The present disclosure relates to optical communication, more particularly to an optical transceiver.
Optical modules, such as optical transceivers, are generally installed in electronic communication facilities in modern high-speed communication networks. In order to make flexible the design of an electronic communication facility and less burdensome the maintenance of the same, an optical transceiver is inserted into a corresponding cage that is disposed in the communication facility in a pluggable manner. Different form factors for the optical transceivers such as XFP (10 Gigabit Small Form Factor Pluggable) used in 10 GB/s communication rate, QSFP (Quad Small Form-factor Pluggable), or others including QSFP28 and QSFP-DD (double density) at different communication rates have been made available.
The internal design of an optical transceiver can have a large impact on the thermal performance of a QSFP-DD transceiver in a system. The goal of a system thermal design is to properly remove the heat, so that the internal components within the transceiver could stay within certain temperature ranges when operating to enhance optimal performance and reliability.
The present disclosure will become more fully understood from the detailed description given below and the accompanying drawings which are given by way of illustration only and thus are not intending to limit the present disclosure and wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. According to the description, claims and the drawings disclosed in the specification, one skilled in the art may easily understand the concepts and features of the present disclosure. The following embodiments further illustrate various aspects of the present disclosure, but are not meant to limit the scope of the present disclosure.
Please refer to
The housing 10 includes an upper casing 110 and a lower casing 120 assembled together. The housing 10 may be configured to be inserted into a cage in pluggable manner for optical communication.
The optical communication module 20 is accommodated in the housing 10, and the optical communication module 20 may include a substrate 210 and an optical communication component 220. The substrate 210 is, for example, a circuit board accommodated in the housing 10. The substrate 210 may include one or more electrical interfaces 211 functioning as an electrical port of the optical transceiver 1, and a fiber connector 212, such as MPO, LC, CS or SN interface, functioning as a fiber optic port of the optical transceiver 1 opposite to the electrical port. The optical communication component 220 is provided between the substrate 210 and the upper casing 110 of the housing 10. The optical communication component 220 may be a transmitter optical sub-assembly (TOSA) which may include a laser diode (LD) and monitor photodiode (MPD), or a receiver optical sub-assembly (ROSA) which may include a photodiode and a trans-impedance amplifier (TIA). The optical communication component 220 may be electrically connected with a driver IC chip (not shown in the drawings) mounted on the substrate 210.
The heat conductive module 30 may include a carrier 310 mounted on the substrate 210 of the optical communication module 20, and an interlayer element 320 provided between the upper casing 110 of the housing 10 and the optical communication module 20. The optical communication component 220 is supported on and in thermal contact with the carrier 310, and the carrier 310 is in thermal contact with the interlayer element 320. The carrier 310 may feature lower thermal expansion coefficient and be made of high hardness material such as tungsten copper alloy. The interlayer element 320 may be a thermal pad or a copper plate.
The rib structure 40 is mounted on an inner surface of the upper casing 110 of the housing 10. Specifically, the rib structure 40 may be monolithically formed on the upper casing 110 by molding process. The rib structure 40 may include a plurality of ribs 410, and a gas flow passage 400 may be formed between each pair of adjacent ribs 410 of the rib structure 40. The optical communication component 220 is in thermal contact with the housing 10 through the heat conductive module 30 and the rib structure 40. Specifically, the interlayer element 320 of the heat conductive module 30 may be provided between the rib structure 40 and the optical communication component 220. At the same time, the interlayer element 320 may physically touch the ribs 410. The optical communication component 220 may be in direct thermal contact with one side of the interlayer element 320 and/or in indirect thermal contact with the interlayer element 320 through the carrier 310, and the other side of the interlayer element 320 may be in thermal contact with the rib structure 40.
The optical communication component 220 is supposed to generate heat during its operation, and some amount of such heat is transferred through the heat conductive module 30 and the rib structure 40 to reach the upper casing 110. Also, an external airflow can flow into the housing 10 through the gas inlet 111 by natural or forced convection, helping to transfer some of that heat based on the movement of airflow flowing through the gas flow passages 400. At least a part of the heat generated over the course of the operation of the optical transceiver 1 might be properly flown out of the optical transceiver 1 through the gas outlet 112.
In this embodiment, the interlayer element 320 of the heat conductive module 30 may be attached to the rib structure 40 by thermally conductive adhesive or electrically conductive adhesive for electromagnetic interference (EMI) shielding. The attachment performed by thermally conductive adhesive could decrease the thermal contact resistance between the interlayer element 320 and the ribs 410. The attachment performed by electrically conductive adhesive can help preventing EMI.
In this embodiment, the interlayer element 320 may have a corresponding cross-sectional profile with the rib structure 40. As shown in
In this embodiment, the rib structure 40 may include an enlarged section 420 where the gas flow passage 400 is enhanced in a direction from the rib structure 40 toward the substrate 210 of the optical communication module 20. As shown in
In this embodiment, the optical transceiver 1 may further include a heat sink 50 mounted on an outer surface of the housing 10, as shown in
As to devices for high-speed communication such as QSFP-DD 800G optical transceiver, since some active components with high output power, especially an optical subassembly, a single metallic element is insufficient to handle the entire heat dissipation. Due to a large amount of heat generated by the active components, heat accumulation may occur in the heat conductive component.
According to the present disclosure, a rib structure on the inner surface of the housing provides a gas flow passage between each pair of adjacent ribs. When the optical communication component generates the heat during its operation, some amount of heat is transferred through the heat conductive module and the ribs to reach the housing. Also, some amount of heat can be transferred due to the movement of airflow flowing through the gas flow passage. The ribs on the housing provides thermal conduction for heat dissipation, and the gas flow passage formed by the rib structure provides thermal convection for heat dissipation, thereby helping to prevent heat accumulation.
The embodiments are chosen and described in order to best explain the principles of the present disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the present disclosure and various embodiments with various modifications as are suited to the particular use being contemplated. It is intended that the scope of the present disclosure is defined by the following claims and their equivalents.