The present invention relates to an optical transceiver module, and more particularly, to a bi-directional optical transceiver module that multiplexes or demultiplexes light having multiple wavelengths.
In the field of information and communication, the communication traffic for exchanging a large amount of data at a high speed by using light has been improved rapidly in recent years. Particularly, the use of broadband access lines has been accelerated in accordance with the explosive growth of the Internet, and FTTH (Fiber To The Home) services have been significantly established in the market. Among optical transmission systems of FTTH, the PON (Passive Optical Network) system, which allows plural subscribers to share one optical fiber, is now enjoying an increasing demand. The PON system receives data transmitted from a central office through one optical fiber, branches the received data to 16 to 32 optical fibers by using a splitter, and distributes the data to each subscriber's home or office, thereby greatly reducing the cost of laying optical fibers.
An ONU (Optical Network Unit) is installed at a subscriber's home or office as a terminal device. The ONU subjects a downlink signal (having a wavelength of 1.5 μm), which is transmitted from the central office to the subscriber's home or office, and an uplink signal (having a wavelength of 1.3 μm), which is transmitted from the subscriber's home or office to the central office, to wavelength division multiplexing (WDM), and transfers the uplink and downlink signals with the same optical fiber. A dual-wavelength bi-directional optical module is mounted in the ONU. This optical module basically includes a laser diode (LD) for transmitting an uplink signal, a photodetector (PD) for receiving a downlink signal, and a WDM filter for separating uplink and downlink signals.
A conventional module system is shown in
However, as is the case with the first example described earlier, it is necessary to arrange the laser diode 182, photodetector 186, and wavelength-selective filter 183 in a three-dimensional pattern. As downsizing is achieved, it is necessary to mount the above parts with increased accuracy. Further, the process of axis alignment becomes complicated. Moreover, when, for instance, a triple-wavelength bi-directional optical module is to be manufactured in consideration of extensibility, it is necessary to increase the number of optical parts and the mounting area at least twofold. This makes downsizing and cost reduction more difficult.
As described above, the conventional technologies involve many optical parts mounting steps including those for optical devices. In addition, the tolerance of positional accuracy of a wavelength demultiplexer, or more particularly, the tolerance of angular displacement, is low. Therefore, highly accurate mounting is required so that it is difficult to achieve an adequate yield. Further, when extensibility is taken into consideration, the number of optical parts and the mounting area need to be increased approximately twofold, and downsizing and highly accurate mounting of optical parts are demanded. This makes it more difficult to achieve an adequate yield.
Accordingly, the present invention relates to an optical module that is used as a multiple-wavelength optical transmission or single-conductor bi-directional optical transmission terminal device for transmitting light having plural wavelengths with one optical fiber. An object of the present invention is to provide an optical module that is capable of significantly reducing the number of mounting steps, permitting downsizing, and achieving a high yield without sacrificing low-loss optical characteristics and high reliability.
To address the above problems, according to an aspect of the present invention, there is provided an optical transceiver module including an optical device mounting substrate and an optical multiplexer/demultiplexer. One laser diode and at least one photodetector, which are positioned in the same plane, are mounted on the optical device mounting substrate. The optical multiplexer/demultiplexer is typically prepared by mounting a wavelength-selective filter and a mirror on the front and back surfaces of a transparent substrate. The optical device mounting substrate and the optical multiplexer/demultiplexer are mounted in a package in such a manner that the optical device mounting surface and the filter surface are not parallel to each other. Optical devices using different operating wavelengths are mounted on the optical device mounting substrate and positioned at desired locations thereof. The optical multiplexer/demultiplexer uses a support substrate that has a pair of parallel opposing surfaces and is made of a material transparent to optical wavelengths. One of the pair of parallel surfaces is provided with at least one type of a wavelength-selective filter, whereas the remaining surface is provided with a mirror that reflects light having wavelengths unselected by a first filter.
In the above instance, the filter and mirror are provided with a window for incoming light and outgoing light. The optical transceiver module also includes a first lens and a second lens. The first lens is positioned near the laser diode or monolithically integrated with the laser diode. The second lens converges the light coming out of the optical multiplexer/demultiplexer toward an optical fiber. Further, the second lens has a larger diameter than the first lens.
An operation of the optical transceiver module according to an aspect of the present invention will now be described with reference to
As shown in
A first feature of the present invention is that plural filters are automatically aligned simply when glass substrate alignment is effected once. This greatly reduces the number of mounting steps. A second feature is that the laser diode and photodetectors are mounted on an optical device mounting substrate in a planar arrangement. This significantly simplifies the process of mounting and provides highly accurate mounting as compared with a case where a three-dimensional mounting scheme is employed. Further, alignment is achieved simply by effecting optical device mounting substrate alignment. This makes the number of processes smaller than when various devices are individually aligned.
When the angle of the substrate is θ1, the angle of incidence (incidence angle) of the light emitted from the optical fiber or the laser diode 11 with respect to the perpendicular direction of the substrate surface is θ1. According to the Snell's law, the angle θ2, which prevails in a substrate material after refraction, is equal to sin−1(n1×sin θ1/n2) when the refractive index of the outside is n1 and the refractive index of the substrate is n2.
In the above instance, the cycle y of multiple reflection in the substrate is 2d tan θ2 when the thickness of the transparent substrate is d. When the multiple-reflected light is wavelength-separated by a filter on the earlier-described principle and emitted to a plane perpendicular to the optical axis for incidence, its cycle z is 2d tan θ2×cos θ1. As the cycle z corresponds to the intervals between devices mounted on the device mounting substrate, the values d and θ1 need to be determined so as to provide appropriate device intervals. The value z needs to be 100 μm or greater because the devices are not smaller than 100 μm in size. A third feature is that the lens 4 has a larger diameter than the lens 1001. This makes it possible to greatly increase the tolerance on the position gap of the laser diode 11.
Embodiments of the present invention relate to an optical transmitter module that multiplexes light having plural wavelengths and transmits the multiplexed light, an optical receiver module that demultiplexes multiplexed light into individual wavelengths and receives the demultiplexed light, or a single-conductor bi-directional optical transceiver module. The embodiments provide an optical module that is capable of significantly reducing the number of optical parts and the number of mounting steps, permitting downsizing, and achieving a high yield without sacrificing low-loss optical characteristics and high reliability. The embodiments also provide a method for manufacturing such an optical module.
The embodiments of the present invention will now be described with reference to the accompanying drawings.
The interior of the CAN cap 3 is provided with surface irregularities so that the optical multiplexer/demultiplexer can be mounted on the CAN cap 3. The optical multiplexer/demultiplexer 2 uses a transparent glass substrate 5 as a support substrate. A first wavelength-selective filter 6 and a second wavelength-selective filter 7, which are positioned adjacent to each other, are mounted on one surface of the transparent glass substrate 5. A first mirror 8 and a second mirror 9 are mounted on the opposing surface that is parallel to the surface on which the wavelength-selective filters 6, 7 are mounted. The transparent glass substrate may be made of amorphous glass, sapphire crystal, crystal quartz, or silicon.
When the optical multiplexer/demultiplexer is to be mounted on the CAN cap, it is externally fit on the surface irregularities of the CAN cap and glued to its position with UV-curable resin. The glass substrate is made of BK7 and 1136 μm in thickness. The glass substrate is mounted in such a manner that its angle relative to the plane is 20°. The value z in
The first wavelength-selective filter 6 has a separation wavelength λth that is given by the expression λ1<λth<λ2. More specifically, the first wavelength-selective filter 6 is a so-called short-pass filter that allows light having a wavelength shorter than λth to pass through and reflects light having a wavelength longer than λth. The second wavelength-selective filter 7 is a short-pass filter having a separation wavelength λth that is given by the expression λ2<λth<λ3. An alternative is to use a first wavelength-selective filter 6 having a separation wavelength λth that is given by the expression λ2<λth<λ3 and allows light having a wavelength longer than λth to pass through and reflects light having a wavelength shorter than λth, and use a second wavelength-selective filter 7 that is a short-pass filter having a separation wavelength λth that is given by the expression λ1<λth<λ2.
The first mirror 8 is identical with the first wavelength-selective filter 6, whereas the second mirror 9 is identical with the second wavelength-selective filter 7. A vertical emitting LD in which a microlens is integrated is used as the laser diode 11 on the optical device mounting substrate. Although an edge emitting LD may be used as the laser diode 11, it is preferred that a vertical-emitting type be used to provide ease of mounting. It is also preferred that a lens-integrated type be used to provide ease of optical coupling and reduce the number of parts. For the same reason, it is preferred that the photodetectors 12, 13 be of a surface-incident type. An amplifier and a capacitor are also mounted in the CAN package. However, they are not shown in the figure because they are the same as those used in a conventional case.
The material for the transparent substrate 5 is not limited, and is acceptable as far as it is transparent to the operating wavelength. However, it is preferred that an inexpensive material exhibiting high processing accuracy be used. In that sense, BK7 is used in the present embodiment. It is obvious, however, that other glass materials, a dielectric material, or a semiconductor material may be used as well.
An operation performed in the above-described configuration will now be described. Light having a wavelength of λ1 is emitted from the laser diode 11 and delivered to the first wavelength-selective filter 6. The first wavelength-selective filter 6 allows the light having a wavelength of λ1 to pass through. The light is then refracted by the transparent substrate. The refracted light travels in parallel rays along an optical path and optically connects to an external optical fiber through the package lens 4. Meanwhile, light obtained by multiplexing light having wavelengths of λ2 and λ3, which is emitted from the optical fiber, is incident on the transparent glass substrate, then refracted, and delivered to the first wavelength-selective filter 6. The light having wavelengths of λ2 and λ3 is then reflected and delivered to the opposing first mirror 8. As the first mirror 8 is identical with the first wavelength-selective filter 6, the light having wavelengths of λ2 and λ3 is reflected again. The mirror 8 is identical with the filter 6 in order to provide an enhanced capability of blocking a wavelength of λ1. The light having a wavelength of λ1, which is emitted from the laser diode 11, is slightly reflected from the surface of the lens 4, the end face of the optical fiber, and some other places. The reflected light then serves as return light and becomes incident again. When the return light having a wavelength of λ1 is incident on the photodetectors 12, 13, it becomes noise even if its amount is small. Although the return light having a wavelength of λ1 passes through the filter 6, a small amount of it is reflected. Therefore, the light is allowed to pass through the mirror 8 again to further reduce its amount.
For the reason described above, the present embodiment uses the mirror 8 that is identical with the filter 6. However, when the specifications for wavelength separation are not stringent, satisfactory results can be obtained by using a normal mirror that is not wavelength-dependent.
The light reflected from the mirror 8 is incident on the filter surface again. In the simplest design, the light reflected from the mirror 8 is incident on a second filter. In the configuration according to the present embodiment, however, the light reflected from the mirror 8 is incident on the filter 6 again so as to reciprocate once again between the filter 6 and the mirror 8. This configuration is employed to ensure that the interval between the laser diode 11 and the photodetector 12 is larger than the projection of multiple reflection pitch. The reason is that the laser diode, which is driven at a high speed, may become a noise source for the photodetectors (so that electrical crosstalk occurs). If electrical crosstalk and other interferences are not anticipated, it is preferred that the multiple reflection pitch in the glass substrate coincide with the mounting pitch of devices to minimize the number of reflections.
The light that has reciprocated two times between the filter 6 and the mirror 8 becomes incident on the second wavelength-selective filter 7. The light is then separated into light having a wavelength of λ2 and light having a wavelength of λ3. The light having a wavelength of λ2 is allowed to pass through the filter, refracted, and vertically incident on the photodetector 12. Meanwhile, the light having a wavelength of λ3 is reflected and then incident on the mirror 9. For the same reason as for the mirror 8, the mirror 9 uses the same dielectric multilayer filter as the filter 7. The light reflected from the mirror 9 passes through an AR-coated interfacial surface without a filter and becomes incident on the photodetector 13. In this instance, the light emitted from an optical fiber (not shown) is converged toward either the photodetector 12 or the photodetector 13 by the lens 4. When the lens 4 has a larger diameter than the lens 1001, it is possible to increase the tolerance on the position gap of the laser diode 11.
The glass substrate is made of transparent glass that has a refractive index of 1.5 and a thickness of 697 μm. The glass substrate is mounted in such a manner that its angle relative to the plane is 30°. The package lens has a focal length of 1.98 mm, an NA of 0.04 at a multiplexer/demultiplexer side light intensity of 1/e2, and an NA of 0.09 at a fiber side light intensity of 1/e2. The laser diode 191 on the optical integrated substrate is a vertical emitting laser diode that is prepared on an InP substrate. The oscillation wavelength of the laser diode is in a 1.3 μm band. A lens 1008 is monolithically integrated with the vertical emitting LD. The lens 1008 is such that the angle of laser beam emission from the laser diode is 4°.
The present invention relates to an optical module that is used as a multiple-wavelength optical transmission or single-conductor bi-directional optical transmission terminal for transmitting light having multiple wavelengths with one optical fiber. The present invention provides an optical module that can significantly reduce the number of optical parts and the number of mounting steps, for instance, by performing a batch wafer processing operation, permit downsizing, and achieve a high yield without sacrificing low-loss optical characteristics and high reliability. The present invention also provides a method for manufacturing such an optical module.
Number | Date | Country | Kind |
---|---|---|---|
2007-333988 | Dec 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/003766 | 12/15/2008 | WO | 00 | 6/24/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/081539 | 7/2/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4244045 | Nosu et al. | Jan 1981 | A |
4701012 | Kaiser | Oct 1987 | A |
5119454 | McMahon | Jun 1992 | A |
5835517 | Jayaraman et al. | Nov 1998 | A |
5894535 | Lemoff et al. | Apr 1999 | A |
6008920 | Hendrix | Dec 1999 | A |
6167171 | Grasis et al. | Dec 2000 | A |
6198864 | Lemoff et al. | Mar 2001 | B1 |
6201908 | Grann | Mar 2001 | B1 |
6396978 | Grann | May 2002 | B1 |
6819871 | Baldwin et al. | Nov 2004 | B1 |
6941047 | Capewell et al. | Sep 2005 | B2 |
6945711 | Chen et al. | Sep 2005 | B2 |
7260328 | Kropp | Aug 2007 | B2 |
7840100 | Goldenberg et al. | Nov 2010 | B2 |
20020018635 | Hsieh et al. | Feb 2002 | A1 |
20020081073 | Lee et al. | Jun 2002 | A1 |
20030058520 | Yu et al. | Mar 2003 | A1 |
20030152113 | Kropp | Aug 2003 | A1 |
20030190126 | Toyoshima et al. | Oct 2003 | A1 |
20040013366 | Morris et al. | Jan 2004 | A1 |
20040101247 | Chen et al. | May 2004 | A1 |
20040165828 | Capewell et al. | Aug 2004 | A1 |
20040208452 | Kropp | Oct 2004 | A1 |
20050089268 | Chen et al. | Apr 2005 | A1 |
20100278482 | Adachi et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
9-15442 | Jan 1997 | JP |
2005-352065 | Dec 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20100278482 A1 | Nov 2010 | US |