Between an optical fiber (LF11, LFB12, LFB13) and a surrounding core covering (AH11, AH12, SB13) of an optical transmission element (OE11 to OE13) there is at least one dry and compressible fixating element (FE11 to FE11), which surrounds the optical fiber totally or partially, and which exerts a defined contact pressure against the core covering and against the optical fiber for fixating the optical fiber in the longitudinal direction of the transmission element. The fixating element is further formed and positioned in such a way, that position changes of the optical fiber due to bending or elongation are possible. In this way, unallowable attenuation increases in the optical fiber due to bending or position changes can be avoided.
The present invention concerns an optical transmission element with at least one optical fiber and with a core covering surrounding the optical fiber.
Optical transmission elements such as optical cables or optical cores are often installed in such a way, that the cable ends or core ends, respectively, hang down vertically at the connection points. This can lead to the optical fibers in the cable or core, respectively, which are usually positioned in the cable or core, respectively, with a defined excess length, partially emerging, due to the force of gravity. An emerging of the optical fibers poses a problem, especially in the area of connector sleeves, since the fibers being inserted into the connector sleeves bend sharply and can thus break because of emerging.
A usual method for fixating the optical fibers in an optical transmission element is filling the slot with high viscosity, thixotropic or cross-linked filling compound. Such a filling compound has the disadvantage, that it can run out or drip out in the case of vertically hanging ends of the transmission element. Additionally, contamination and problems with handling can occur when the filling compound leaks during opening up the transmission element during installation.
With dry, unfilled optical cables, swell tapes are often used for sealing the cable against water penetration. They are formed in such a way, that they swell during water penetration and thus seal the cable. Such a swelling tape usually does not fill the empty space between the optical fibers and the surrounding slot element so that the swell tape cannot fixate the fibers.
It is the objective of the present invention, to provide an optical transmission element with at least one optical fiber and a core covering surrounding the optical fiber, where the optical fiber is definitely fixated in the longitudinal direction of the transmission element and where unallowable attenuation increases in the optical fiber due to bending or changing lengths of the transmission element are avoided.
The objective is achieved by an optical transmission element according to the present invention.
The fixating of the optical fiber in the transmission element is achieved by a dry and compressible fixating element, which is positioned between the optical fiber and the core covering. It surrounds the optical fiber totally or partially and exerts a defined contact pressure against the core covering and the optical fiber, so that a certain fixating of the optical fiber along the longitudinal direction of the transmission is achieved. Since the fixating element is additionally formed and positioned in such a way, that position changes of the optical fibers due to bending or elongation are possible, unallowable attenuation increases in the optical fibers due to bending or position changes are avoided. Due to the fact, that changes in position to a certain degree are possible because of the compressible structure of the fixating element, the optical fiber, for example, in the form of one or more optical fibers, has a certain a certain empty space and ability to move, so that no unallowable attenuation increases occur, for example, during bending of the optical transmission element.
In an advantageous construction of the invention, the fixating element contains an elastic foam film or is formed as an elastic foam film. The foam preferably contains an elastomer foam, especially polyurethane foam, polyether foam or polyester foam. By means of the foam film, a defined setting of the contact pressure and the correct friction relative to the optical fiber is possible, where, however, certain position changes of the optical fiber are possible due to the flexible construction of the foam film.
In a further construction of the invention, the fixating element contains a fiber-like, fluffy material. Such a material has essentially similar characteristics as the foam film previously described. For example, cotton, fiber fill or velvet-like polyester with small density and high flexibility or good deformation, respectively, can be used. As the previously described foam film, such a fixating element also serves advantageously as crushing protection for the optical fiber.
In another construction of the invention, the fixating element is constructed in the form of a compressible sealing ring, which is wound around the optical fiber. The fixating element can also be constructed as a profile conforming to the cross-section form of the slot element and optical fiber. Profiles in the form of a U-profile or slit sealing rings are especially suited for this.
In an especially advantageous construction of the invention, several separate fixating elements are positioned along the longitudinal direction of the transmission element, with gaps in between, which are not occupied by fixating elements. In the gaps optical fibers can move comparatively easily during bending of the transmission element, so that attenuation increases can be prevented. For this, the gaps advantageously have a larger longitudinal extension than the respective fixating elements. Because of this, it is also possible, that several optical fibers, which are stranded together, can form an almost undisturbed excess length helix in the transmission element. In order for the fibers to be able to move easily within at least half a lay length during bending of the transmission element, the longitudinal extension of the respective gaps advantageously amounts to at least one lay length of the respective stranded optical fibers.
In one construction of the invention, several separate fixating elements are positioned along the longitudinal direction of the transmission element on a support film connecting the fixating elements. For creating a good waterproofing for the transmission element, the support film is formed with swelling ability on at least one side, for example, by providing it with a swell tape. In this way, very good waterproofing for the transmission element can be achieved, because the penetrating water is slowed down at each fixating element and thus it can spread along the longitudinal direction only very slowly. The free swellable side of the support film between the fixating elements can swell undisturbed in the slowly flowing water and quickly seals the empty space between the optical fibers and the core covering.
For this purpose, a support film with a swell medium dissolving from the ribbon can also be used, since the dissolving swell substance cannot be appreciatively washed away due to the severely slowed flow speed. In case of the swell substance being dissolved by the flowing water, it adheres again to the following fixating element. In this way, the transmission element is waterproofed after a few centimeters.
For further improvement of the waterproofing of the transmission element, the fixating element is mixed with a swellable medium or laminated with swell tape. For example, the swell substance is inserted in powder form into the gaps between the fixating elements, perhaps into the foam pores of the foam film or in the gaps in the fiber-like, fluffy material, respectively.
A further construction of the fixating element can be a foam film, which is laminated on one or both sides with a swell film. Swell tapes are preferably used for this, where the swell substance containing side is directed towards the foam film. Since the foam filling the empty space between the optical fiber and the transmission element severely breaks the penetrating water, the water can spread only very slowly along the transmission element. Thus the swell substance waterproofs the cable already after a few centimeters. It is also advantageous, that the swell substance in the foam or the fiber-like, fluffy material, respectively, adheres well and cannot be washed away.
In all three examples according to
For the creation of good waterproofing, the support film TF is formed as a swell film. It is, for example, formed with swell capabilities on the side towards the foam segments. Penetrating water is strongly slowed down at each of the foam film segments and can therefore spread only very slowly in the longitudinal direction. The swell material positioned freely between the foam film segments can swell undisturbed in the slowly flowing water and quickly seals the empty space between the fibers LF and the core covering AH. In this connection, swell tapes with a swell substance dissolving from the tape can also be used, since the swell substance can only minimally be washed away due to the greatly diminished flow speed. Swell substance, which is washed away, can deposit itself on each of the foam film segments.
For especially good waterproofing, the foam films, which in their non-waterproof state fill the total empty space between the fibers and their protective covering, are displaced by a substance, that swells during water penetration. This swell substance can be positioned in the foam pores in powder form. In a further construction, the respective foam film can be laminated on both sides with a swell film. Preferably swell tapes are used for this purpose, whereby the swell substance containing side is oriented toward the foam material of the foam film. The swell substance is advantageously held firmly in the foam and cannot be washed away. The foam filling the gap strongly slows down penetrating water, so that it can spread along the transmission element only very slowly. The swell substance seals the transmission element already after a few centimeters.
This application is a Continuation of U.S. application Ser. No. 10/475,275 filed on Oct. 20, 2003, which is now U.S. Pat. No. 7,349,607.
Number | Name | Date | Kind |
---|---|---|---|
4226504 | Bellino | Oct 1980 | A |
4701015 | Saito et al. | Oct 1987 | A |
4705571 | Lange et al. | Nov 1987 | A |
4707569 | Yoshimura et al. | Nov 1987 | A |
4725628 | Garvey et al. | Feb 1988 | A |
4725629 | Garvey et al. | Feb 1988 | A |
4815813 | Arroyo et al. | Mar 1989 | A |
4818060 | Arroyo | Apr 1989 | A |
4909592 | Arroyo et al. | Mar 1990 | A |
4913517 | Arroyo et al. | Apr 1990 | A |
5016952 | Arroyo et al. | May 1991 | A |
5054880 | Bruggendieck | Oct 1991 | A |
5109456 | Sano et al. | Apr 1992 | A |
5133034 | Arroyo et al. | Jul 1992 | A |
5224190 | Chu et al. | Jun 1993 | A |
5243675 | Kathiresan et al. | Sep 1993 | A |
5377290 | Ohta et al. | Dec 1994 | A |
5422973 | Ferguson et al. | Jun 1995 | A |
5509097 | Tondi-Resta et al. | Apr 1996 | A |
5621841 | Field | Apr 1997 | A |
5621842 | Keller | Apr 1997 | A |
5684904 | Bringuier et al. | Nov 1997 | A |
5689601 | Hager et al. | Nov 1997 | A |
5698615 | Polle | Dec 1997 | A |
5763067 | Bruggemann et al. | Jun 1998 | A |
5838863 | Fujiura et al. | Nov 1998 | A |
6087000 | Girgis et al. | Jul 2000 | A |
6091871 | Elisson et al. | Jul 2000 | A |
6122424 | Bringuier | Sep 2000 | A |
6178278 | Keller et al. | Jan 2001 | B1 |
6226431 | Brown et al. | May 2001 | B1 |
6229944 | Yokokawa et al. | May 2001 | B1 |
6278826 | Sheu | Aug 2001 | B1 |
6321012 | Shen | Nov 2001 | B1 |
6377738 | Anderson et al. | Apr 2002 | B1 |
6389204 | Hurley | May 2002 | B1 |
6463199 | Quinn et al. | Oct 2002 | B1 |
6504979 | Norris et al. | Jan 2003 | B1 |
6574400 | Lail | Jun 2003 | B1 |
6586094 | Rebouillat et al. | Jul 2003 | B1 |
6711329 | Zelesnik | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
2445532 | Jan 1976 | DE |
2434280 | Feb 1976 | DE |
2743260 | Apr 1979 | DE |
2944997 | Aug 1980 | DE |
19713063 | Oct 1998 | DE |
10129772 | Jan 2003 | DE |
0022036 | Jul 1980 | EP |
0577233 | Jan 1994 | EP |
0916980 | May 1999 | EP |
1065545 | Jan 2001 | EP |
1170614 | Jan 2002 | EP |
1302796 | Apr 2003 | EP |
2159291 | Nov 1985 | GB |
3444500 | Nov 1985 | GB |
21899071 | Oct 1987 | GB |
61-023104 | Jan 1986 | JP |
9-152535 | Jun 1997 | JP |
11-271581 | Oct 1999 | JP |
11-337783 | Dec 1999 | JP |
2001-343565 | Dec 2001 | JP |
2001-343566 | Dec 2001 | JP |
2002-236241 | Aug 2002 | JP |
02099491 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080080821 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10475275 | Oct 2003 | US |
Child | 11980948 | US |