[
[
[
[
[
[
[
[
[
Embodiments of the invention will be described below in detail with reference to the accompanying drawings.
Of them, the first frequency conversion device 3 provided on the optical transmission apparatus A side converts a frequency band of an electric signal transmitted from the signal source 1, into an intermediate frequency (IF) lower than this frequency band, that is, into a specific frequency band with reflection resistance.
In the optical transmission system according to this embodiment, the first frequency conversion device 3 converts the frequency band into an intermediate frequency (IF) which is a frequency (specifically described later) with reflection resistance. Accordingly, even if there is a reflection portion 8 in the optical fiber transmission line 5, superior optical transmission having no characteristic deterioration can be performed. In other words, even if an electronic signal of a transmission frequency x output from the signal source 1 is within a frequency range having no reflection resistance, the electronic signal can be transmitted with the frequency being converted into a frequency f in an optimal frequency band where there is no fear that deterioration in transmission characteristic occurs due to influence of multiple reflection or the like. Thus, good transmission can be obtained even in the optical fiber transmission line 5 where reflection is present.
Factors of characteristic deterioration due to optical reflection are found by the inventor of the present invention and will be described here.
A signal of a frequency x (electric signal frequency x) output from the signal source 1 is put into the semiconductor laser 4 serving as an E/O converter (electro-optic converter) through the electric transmission line 2A, so as to generate an optical signal with modulated intensity. Next, this optical signal with modulated intensity is transmitted through the optical fiber transmission line 5, and O/E-converted in the photodiode 6 serving as an O/E converter (opto-electric converter). Here, when there occurs no reflection portion in the optical fiber transmission line 5, only deterioration components generated in the semiconductor laser 4 (E/O converter), the photodiode 6 (O/E converter) and so on are added to the transmitted signal (see the shaded portion in
An optical signal output from the signal source 1, put in the semiconductor laser 4 serving as an E/O converter through the electric transmission line 2A and E/O-converted in the semiconductor laser 4 is guided into the optical fiber transmission line 5 and propagated therein. The optical signal is detected and then converted into an electric signal by the photodiode 6 serving as an O/E converter.
However, when there are reflection portions 8 in the optical fiber transmission line 5 (assume that there are two reflection portions 6), there are not only a component (α) incident directly on the photodiode 6 from the semiconductor laser 4 but also a component (β) derived from light multiple-reflected between reflection portions 8A and 8B and incident on the photodiode 5 additionally with a delay, and a component (γ) derived from light Fresnel-reflected by the reflection portion 8A and incident on the semiconductor laser 4 again. Here, when the optical signal component (α) propagated directly and the optical signal component (β) multiple-reflected are detected in the photodiode 6, the optical signal component (β) appears as beat noise in the electric signal, and behaves as an unnecessary component for the original optical signal component (α). Thus, the transmission quality is affected.
Next, qualitative description will be made about behavior of light when multiple reflection occurs due to the existence of the reflection portions 8 (8A and 8B) in the optical fiber transmission line 5, and particularly about the mechanism of occurrence of low-frequency region phase noise.
The present inventor carried out testing for evaluating the CNR characteristic when multiple reflection was present due to the existence of the reflection portions 8 in the optical fiber transmission line 5.
In addition, an optical isolator is generally provided in a light output portion of the semiconductor laser 4. In recent years, however, due to request to reduce the cost, there is a case that no optical isolator is used particularly when a Fabry-Perot type semiconductor laser having a certain amount of resistance against reflected return light is used. In this case, a part of an optical signal reflected by the reflection portion 8 (mainly shown by γ in
Therefore, testing to evaluate frequency dependency was carried out upon reflected return light (optical signal component γ) in the same manner as upon the aforementioned multiple reflection.
It is understood from
In such a manner, the present inventor acquired knowledge that when the reflection portions 8 are present in the optical transmission line 5, the CNR characteristic deteriorates due to the aforementioned reflected light components (optical signal components β and γ) while the deterioration is smaller on the high frequency side due to frequency dependency thereof. The present inventor can first obtain this behavior of light in the light transmission line as a result of various experiments and theoretical consideration as described above.
Next, description will be made about an optical transmission system according to a second embodiment of the present invention. In this embodiment, parts the same as those in the first embodiment are referenced correspondingly, and redundant description thereof will be avoided.
Here, in the optical transmission apparatus according to this embodiment using the single-mode oscillation semiconductor laser 4 as an E/O converter, the present inventor measured CNR characteristic after transmission for an intermediate frequency (IF) f in the same manner as in
With deterioration in reflection condition, 1 dB or more deterioration was observed also in CNR. Thus, it was proved that reflection resistance has frequency dependency. That is, it was proved that in a bad reflection condition (total return loss<40 dB; the broken line portion in the graph of
2 GHz<f
The return loss due to Rayleigh scattering (scattering phenomenon caused by resonance between light and crystal grains) occurring in a flat polished connector or a long-distance fiber is about 30 dB. It was therefore proved that when multiple reflection due to such reflection or such scattering is present in the optical transmission line (total return loss<60 dB; the solid line portion in
500 MHz<f (1)
In such a manner, in the optical transmission apparatus according to this embodiment using the single-mode oscillation semiconductor laser 4, the intermediate frequency f is set in a range satisfying the expression (1). Accordingly, even if two reflection portions are present in the optical fiber transmission line 5, good transmission without characteristic deterioration caused by multiple reflection can be realized.
Next, an optical transmission system according to a third embodiment of the present invention will be described. In this embodiment, parts the same as those in the first embodiment are referenced correspondingly, and redundant description thereof will be avoided.
Here, by use of the optical transmission apparatus according to this embodiment having the multi-mode oscillation semiconductor laser 4 as an E/O converter, the present inventor measured CNR characteristic after signal transmission for an intermediate frequency (IF) f in the same manner as in
According to this measurement, with deterioration in reflection condition in the reflection portion 8, deterioration in CNR characteristic was observed. Thus, it was also proved here that reflection resistance has frequency dependency. That is, it was proved that in a bad reflection condition (return loss<20 dB; the broken line in the graph of
500 MHz<f
The return loss due to Rayleigh scattering occurring in a flat polished connector or a long-distance fiber is about 30 dB. It was therefore proved that when such reflection is present in the optical transmission line (return loss<30 dB; the solid line in
200 MHz<f (2)
In such a manner, in the optical transmission apparatus according to this embodiment using the multi-mode oscillation semiconductor laser 4, the intermediate frequency f is set in a range satisfying the expression (2). Accordingly, even if the reflection portions 8 are present in the optical fiber transmission line 5, good transmission without characteristic deterioration caused by reflected return light can be realized.
The present invention is not limited to the aforementioned embodiments at all. The invention can be carried out in various modes within a range not departing from its gist.
Although the present invention has been described in detail with reference to its specific embodiments, it is apparent for those skilled in the art that various changes or modifications can be made on the invention without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application, Application No. 2004-180792 filed on Jun. 18, 2004, the contents of which are incorporated herein by reference.
The present invention is provided with a frequency converter for converting a frequency band of a to-be-transmitted electric signal into a specific frequency band higher than the frequency band, and a semiconductor laser or an optical modulator serving as an electro-optic converter for performing electro-optic conversion upon the frequency-converted to-be-transmitted electric signal. There is an effect that a good optical transmission characteristic can be obtained even if a reflection phenomenon occurs in an analog signal in an optical transmission line. Further, the present invention is provided with a frequency converter for converting a frequency band of a to-be-transmitted electric signal into a frequency band lower than the frequency band and not lower than 500 MHz or 200 MHz, and a single-mode oscillation laser or a multi-mode oscillation laser serving as an electro-optic converter for performing electro-optic conversion upon the frequency-converted to-be-transmitted electric signal. Thus, there is a similar effect. Accordingly, the present invention is useful for an optical transmission apparatus or the like for optically transmitting an analog signal such as a video signal, a mobile radio communication signal or the like by use of an optical transmission line.
Number | Date | Country | Kind |
---|---|---|---|
2004-180792 | Jun 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/10157 | 6/2/2005 | WO | 00 | 9/1/2006 |