary Report on Patentability, issued May 20, 2005, 21 pages.
International Application No. PCT/NZ2004/000029, International Search Report and Written Opinion, mailed Jun. 10, 2004, 6 pages.
International Application No. PCT/NZ2005/000092, International Preliminary Report on Patentability, completed Dec. 30, 2006, 3 pages.
International Application No. PCT/NZ2005/000092, International Search Report, mailed Sep. 27, 2006, 4 pages.
International Application No. PCT/NZ2010/000049, International Search Report and Written Opinion, mailed Oct. 14, 2010, 12 pages.
International Application No. PCT/NZ2010/000051, International Search Report and Written Opinion, mailed Oct. 5, 2010, 15 pages.
International Application No. PCT/US2008/060102, International Preliminary Report on Patentability, mailed Oct. 22, 2009, 10 pages.
International Application No. PCT/US2008/060102, International Search Report and Written Opinion, mailed Feb. 12, 2009, 20 pages.
International Application No. PCT/US2008/074749, International Preliminary Report on Patentability, issuance Mar. 2, 2010, 9 pages.
International Application No. PCT/US2008/074755, International Preliminary Report on Patentability, issuance Mar. 2, 2010, 8 pages.
International Application No. PCT/US2009/030694, International Preliminary Report on Patentability, completion Apr. 26, 2010, 10 pages.
Internatibnal Application No. PCT/US2009/030694, International Search Report, mailed Aug. 5, 2009, 5 pages.
International Application No. PCT/US2009/033624, International Preliminary Report on Patentability and Written Opinion, issuance Aug. 17, 2010, 6 pages.
International Application No. PCT/US2009/033624, International Search Report, mailed Mar. 29, 2010, 3 pages.
International Application No. PCT/US2009/042547, International Preliminary Report on Patentability, mailed Nov. 9, 2010, 6 pages.
International Application No. PCT/US2009/042547, International Search Report and Written Opinion, mailed Sep. 2, 2010, 12 pages.
International Application No. PCT/US2009/058682, International Search Report and Written Opinion, mailed Apr. 27, 2010, 15 pages.
International Application No. PCT/US2009/059193, International Search Report and Written Opinion, mailed Dec. 7, 2009, 15 pages.
International Application No. PCT/US2010/059050, International Search Report and Written Opinion, mailed Mar. 23, 2011, 9 pages.
International Application No. PCT/US2010/059104, International Search Report and Written Opinion, mailed Jun. 6, 2011, 14 pages.
International Application No. PCT/US2010/059078, International Search Report and Written Opinion, mailed Aug. 2, 2011, 17 pages.
“Introducing the NextWindow 1900 Optical Touch Screen”, A NextWindow White Paper, Next Window Human Touch, May 22, 2007, 13 pages.
IntuiFace Press Release, “IntuiLab introduces IntuiFace, an interactive table and its application platform”, Nov. 30, 2007, 1 page.
IntuiLab, “Overview Page”, Mar. 9, 2011, 1 page.
Japanese Patent Application No. 2005-000268, Office Action, mailed Jul. 5, 2010, Office Action—3 pages, English Translation—3 pages.
Japanese Patent Application No. 2006-502767, Office Action, mailed Jan. 20, 2009, Office Action—2 pages, English Translation—3 pages.
Japanese Patent Application No. 2006-502767, Office Action, mailed Jun. 22, 2010, Office Action—3 pages, English Translation—4 pages.
Japanese Patent Application No. 2007-511305, Office Action, mailed Feb. 1, 2011, Office Action—2 pages, English Translation—5 pages.
Japanese Patent Application No. 2007-511305, Office Action, mailed Sep. 6, 2011, Office Action—3 pages, English Translation—4 pages.
Kanatani, “Camera Calibration”, Geometric Computation for Machine Vision, Oxford Engineering Science Series, 1993, 37(2): 56-63.
Korean Patent Application No. 10-2005-7014885, Office Action, dated Aug. 9, 2010, English Translation—5 pages.
Lane, et al., “Reflective Interaction in Virtual Environments”, Eurographics, 2001, 20(3): 7 pages.
Lo, “Solid-state image sensor: technologies and applications”, SPIE Proceedings, 1998, 3422: 70-80.
Loinaz, et al., “A 200-mW, 3.3-V, CMOS Color Camera IC Producing 352 × 288 24-b Video at 30 Frames”, IEEE Journal of Solid-State Circuits, Dec. 1998, 33(12); 2092-2103.
Piccardi, et al., “Background subtraction techniques: a review”, 2004 IEEE International Conference on Systems, Man and Cybernetics, Oct. 10, 2004, 4: 3099-3104.
Pogue, “The Multi-Touch Screen”, Pogue's Posts, Mar. 27, 2007, 13 pages.
Singapore Patent Application No. 201001122-9, Office Action, dated May 3, 2011, 9 pages.
Tappert, et al., “On-Line Handwriting Recognition—A Survey”, Proceedings of the 9th International Conference on Pattern Recognition (ICPR), Rome, IEEE Computer Society Press, Nov. 14-17, 1988, 2: 1123-1132.
“ThruGlass™ Projected Capacitive Touchscreens Specifications”, Micro Touch, 2000, 4 pages.
“Touch Panel”, Veritas et Visus, Nov. 2005, vol. 1, No. 1.
“Touch Panel”, Veritas et Visus, Dec. 2005, Issue 2 of 10.
“Touch Panel”, Veritas et Visus, Feb. 2006, vol. 1, No. 3.
“Touch Panel”, Veritas et Visus, Mar. 2006, vol. 1, No. 4.
“Touch Panel”, Veritas et Visus, May 2006, vol. 1, No. 5.
“Touch Panel”, Veritas et Visus, Jun. 2006, vol. 1, No. 6.
“Touch Panel”, Veritas et Visus, Jul. 2006, vol. 1, No. 7.
“Touch Panel”, Veritas et Visus, Aug. 2006, vol. 1, No. 8.
“Touch Panel”, Veritas et Visus, Oct. 2006, vol. 1, No. 9.
“Touch Panel”, Veritas et Visus, Nov. 2006, vol. 1, No. 10.
“Touch Panel”, Veritas et Visus, Dec. 2006, vol. 2, No. 1.
“Touch Panel”, Veritas et Visus, Feb. 2007, vol. 2, No. 2.
“Touch Panel”, Veritas et Visus, Mar. 2007, vol. 2, No. 3.
“Touch Panel”, Veritas et Visus, May 2007, vol. 2, No. 4.
“Touch Panel”, Veritas et Visus, Jul. 2007, vol. 2, No. 5.
“Touch Panel”, Veritas et Visus, Oct. 2007, vol. 2, No. 6.
“Touch Panel”, Veritas et Visus, Jan. 2008, vol. 2, Nos. 7-8.
“Touch Panel”, Veritas et Visus, Mar. 2008, vol. 2, Nos. 9-10.
“Touch Panel”, Veritas et Visus, Aug. 2008, vol. 3, Nos. 1-2.
“Touch Panel”, Veritas et Visus, Nov. 2008, vol. 3, Nos. 3-4.
“Touch Panel”, Veritas et Visus, Jan. 2009, vol. 3, Nos. 5-6.
“Touch Panel”, Veritas et Visus, Mar. 2009, vol. 3, Nos. 7-8.
“Touch Panel”, Veritas et Visus, May 2009, vol. 3, No. 9.
“Touch Panel”, Veritas et Visus, Sep. 2009, vol. 4, Nos. 2-3.
“Touch Panel”, Veritas et Visus, Sep. 2010, vol. 5, Nos. 2-3.
“Touch Panel”, Veritas et Visus, Nov. 2010, vol. 5, No. 4.
Photobit Corporation, “VGA-format CMOS Camera-on-a-Chip for Multimedia Applications”, 1999, 2 pages.
Villamor, et al., “Touch Gesture Reference Guide”, Last updated Apr. 15, 2010, 7 pages.
Wang, et al., “Stereo camera calibration without absolute world coordinate information”, SPIE, Jun. 14, 1995, 2620: 655-662.
Wrobel, et al., “Minimum Solutions for Orientation”, Calibration and Orientation of Cameras in Computer Vision, Springer Series in Information Sciences, 2001, 34: 28-33.
Related Publications (1)
Number Date Country
20090058833 A1 Mar 2009 US