Aerial refueling is known. In an exemplary refueling scenario, a refueling drogue connected to a refueling hose is unreeled from a refueling aircraft (e.g., tanker aircraft) towards a receiver aircraft (an aircraft to be refueled), such as a fighter plane, a helicopter, etc. The receiver aircraft has a refueling probe extending from the aircraft. The receiver aircraft maneuvers to the refueling drogue and inserts its refueling probe into the refueling drogue, at which point the refueling drogue “locks” onto the refueling probe, and a transfer of fuel from the refueling aircraft to the receiver aircraft is conducted. In an alternative exemplary refueling scenario, a refueling boom is connected to the refueling aircraft, and the receiver aircraft is fitted with a refueling boom receptacle, and the receiver aircraft maneuvers to the refueling boom and/or the refueling boom is maneuvered to the receiver aircraft until the boom mates with the receptacle on the receiver aircraft.
In an exemplary embodiment of the present invention, there is an airborne object tracking system comprising, a radiation emitter, a radiation receiver and a signal processor, wherein the radiation emitter is adapted to direct radiation to a positioning area a defined distance from the radiation emitter, the radiation carrying a modulated location signal containing information corresponding to positions within the positioning area, wherein the radiation receiver is adapted to receive at least a portion of the emitted radiation carrying the modulated signal and output a signal to the signal processor indicative of the modulation of the location signal of the received radiation, and wherein the signal processor is adapted to process the outputted signal and identify a position within the positioning area indicative of the location in the positioning area of the received radiation.
In another embodiment of the invention, the radiation emitter is adapted to emit a focused optical beam and scan the focused optical beam over the positioning area.
In yet another embodiment of the invention, the emitted radiation is a focused optical beam, wherein the modulated location signal includes a plurality of digital data blocks, the plurality of digital data blocks containing information respectively corresponding to a plurality of discrete positions within the positioning area that respectively correspond to a current location of the focused beam within the positioning area.
In another embodiment of the invention, the radiation emitter is adapted to emit a focused optical beam and scan the focused optical beam over the positioning area.
In another embodiment of the invention, there is an airborne object tracking system comprising a radiation emitter, a radiation receiver, and a signal processor, wherein the radiation emitter is adapted to direct a beam of emitted radiation to an area away from the radiation emitter, the radiation including discernable properties that vary in a corresponding manner with varying orientation of the beam of radiation with respect to the radiation emitter, wherein the radiation receiver is adapted to receive at least a portion of the emitted radiation and output a signal to the signal processor indicative of one or more of the discernable properties of the received radiation; and wherein the processor is adapted to process the outputted signal and identify a first virtual orientation indicative of an orientation of the receiver relative to the radiation emitter when at least a portion of the radiation was received by the receiver.
FIGS. 26 to 31 schematically represent various galvo designs.
FIGS. 32 to 33b schematically represent beam emission in elapsed time.
The present inventors have determined that it is desirable that the location of an airborne object (e.g., a refueling drogue, a receiver aircraft in general, and a particular location on the receiver aircraft (e.g., the portion of the refueling probe that will interface with the refueling drogue/the receptacle in the receiver aircraft), etc.,) be identified relative to a refueling aircraft during aerial refueling operations. The present inventors have further determined that it is desirable that a system substantially maintain/adjust the position of a receiver aircraft, drogue, and/or refueling boom, or other airborne object (or plurality of airborne objects), relative to a refueling aircraft and receiver aircraft (or pertinent location thereon), respectively, so that mating of the receiver aircraft or other airborne object with the refueling aircraft can be better executed. Accordingly, an embodiment of the present invention is directed towards systems, methods and apparatuses for enabling determination of the position, relative to a fixed reference point on the refueling aircraft, of an airborne refueling device attached to the refueling aircraft, and/or determination of the position, relative to a fixed reference point on the refueling aircraft, of a receiver aircraft in general (or multiple receiver aircraft in general), and, in particular, of a certain location (or plurality of locations) on the receiver aircraft.
Moreover, some embodiments of the present invention are directed towards systems, methods and apparatuses for enabling a receiver aircraft in general and a boom/receptacle of a receiver aircraft in particular, to substantially maintain a position relative to the fixed reference point (also known as station keeping) based on this determined position. In an exemplary embodiment, this fixed reference point is a radiation emitter on the wing of the refueling aircraft, as will be discussed below. Further embodiments of the present invention are directed towards systems, methods and apparatuses for enabling a location of a refueling device (drogue, boom, etc.), relative to a receiver aircraft, to be determined. Some exemplary embodiments of the present invention, coupled with exemplary scenarios utilizing the present invention, will now be described followed by detailed discussions of particular embodiments of the present invention.
In a first embodiment of the present invention, as may be seen in
Accordingly, in an exemplary scenario utilizing the present invention, the optical beam scans over the scanning area 400 in a manner such that a discernable property of the optical beam changes as the beam is scanning over the scanning area. That is, the discernable property is different when the beam is located at one portion of the scanning area, as opposed to another portion of the scanning area, owing to the change in orientation of the beam with respect to the radiation emitter and the scanning area. This discernable property is carried on the optical beam and changes in a predetermined manner such that an analysis of this discernable property will enable the location of the beam, relative to the scanning area, to be determined. In this scenario, the radiation receiver 300 on the drogue assembly 100 is configured to output a signal to a signal processor 500 (after receiving/sensing the optical beam as it passes over the receiver) onboard the drogue assembly 100. This outputted signal from the receiver 300 is indicative of the discernable property carried on the optical beam that is received by the receiver. The signal processor 500 contains software and/or sufficient look up tables stored in a memory such that the signal processor 500, once it receives the signal from the receiver 300, may analyze the received signal and determine that the discernable property is indicative of a specific beam orientation with respect to the radiation emitter 200 and the scanning area 400. Because the geometry of the scanning area 400 relative to the radiation emitter is known, the location of the receiver 300 within the scanning area 400 may thus be determined by comparing the discernable property of the received radiation to information stored in a look-up table. Because the geometry of the refueling drogue assembly 100 relative to the receiver 300 is known, the position of the drogue assembly 100 relative to the radiation emitter may be determined.
As may be seen from
In another embodiment of the present invention, as may be seen in
An exemplary scenario utilizing the present invention parallels that detailed above with respect to the refueling drogue assembly, except that in this scenario, the radiation receiver 300 is located on the receiver aircraft 1105, which outputs a signal to a signal processor 500 (after receiving/sensing the optical beam as it passes over the receiver) onboard the receiver aircraft 1105 and/or onboard the refueling aircraft instead of the refueling drogue assembly 100. As with the refueling drogue scenario, this outputted signal from the receiver 300 is indicative of the discernable property carried on the optical beam that is received by the receiver 300 (except, of course, the receiver 300 is located on the receiver aircraft 1105 or other airborne object). Because the geometry of the scanning area 400 relative to the radiation emitter is known, the location of the receiver 300 within the scanning area 400 may thus be determined by comparing the discernable property of the received radiation to information stored in a look-up table. Because the geometry of the receiver aircraft 1105 relative to the receiver 300 is known, the position of the receiver aircraft 1105, in general, and a particular location on the receiver aircraft 1105 (e.g., the end of the refueling boom 1111), relative to the radiation emitter may be determined.
The operational characteristics of the radiation emitter 200 shall now be described.
In a first embodiment of the invention, the radiation emitter 300 emits a focused optical beam that is a focused optical elongated beam 210 and scans the beam over the scanning area, as may be seen in
After scanning from the top of the scanning area to the bottom of the scanning area, the radiation emitter changes the orientation of the focused optical beam 210 from a horizontal orientation to a vertical orientation, as may be seen in
Thus in comparing
According to a first embodiment of the present invention, at least a portion of the scanning area 400 includes a positioning area 450, as may be seen in
The airborne object positioning system is adapted to virtually divide at least a portion of this positioning area 450 into a virtual grid 460. The virtual grid may include a plurality of distributed distinct sectors that spatially correspond to sub-areas within the positioning area. The sub-areas are dispersed within the positioning area in a geometrically defined manner. As may be seen in
In an exemplary embodiment of the present invention, the grid 460 takes the form of that presented in
As noted above, the distributed distinct sectors of the positioning area correspond to sub-areas within the positioning area, the sub-areas being disbursed within the positioning area in a geometrically defined manner. This geometrically defined manner corresponds to a known orientation of the sub-areas with the radiation emitter 200. Therefore, the orientation of the virtual grid 460 with respect to the radiation emitter is known. By way of example and not by limitation,
Because the orientation of the scanning area/virtual grid with respect to the radiation emitter 300 is known, the discernable property of the optical beam may be changed to correspond to the particular distinct sectors/sub-areas within the positioning area such that a unique discernable property may be carried on the optical beam for each distinct sector/sub-area. In this manner, the receiver 300, having received the radiation from the radiation emitter 200 outputs the signal to the signal processor 500 indicative of the distinct property carried on the optical beam received by the receiver 300, and thus, depending on the discernable property of the received radiation received by the receiver 300, by comparing the received discernable property to those in, for example, a memory, the signal processor 500 can determine which particular distinct sector/sub-area the receiver was located in when the receiver received the radiation.
The following is an exemplary scenario in which the airborne object 100/1105 determines its position utilizing the first embodiment of the invention. It is noted that by “determining its position,” it is meant that in some instances, component(s) onboard the airborne object determine the relative position of the airborne object to the receiver aircraft, in some instances a component(s) remote from the airborne object (e.g., on the receiver aircraft 1000) determines the relative position of the airborne object to the receiver aircraft, and in some instances both are the case. Indeed, some embodiments of the present invention are configured to simply transmit or otherwise convey information regarding the radiation received by the radiation receiver from the receiver/airborne object to which the receiver is attached, to the refueling aircraft, on which a processor 500 is located, so that the processor 500 may determine the relative location of the airborne object.
Referring to
It is noted that in the above description of the X-Y raster, the beam was moved from box 13 at the upper right side of the grid, all the way on the left side of the grid. In another embodiment of the present invention, a raster scan may include, for example, moving the beam from box 13 to box 26, after which the beam is moved to box 25, box 24, etc., all the way to box 14, and then moved to box 27, and then to 28, and then to 29, etc., all the way to 39, and then moved to box 52, and then to 51, etc. Thus, the raster scan includes both the traditional scan performed by a cathode ray tube, as well as non traditional raster scans. Other scanning patterns may be used as well.
It is noted that in the above-described embodiments, the beam scans over the entire scanning area/virtual grid. Other embodiments of the present invention may be implemented where the beam only scans over a portion of the scanning area/virtual grid. By way of example only and not by way of limitation, such may be the case in a system where the signal processor 500 is in communication with the radiation emitter 200 such that after the processor 500 determines a general area within the grid in which the receiver 300 is located, the radiation emitter 200 may concentrate the beam on that general area, as opposed to over the entire area of the scanning area. That is, for example, if the signal processor 500 continues to determine that the receiver is in box 24, or is in the area of box 24, the radiation emitter 200 would not scan the area, say for example, around box 121. However, if the signal processor 500 did not receive a signal indicative of radiation within the area of box 24 for within a certain time period, the signal processor 500 may direct the radiation emitter 200 to again scan over the entire area so as to increase the likelihood that the receiver 300 will receive radiation. This may also be done in the case of the focused optical elongated beam method of scanning as well.
An embodiment of the present invention, utilizing the drogue positioning system detailed herein, to control the position of a refueling drogue, will now be described by way of an exemplary scenario. As a preliminary matter, it is noted that drogue control may be implemented according to the teachings of U.S. patent application Ser. No. 10/697,564 filed on Oct. 31, 2003, entitled Stabilization of a Drogue Body, the contents of which are incorporated herein in their entirety. U.S. patent application Ser. No. 10/697,564 claims priority to U.S. Provisional Application Ser. No. 60/498,641 filed on Aug. 29, 2003, the contents of which are also incorporated by reference herein in their entirety, the teachings of which may also be used to control the position of a refueling drogue. Further, it is noted that the drogue utilized in particular and/or drogue control in general may be implemented according to the teachings of Patent Cooperation Treaty Application PCT/US2006/049258 filed on Dec. 22, 2006, entitled Controllable Drogue, the contents of which are incorporated herein in their entirety. PCT Application Number PCT/US2006/049258 claims priority to U.S. Provisional Patent Application Ser. No. 60/752,380 to Mike Feldman, entitled Controllable Drogue, filed on Dec. 22, 2005, the contents of which are incorporated herein in their entirety.
Initially, the drogue 100 is extended from a drogue carrier attached to a wing of an aircraft 1000. The drogue assembly 100 will be extended a sufficient distance from the aircraft 1000 so that aerial refueling may be conducted. This distance, in an exemplary embodiment, is about 100 feet from the wing (and thus the radiation emitter), although in other embodiments, this distance may differ based on the local conditions and/or the type of mission required for the aerial refueling. The refueling drogue assembly 100 will be permitted to obtain a nominal position/effectively constant position (a constant position the location of which will vary with different atmospheric conditions, aircraft speed, etc.) with respect to the aircraft 1000, and thus the radiation emitter 200. At this time, according to this scenario, the aircraft to be refueled is a sufficient distance away from the refueling drogue assembly 100 such that the aircraft to be refueled does not impart any forces onto the drogue that may cause the drogue's position to move.
As noted above, wind gusts, turbulence, the receiver aircraft, etc., may impart forces on the drogue assembly 100 that will make the drogue move from its “effectively constant position.” Based on empirical and/or analytical analysis, it is known that, for example, under the given set of circumstances for a particular refueling mission, the position of the drogue/receiver may be maintained within about a 6 inch radius of a nominal location, in some embodiments, within about 2-3 inches, and in others even smaller, such as about 1-2 inches and/or even less than an inch. In some embodiments, the system accounts for turbulence in the frequency range of 1-3 Hz that can cause a few feet of drogue displacement. Moreover, in some embodiments of the invention, the stabilization system may account for bow wave (from the receiving aircraft), which induces translation. Specifically, the system may account for bow wave of steady state that can cause about five feet of displacement and/or 2 to three feet of displacement, depending on such variables as, for example, the control surface size, control surface deflection, control surface actuator force, etc, of the drogue active control system. Some embodiments of the present invention may be implemented to account for forces that cause the drogue to move as much as 10 feet in any direction from a “nominal position” relative to the radiation emitter 200. (For other missions, the drogue could move more or less.) Accordingly, for this particular mission, the area of likely movement of the drogue, i.e., this “10 feet in any direction,” will define the scanning area 400 in a first embodiment. That is, the geometry of the scanning area 400 will be set to be 20 feet by 20 feet, centered about the nominal position of the drogue, such that the receiver 300 is very likely to be located within that area during a normal refueling operation. (For other missions, the area may be 10 feet by 10 feet, 10 feet by 20 feet, or more or less, depending on the conditions of the mission. If refueling is being conducted during relatively calm atmospheric conditions, the scanning area would likely be smaller than a scanning area for un-calm conditions.)
It is noted that the location of the scanning area 400 may be adjusted based on the nominal location of the drogue assembly. That is, for example, referring to
It is noted that in some embodiments of the invention, the drogue positioning system is configured to adjust the location of the scanning area to conform to the location of the receiver 300. By way of example, the radiation emitter 200 may move the scanning area over a wide area to initially find the nominal location of the drogue, and then refine the scanning area about the drogue. It is noted that in other embodiments of the invention, the drogue positioning system may instead simply start off with a very large scanning area such that the beam may be more dispersed, such as in the instance of use of a focused optical elongated beam, thus covering a greater area. Upon identification of the nominal location of the drogue/receiver, the scanning area may be narrowed accordingly.
In other embodiments of the present invention, the refueling aircraft may include a device that detects the nominal location of the drogue, and uses this detection to direct the scanning area. In other embodiments of the invention, an operator on-board the aircraft 1000 directs the scanning area at the drogue.
It is also noted that in some embodiments of the present invention, it is not necessary that the scanning area be centered on the nominal location of the refueling drogue. Such may be the case in conditions such that it is expected that the drogue will move from the nominal location in some directions more than in other directions.
Once the drogue is nominally located, and the scanning area is directed to this location, the positioning system may begin operating to identify the position of the drogue within the scanning area. Assuming a virtual grid having 13 columns and 13 rows, as is exemplarily depicted in
It is noted that in some embodiments of the present invention, the distal portion of the refueling hose will be the portion of the drogue assembly that is actively controlled. This is because in some embodiments, the drogue assembly 100 may include a flexible joint, which may be located between the hose 110 and the drogue 105, allowing the drogue 105 to pivot about the centerline of the hose (see,
It is noted that while the just-described scenario is detailed in terms of controlling the position of a refueling drogue, the scenario is readily applicable to controlling the position of a host of other airborne objects, such as, for example, a refueling boom, a receiver aircraft (or a plurality of receiver aircraft), including autonomous drones, etc. Accordingly, embodiments of the present invention include any device, system, method and/or algorithm which permits some or all of the above-discussed actions to be undertaken with a variety of airborne objects including receiver aircraft, etc.
Embodiments of the present invention may be practiced in accordance with the teachings herein to enhance aerial refueling by directing one or both of an aerial refueling device and a receiver aircraft, based on the relative positioning information obtainable according to the teachings herein, to mate with one another. That is, the relative positioning information obtainable according to the teachings herein may be used to “fly” (in some embodiments, automatically) a refueling drogue (or refueling boom) to a receiver aircraft, fly a receiver aircraft to a refueling drogue, and/or do both, automatically. Accordingly, embodiments of the present invention include devices, systems, methods and algorithms for use in mating (in some embodiments, automatic mating) of one airborne object with another airborne object.
Specific features of the airborne object positioning system will now be discussed.
As noted above, the radiation emitter 200 may output a focus optical beam. It will be noted that other embodiments of the present invention may utilize other types of radiation. Basically, any type of radiation that may be utilized to determine the airborne object location according to the present invention may be used. By way of example only and not by way of limitation, electromagnetic radiation may be utilized. Such an embodiment may utilize technologies associated with VOR and ILS. As noted above, the radiation emitter emits radiation that carries a discernable property that may be received by a receiver and analyzed. This discernable property is used as a reference by the signal processor 200 to determine the location of the receiver/airborne object within the virtual grid and the positioning area. This discernable property, in some exemplary embodiments, is created by modulating the beam with digital data blocks that represent the current location of the beam in the scanned area/positioning area. An example of a digital data block may be seen in
In some embodiments of the present invention, modulation is obtained by cycling the intensity of the beam, which in some embodiments corresponds to shutting the beam off (or otherwise blocking the beam) and then turning the beam on (or otherwise directing the beam to the area). Other embodiments may utilize multiple intensities. Embodiments of the present invention may utilize standard digital modulation techniques, such as those utilized in encryption, if those modulation techniques may be coupled to beam location/direction.
It is also noted that the discernable property of the beam may be unique to a given column and row. That is, every column and every row, collectively, may have different discernable properties associated with that column/row. For example, column 2 will be associated with a discernable property that is distinct with all the other discernable properties for all other columns and rows. Such may be accomplished, for example, by utilizing a “smart header:” a header that includes information pertaining to whether the beam is aligned horizontally or vertically, but still allows for the processor to determine that a new block is being transmitted (discussed more below). However, other embodiments of the present invention may utilize the same discernable properties between columns and rows. For example, column 1 may be correlated to a discernable property that is the same as that for row 1, row 2, or row 3, etc. However, in such a situation, based only on the discernable property, without more, the system would not know whether the discernable property is indicative of a column position or a row position. In such instances, for example, the timing between the first and the second pass of the two-pass scan may be adjusted such that every first receipt of radiation is a scan from top to bottom (e.g., a scan indicating row position), and every second receipt of radiation is a scan from left to right (e.g., a scan indicating column position), or in any other pre-determined pattern. Such may be determined, by way of example, by pausing in-between each scan for a certain amount of time. For example, a scan from top to bottom might be separated by a predetermined time period from the following scan from left to right. The scan from left to right may in turn be separated by different predetermined time period. The signal processor 500 may be programmed to look for different time periods between receipt of outputted signals from the receiver and, from a look-up table, recognize the type of scan. Alternatively, the beam may carry two or more discernable properties at the same time. For example, one property may be indicative of the type of scan (either top/down or left/right) and the other may be indicative of the location within the scan area, i.e., what column/row).
By way of additional example, in the case of utilizing a non-elongated (normal beam) such is shown in
It is noted that beam receiver overlap may be utilized to practice the present invention. That is, by way of example, some embodiments of the present invention may utilize a ratio of 6 to 1 for beam/receiver overlap, although other embodiments may utilize a larger or smaller ratio. Overlap may be obtained by utilizing either a big beam/small receiver, or a small beam/big receiver.
In a first embodiment of the present invention, it is expected that the columns and rows of the virtual grid will be 0.25 inches in height/width when the scan area is about 100 feet from the radiation emitter and about 10 feet below the radiation emitter. Thus, the discernable property of the beam may change as the beam moves 0.25 inches in the sweeping direction. Of course, other embodiments of the present invention may use a larger or smaller row/column height/width. By way of example, some embodiments may utilize heights/widths of 0.1 inches or less and/or 1.0 inches or more. In many embodiments of the present invention, the discernable property of the beam will change as it moves from one column to the other. Thus, the discernable property may change less frequently for grids utilizing rows and columns that are larger. According to some embodiments of the invention, the scan area will be a 120 inch×120 inch square, at 100 feet from the radiation receiver, and the row/column height/width will be 0.25 inches. Thus, the scan area will be made up of 480×480 columns and rows (scan lines). However, it will be noted that other embodiments of the present invention may use different sized/shaped scan areas. By way of example only, and not by way of limitation, a circular scan area may be used where the beam is scanned in a helical pattern, starting from the center and moving outward. In such an embodiment, again, it may be possible to have an interactive system such that the scan begins at the center, where receiver is most likely to be located, and then scans outward, and once the radiation receiver receives the radiation, the radiation emitter may be controlled to reset the scan again, starting at the center and/or at the approximate location of the airborne object. Other embodiments may utilize a rectangular section or any other shaped section that will achieve the results of airborne object positioning, according to the present invention.
In the example of
In another embodiment of the invention, the number of bits received during a pass is used to obtain a hyper accurate position within a sector/sub-area. Referring to
A processing algorithm that may be used in the present invention is as follows. Assuming that the raster is numbered top down and that the message packets are numbered left to right, the center raster scan line is:
As noted above, embodiments of the present invention may either utilize big beam/small receiver or a small beam/big receiver. Any size beam and any size receiver may be utilized providing that airborne object positioning may be obtained according to the present invention.
Many of the embodiments, according to the present invention utilize the virtual grid as detailed above. However, other embodiments of the present invention may be practiced without utilizing a virtual grid. By way of example, a focused optical non-elongated beam, such as that according to
In such an embodiment, the radiation emitter is adapted to direct a beam of emitted radiation to an area away from the radiation emitter, the radiation including discernable properties that vary in a corresponding manner with varying orientation of the beam of radiation with respect to the radiation emitter. By way of example, the radiation emitter is adapted to emit a focused optical beam modulated with digital data blocks, the modulated digital data blocks respectively indicative of discrete orientations respectively corresponding to orientations of the beam relative to the radiation emitter. Some of the varied discernable properties are respectively indicative of discrete orientations respectively corresponding to orientations of the beam relative to the radiation emitter in a first reference frame, and wherein at least some of the varied discernable properties are respectively indicative of discrete orientations respectively corresponding to orientations of the beam relative to the radiation emitter in a second reference frame.
Based on the output of the receiver, the processor is adapted to process the outputted signal and identify a first virtual orientation indicative of an orientation of the receiver relative to the radiation emitter when at least a portion of the radiation was received by the receiver. By way of example, the signal processor is adapted to analyze a first outputted signal from the receiver that is indicative of a first discernable property of the received radiation indicative of a first discrete orientation corresponding to a first orientation of the beam relative to the radiation emitter in the first reference frame at the time that the radiation was received. Still further by way of example, the signal processor is adapted to analyze a second outputted signal from the receiver, the second outputted signal being indicative of a second discernable property of the received radiation indicative of a second discrete orientation corresponding to a second orientation of the beam relative to the radiation emitter in the second reference frame at the time that the radiation was received. Accordingly, the signal processor is adapted to identify a virtual location of the receiver relative to the radiation emitter based on the analysis of the first and second outputted signals.
As discussed above, some embodiments of the present invention are configured to permit the airborne object 100/1105 to maintain a position relative to the radiation emitter. Such maintenance may be performed in some embodiments without the need for communication between the radiation emitter and the airborne object 100/1105. For example, the signal processor 500 on the airborne object 100/1105 may be furnished with look-up tables sufficient to analyze the signals from the receiver and identify the current location of the refueling drogue within the positioning area/virtual grid. However, in other embodiments, the airborne object may be in communication with the refueling aircraft 1000, or other location remote from the airborne object. In such embodiments, a simple communications link may be established from the receiver 300 and/or the processor 500 to components onboard the aircraft 1000. Indeed, in some embodiments, position determination is determined at a location remote from the airborne object, the airborne object merely communicating information about the received radiation sufficient for the remote location to evaluate the relative position of the airborne object.
An embodiment of the prevent invention include kits that comprise devices that will enable conventional refueling drogue or other airborne object to be retrofitted for positioning determination and/or to be actively controlled. (Such embodiments also extend to methods of conversion as well.) Such devices might come in the form of a pack that includes a receiver, a signal processor, and/or control surfaces, sensors, etc., necessary to implement positioning determination and/or active control. In some embodiments of the present invention, a pack may have the positioning system and the active control system in one pack, or at least the components that physically interface with the air stream (e.g., the vanes, the control surfaces, etc.) required to implement those systems (the other components may be added directly to the refueling aircraft as long as there is a means to interface with the retrofit packs). Thus, any kit/pack that contains any or all of the above elements of the airborne object positioning system and/or the active control system and/or will permit the implementation of the functions of position determination and/or active control on an existing refueling drogue or other airborne object, may be utilized to practice some embodiments of the invention
It is further noted that the present invention includes software, firmware and/or computers (including simple logic and/or error circuits) adapted to implement the above techniques. Also, while some embodiments of the present invention may be practiced manually, other embodiments may be practiced automatically. Thus, the present invention includes any device or system that may be configured or otherwise used to implement the present invention in an automated manner.
Some embodiments of the present invention may be configured to generate electricity at the refueling drogue 100, to power the receiver, the signal processor and/or the active control system, etc.
As discussed above, the scanning area is treated as being an area that is flat. However, under such treatment, the distance of the scanning area to the radiation emitter will be larger at the edges of the scanning area than at the center of the scanning area (assuming a scanning area centered about the nominal direction of the emitted beam), owing to the change in angle of the beam between the center and the edges of the area. Thus, the distinct sectors of the virtual grid/sub-areas may differ in size between those at the center of the grid/locating area and those at the edges to account for this phenomenon. Indeed, in some embodiments of the invention, the grids are defined by the optical beam. That is, how the beam changes controls the size and shape of the virtual grid/the sub areas. In this respect, the grid is more of a convenient way to express location of the airborne object. If the present invention is practiced to maintain a position of the airborne object, uniformity of the virtual grid is not needed. In fact, the grid could be dispensed with entirely, providing that logic is utilized to control the position of the airborne object. (For example, large look-up tables may be utilized and/or modified fly-by-wire logic may be used corresponding to the various discernable properties as they correspond to orientation of the beam with the radiation emitter. For example, exhaustive if-then routines might be utilized.) Alternatively, the angular change of the orientation of the emitted beam may be varied to utilize a consistently sized grid (i.e., larger angular changes while scanning at the edges of the grid/tracking area than while scanning near the center of the grid. Also, a combination of the two may be utilized.
In this regard, the tracking area/virtual grid may be treated as a curved surface instead of a flat area. In this regard, it is noted that when the airborne object 100/1105 moves relative to the radiation emitter, it is likely that the airborne object 100/1105 will move in three dimensions. That is, assuming that the refueling hose 110 is of a constant length during refueling, a change in position in the “X” or “Y” direction (referring to
As just detailed, embodiments of the present invention may utilize two or more radiation emitters 200. In such a scenario, when utilizing radiation emitters that have the same field of view (discussed in greater detail below), the total scanned area may be increased by a factor of 2 or more. For example, if a first radiation emitter has a field of view of 45 degrees, and the second radiation emitter has a field of view of 45 degrees, a combined field of view of 90 degrees may be obtained (three such emitters might yield 135 degrees, etc.). In some embodiments, the fields of view may be interleaved such that the two radiation emitters overlap a single scan area. (See
Also as just detailed, embodiments of the present invention may utilize two or more receivers 300. This may be done, for example, in a scenario where roll attitude determination of a target (e.g., the drogue, the receiver aircraft, etc.) is desired. In other embodiments, the multiple receivers may be arrayed on respective multiple targets/airborne objects. By way of example, a plurality of receivers may be arrayed on a plurality of receiver aircraft 1105, respectively, and the plurality of receiver aircraft may be tracked. That is, in this exemplary embodiment, multiple receiver aircraft may be optically tracked by a single aircraft 1000 and/or tracked at a location remote from the aircraft 1000 and the multiple receiver aircraft. In such embodiments, one or more emitters 200 may be utilized (e.g., as detailed herein, multiple emitters 200 may be utilized to expand the scanned area), although in some embodiments, a single emitter 200 may be utilized providing that it provides a large enough field of view for the multiple targets to be in the field of view (e.g., sufficient room for maneuvering, etc.). It is noted that in some embodiments of the present invention, a first target may be relatively close to the emitter 200 (such as, for example, during the final approach towards a refueling drogue/boom, while a second target may be relatively far from the emitter 200, thus providing sufficient “room’ for the two targets to maneuver).
Accordingly, in an exemplary scenario utilizing the present invention, two or more airborne objects are positioned proximate the refueling aircraft, each having at least one radiation receiver, respectively. The receivers respectively receive the laser beam(s) emitted from one or more radiation emitters onboard the refueling aircraft 1000, and the modulation of signal(s) carried on the received laser beam(s) is analyzed to determine respective positions of the receivers (and thus the position of the respective airborne objects). Accordingly, the relative position of a plurality of airborne objects may be determined simultaneously. It is again noted that as with a single airborne object, the receiver aircraft (or other remote location from the airborne objects) may be configured to receive information indicative of the location of the airborne objects (e.g., true positioning coordinates, information pertaining to the radiation received by the respective receivers onboard the airborne objects, etc.) transmitted to the receiver aircraft (or other location remote from the airborne objects). Such a scenario will likely be practiced in the event that the airborne objects are drones.
In yet other embodiments, especially those relating to determining the relative location of a receiver aircraft/a component on the receiver aircraft, the “Z” location of the receiver 300 may be determined by configuring the receiver 300 with an aperture of known size so that range information may be extracted based on the number of scan lines that pass through the aperture during a Y sweep and/or an X sweep and/or both. In this regard, referring to
In yet other embodiments, the radiation emitter cycles emission of the beam (i.e., turns the beam on and off) according to a periodic cycle to direct a plurality of lines towards the radiation receiver. The system is adapted to extract information from the radiation emitted from the radiation emitter which is received by the radiation receiver indicative of a straight-line distance between the radiation emitter and the radiation receiver—the information being based on the number of emission cycles detected by the radiation receiver during a predetermined period of time. Also, the system includes an algorithm having parameters such that the higher number of emission cycles that are received by the radiation emitter during the predetermined period of time, the smaller the straight-line distance between the radiation emitter and the radiation receiver.
In some embodiments of the present invention, the receiver 300 includes a laser detector configured to receive the radiation (e.g., the laser beam) emitted from the radiation emitter 200. In an exemplary embodiment, the receiver 300 is in the form of an assembly that corresponds to the conceptual diagram presented on
According to the above, embodiments of the present invention may be implemented utilizing positioning areas and/or positioning volumes in a manner that will permit drogue positioning/station keeping to be implemented according to the present invention. In summary, any coordinate system may be utilized to practice the present invention.
U.S. Provisional Patent Application Ser. No. 60/656,084, entitled Optical Tracking System for Refueling, filed on Feb. 25, 2005, the contents of which are incorporated herein by reference in its entirety, discloses, among other things, embodiments of the present invention configured for wind-tunnel scaled testing of at least some of the methods, devices, and systems as described herein. It is noted that the present invention thus includes the devices, systems and methods disclosed therein, scaled or unscaled. The present invention thus further includes the devices, systems and methods disclosed therein scaled for implementation with the teachings herein.
According to some embodiments of the scaled test model, the optical link is be visible and eye safe; the distance to the target may be about 10 feet, the active area of the scan beam (scanning area) may be about 12.8 inches by about 12.8 inches at the receiver; the grid resolution at the target may be about 0.025″; the beam spot size at the target may be about 0.015″ diameter or less; the frame rate may be about 100 Hz; the receiver active area may be about 0.250″ diameter or more; and the receiver may have a field of view of 30° (i.e. a conic included angle of 30°). Still further, according to some embodiments of the scaled test model, there may be 512×512 scan lines in a frame; there may be 18 bits minimum of encoding information on the beam for each position on the target grid such that (assuming 18 bits) a 26.2144 MHz data rate will be achieved, i.e., 512×512×100=26.2144 MHz data rate; encoding on the beam may be of a form that permits quick recognition that only a partial data frame has been received; sync and/or framing bits may be permitted, while recognizing that the data rate increases proportionally with the additional bits; and a single complete block of position data may take 0.78 μs. Such features may be scaled for implementation in a system as described herein for aerial refueling. By way of example, in some embodiments, it is expected that a frame (e.g., an complete horizontal and vertical scan) may be completed with a speed such that 20 frames/second may be accomplished. That is, one frame may be accomplished in 50 milliseconds. By way of example, a horizontal scan might take 20 milliseconds, and a vertical scan might take 20 milliseconds. If there were 500 rows/columns per scan, at 20 bits per row/column, 10,000 bits of information would be conveyed in 20 milliseconds.
As detailed herein, aircraft (including drogues, etc.) are subject to turbulence. In a scenario where the aircraft 1000 is subjected to turbulence, the radiation emitter 200 will likewise be subject to turbulence. In this regard, an embodiment of the present invention addresses this by providing a motion compensation system (see
The output of the receiver function may be an RS-232 data stream containing 3 bytes of data and running at 115.2 Kilo Baud. This data may be only the 18 bit position information without any sync or header bits. This message may be the code for the frame that is nearest the center of the receiver. This may be determined by analyzing all complete frames within the field of view of the receiver. This message stream may repeat at 100 Hz. Synchronization of the 3 byte frame may be either relative to the start of a complete scan frame or relative to the receiver processing element.
The transmitter may be self contained and may require only power applied to function. All beam forming, scanning, and modulation elements may be supplied. The transmitter may optionally be in two parts: an optical head; and an electronics assembly. Separation of up to 8 inches may be present between the optical head and the electronics if the transmitter is a two part unit.
The mounting on the receiver may have dynamic motion up to a frequency of 10 Hz; this motion may include both translation and rotation. Assuming an edge to edge motion over the 12.8 inch range at 10 Hz, the receiver will move 10 inches per 0.1 s. (i.e., at a rate of 100 inches per 1.0 s=0.0001 inches per 1.0 μs).
Although ambient light directed into the receiver may not be eliminated, it can be reduced or be made to be indirect. Moreover, although the receiver may be bandwidth limited by the use of optical filters, the operating wavelength may be in the visible band and, therefore, ambient light may still be present.
An exemplary implementation of an embodiment of the invention suitable for wind tunnel testing is as follows, and may be scaled accordingly for actual implementation.
A two-axis design may be utilized. Multiple optical paths, multiple scan configurations for a given optical path may be used. UV lasers or red lasers may be used. Single or dual galvanometer designs may be used. An internal line generator or an external line generator may be used. In fact, an “internal-external line generator” may be used, because without an internal line generator, the laser beam may be wide enough to appear on both the X and Y turning mirrors simultaneously, and thus appeared in the X and Y scan fields simultaneously. An internal line generator is thus useful, but the device may also have external line generating optics. Indeed, in some embodiments, a single galvo or dual galvo, either having internal LG optics, external LG optics or internal and external LG optics, may be utilized. A single galvo with internal line generator may be used, having three simple mirrors. Two sizes may be used: ½″×½″ and 1″×1″. Small line generation optics are used, with a simple optics mounting. FIGS. 26 to 31 schematically represent various galvo designs, while FIGS. 32 to 33b schematically represent beam emission in elapsed time. It should be noted that the axis representations in these figures may not correspond exactly to those in the prior figures. In an exemplary embodiment, the radiation emitter includes a single line optical beam emitter, a prism, and a rotatable mirror assembly, wherein the radiation emitter is adapted to rotate the rotatable mirror assembly so that a single line optical beam emitted by the single line optical beam emitter is deflected by the mirror to project the emitted single line optical beam in a first orientation. The radiation emitter is further adapted to rotate the rotatable mirror assembly so that the single line optical beam emitted by the single line optical beam emitter passes through the prism to project the emitted single line optical beam in a second orientation different from the first orientation. In this manner, a single optical beam projector (e.g., laser) may be used instead of two projectors (laser generators). Of course, other embodiments of the present invention may utilize multiple generators that are synchronized to obtain lines at various orientations.
Regarding line quality and characteristics, to obtain a beam width of 0.25″ at 75 feet, using a UV laser diode with an emitting region of approximately one micron in width, a diffraction-limited cylindrical lens of at least 3 mm diameter is used, located at least 3 mm from the emitting region. Accordingly, a line width of 2 mm at a range of 8 feet, using a 635 nm laser, and a line width of 10 mm at 75 feet, with the same laser module may be obtained.
Since scanning may be done by a single axis scanner, rather than a tip-tilting plate, scans in the X and Y directions may have different virtual centers. The apparent sources of the X and Y scans are separated by approximately 9 mm in the X-direction, 13 mm in the Y-direction, and 13.5 mm in the Z direction (again, these axis may not correspond to those in the figures previously referred to herein). This has two effects on the scan registration at the sensor, both of which are minor at more than several feet working distance. The first effect is due to the apparent lateral separation of the sources. This parallax error results in the misregistration of the X- and Y-scans with changing ranges. The effect is about the same as what one would see if one held a flashlight in each extended hand, and aimed them at a single object. Objects both closer and farther away would register in different parts of the two beams. The effect is very small, though, since the virtual separation of the sources in the actual device is only about 16 mm. When the object is 8 feet away, the beam centers diverge at arctan(16/2400), or 0.38 degrees. This would result in a mis-registration of 1 mm for every 6 inches change in range. At a range of 75 feet, it would result in a mis-registration of 1 mm for every 56 inches change in range. Moreover, computers may be used to compensate for this. The only practical effect of this mis-registration is to reduce the coincident area over which both beams scan, as the range changes. Because the beams grow with range, the parallax error shrinks as a percentage of the area scanned. When the beams are aligned at 75 feet, this parallax error will cause the beams to overlap by only 90% when the range shrinks to 10 feet or so, 100% at 75 feet, and about 95% at one mile. For testing the system will be aligned at a range of 8 feet.
The second effect is due to the apparent longitudinal separation of the X and Y beam sources. This effect causes the Y beam to scan an area which is 1.3 mm larger than the X beam at any given range. This effect is negligible at all ranges where the beams are coincident.
The mirrors in the scanner are oriented to minimize errors of the scan. These errors take the form of coincidence errors, perpendicularity errors and keystone errors. Keystone errors cause the scan to travel farther along one edge than the other (the beam is actually sweeping out part of a large circle in the image plane), resulting in a keystone shaped scanned area. Perpendicularity errors cause the X and Y scans to travel at an angle other than 90 degrees to each other. Coincidence errors cause the centers of the X and Y scans to be non-coincident in the image plane. The result of these errors is to reduce the area of coincidence over which the X and Y scans travel and, in the case of perpendicularity errors, add crosstalk between the two axis. The mirrors are arranged so that all of these errors are normally either zero throughout the scan or at a minimum (zero) at the center of the scan.
Manufacturing errors in the mirror supports can move the orientations of the mirrors away from their designed positions, and thus cause the above-mentioned errors to become non-zero. Typical manufacturing errors are on the order of 0.003″. Assuming that each of the mirrors has a tilt error of this magnitude across its surface, the resulting scanned area at a range of 75 feet would be significantly reduced.
Manufacturing errors can be corrected by building into the device an X tilt adjustment on the X scan mirror and a Y tilt adjustment on the Y scan mirror. When those two adjustments are used to correct the manufacturing errors, the resulting scan can be restored to nearly its original condition. Even if some error, such as perpendicularity error, remains, as long as it is small, it may be effectively ignored.
The following material might be used to implement this embodiment: A fabricated XY scan mirror support block, a fabricated X scan mirror support block a fabricated Base, a fabricated Y scan mirror support block, a fabricated Laser support block, a fabricated Scanner support block a fabricated Laser aperture, a Thorlabs 2nd Y-scan mirror—ME1S-G01, a Thorlabs 1st Y-scan mirror—ME1S-G01, a Thorlabs X scan mirror—ME05S-G01, a Nuffield Technology, Inc. Scanner Mirror—10 mm X mirror, assembly, a Nuffield Technology, Inc. Scanner—Part No. HS-15C, a World Star Tech Laser Module—Part No. UTL5-10G-635.
In some embodiments, the scan area is 2′×2′ at 12′ distance. Operation is at 25 Hz.
Again, the above may be scaled for actual implementation.
It is noted that while the above has been described in terms of application for determining a position of a refueling drogue relative to a reference point, and thus controlling the position of the refueling drogue relative to a refueling point, other embodiments of the present invention might be utilized to determine the location of other types of targets and/or control the location of those targets. Such targets may include, for example, aircraft, landcraft, boats, autonomous drones, satellites, a refueling boom extended from the refueling aircraft, etc. Indeed, some embodiments of the present invention may be implemented by placing a radiation emitter up on a tower, and scanning an area below the tower, such as a runway, a parking lot, a construction site, etc, and using the invention to control/position autonomous drones, autonomous vehicles (alleviating the need for a parking attendant), construction equipment such as bulldozers, etc.
In this regard, in an embodiment where the targets are aircraft (e.g., autonomous drones, a scan head may be placed on the aircraft 1000 so that the scan head will generate a modulated laser line as detailed herein. The mirror equipped galvanometer rotates a rotating mirror off of which the laser from the laser diode is reflected onto various fixed mirrors to generate the scan sweep. As may be seen, the scanner head includes three fixed mirrors. These fixed mirrors are used to form the grid detailed above. In this regard, referring now to
The galvanometer of the exemplary embodiment depicted in
In some embodiments, the galvanometer is driven with a sawtooth waveform such that the galvanometer is swept through an active range in a linear manner, and then it is returned, or “flies back,” to the initial starting point (and thus the rotating mirror is so swept).
The radiation emitter 200 according to an exemplary embodiment of the present invention is mounted inside the aircraft 1000 (in some embodiments, it is a fully self contained unit requiring only power from the aircraft), and sometimes is mounted inside the pressure vessel of the aircraft, although in other embodiments, the emitter 200 may be mounted exteriorly to the aircraft and/or outside the pressure vessel. An exemplary embodiment of the emitter 200 transmits the scanning beams through a 2 inch diameter quartz aperture.
When used to scan other aircraft (e.g., a receiver aircraft, which may be a drone), it is expected that optical tracking may be executed at a range of at least about 1000 feet below and 1500 feet behind the aircraft 1000. In such an embodiment, a scan head that has a 30 degree field of view may be utilized. That is, the scan head outputs beams that scan through 30 degrees in each scan pass, although more narrow or broader fields of view (e.g., 20 degrees, 45 degrees, etc.) may be utilized depending on the desired performance characteristics of the optical tracking system.
Some embodiments are NVG (night vision goggle) compatible, and have a low probability of detection/interception (e.g., in some embodiments, the scan beam is attenuated outside of a 3000 feet radius from the radiation emitter 200). The optical tracking system may provide a reference system independent of a global positioning system, intertial navigation system, etc.
Some embodiments of the present invention permit ease of calibration and include built in test features. In this regard, such features are related to the desire to obtain accurate beam modulation timing so that clock pulses are adequately synchronized in accordance with a saw-tooth waveform. (In an exemplary embodiment, the pulsation of the laser diode corresponds to a clock signal, and thus the pulsation may be considered a clock itself.) That is, the pulsation of the beam may be represented by a series of uniform square waves (see
It is noted that some embodiments of the present invention include a warning system to indicate to a user when the optical tracking system should and/or should not and/or should be used with caution.
Given the disclosure of the present invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the present invention. Accordingly, all modifications attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention accordingly is to be defined as set forth in the appended claims.
This patent application is a Continuation In Part of U.S. patent application Ser. No. 11/249,262, entitled Optical Tracking System for Refueling, filed on Oct. 14, 2005, the contents of which are incorporated herein by reference in its entirety, which in turn claims priority to U.S. Provisional Patent Application Ser. No. 60/656,084, entitled Optical Tracking System for Refueling, filed on Feb. 25, 2005, the contents of which are incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60656084 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11249262 | Oct 2005 | US |
Child | 11848224 | Aug 2007 | US |