The present invention relates to an optical transmitter that uses a semiconductor laser element where an optical modulator is integrated, and a multi-wavelength optical transmitter. More specifically, the present invention relates, for example, to an optical transmitter that uses a semiconductor laser element including an electro-absorption (EA) optical modulator, a semiconductor optical amplifier (SOA) and a distributed Bragg reflector (DBR) laser that are integrated on an InP substrate, and a multi-wavelength optical transmitter.
These days, with the spread of video distribution services and growing demand for mobile traffic, network traffic is increasing rapidly, and active discussion is being held concerning next-generation networks, particularly in relation to network regions called access systems. With regard to such next-generation access-system networks, there is a trend to demand for an increased transmission distance and higher splitting, and to cover an increase in a splitting ratio, there is also increasing demand to realize high optical output in relation to a semiconductor modulation light source that is used.
(Conventional EADFB Laser)
Because an electro-absorption modulator integrated DFB (EADFB) laser having an electro-absorption (EA) optical modulator integrated with a distributed feedback (DFB) laser achieves higher extinction characteristics and superior chirp characteristics compared with a direct modulation laser, the electro-absorption modulator integrated DFB laser has been widely used, including in an access-system network light source.
A problem of the EADFB laser is that, because light absorption at the EA modulator is used for optical modulation, there is a relationship of trade-off between higher optical output and extinction characteristics that are sufficient in principle.
With the general EADFB laser, one method of achieving higher output is to reduce the absolute value of the reverse applied voltage to the EA modulator, and to suppress light absorption at the EA modulator. However, in this case, steepness of the extinction curve of the EA modulator is reduced, causing modulation characteristics, or in other words, the dynamic extinction ratio (DER), to deteriorate.
As another method for achieving higher output, there is a method of increasing a drive current to the DFB laser, and increasing intensity of light entering the EA modulator from the DFB laser. However, according to this method, power consumption of the DFB laser is increased, and also, the extinction characteristics deteriorate due to light absorption at the EA modulator and an increase in a photocurrent caused by the light absorption, and power consumption of the entire chip is increased. Accordingly, with the conventional EADFB laser, an excessive increase in the power consumption is unavoidable to achieve both sufficient optical output and sufficient modulation characteristics (dynamic extinction ratio).
In response to such a problem, there is proposed a semiconductor optical amplifier (SOA)-integrated EADFB laser, according to which a semiconductor optical amplifier (SOA) is further integrated at a light emission end of the EADFB laser (Non-Patent Literature 1).
(Conventional SOA-Integrated EADFB Laser)
The DFB laser 31 includes an active layer 34 including a diffraction grating as shown in
With the SOA-integrated EADFB laser 30, signal light obtained by modulating laser light from the DFB laser 31 by the EA modulator 32 is amplified in the integrated SOA region 33, independently of the EA modulator 32, and thus, optical output may be increased without reducing quality of an optical signal waveform.
Furthermore, compared with the conventional EADFB laser, the SOA-integrated EADFB laser 30 is capable of achieving higher output without excessively increasing a drive current to the DFB laser 31 or a photocurrent of the EA modulator 32. Furthermore, with the SOA-integrated EADFB laser, the active layer 36 of the SOA 33 has a same MQW structure as the active layer 34 of the DFB laser 31. Accordingly, a regrowth process for integration of the SOA region 33 does not have to be added at the time of element fabrication, and device fabrication by same manufacturing steps as for the conventional EADFB laser is possible.
Such an SOA-integrated EADFB laser may also be used for an arrayed multi-wavelength light source that simultaneously uses, for communication, light of a plurality of wavelengths to achieve high capacity, and that is necessary for a multi-wavelength optical transmitter for wavelength division multiplexing (WDM).
The conventional SOA-integrated EADFB laser has a problem that reflected optical feedback returning into the element from an emission end face or a reflection point outside the element at the time of high-output operation destabilizes operation of the DFB laser. A general EADFB laser is applied with an anti-reflection (AR) coating to suppress light reflection from the emission end face, and reflected optical feedback from the end face into the chip is generally suppressed to 0.1% or less. Moreover, in a case where the EADFB laser is used as an optical transmitter, an optical isolator is used on a light output side, and reflected optical feedback that is propagated through an optical fiber over a long distance is also greatly suppressed.
However, in the case of the SOA-integrated EADFB laser, due to high-output characteristics, even a small amount of reflected optical feedback greatly affects performance characteristics. If an optical amplification effect of the SOA of the SOA-integrated EADFB laser is +3 dB compared to the conventional EADFB laser, average optical output is increased by +3 dB, and also, reflected optical feedback intensity is increased by 3 dB. Moreover, because the reflected optical feedback from the end face is amplified again inside the SOA, the reflected optical feedback intensity at a DFB laser unit is increased by +6 dB compared to the EADFB laser.
Generally, a semiconductor laser performs laser oscillation by positive feedback of light by internal reflection and amplification of light by stimulated emission from the active layer. When optical feedback enters from outside the element, the optical feedback is amplified by stimulated emission and an oscillation state is greatly disturbed, and noise in laser oscillation light is greatly increased. This noise is generally referred to as optical feedback-induced noise.
Furthermore, in the case of the SOA-integrated EADFB laser, light that returns into the element from an end face of the element is a part of signal light that is subjected to intensity modulation at the EA modulator. Accordingly, intensity of the reflected optical feedback varies at a same bit rate as the signal light. The optical feedback reaches the DFB laser after being subjected again to intensity modulation at the EA modulator. Accordingly, intensity of the optical feedback reaching the DFB laser is varied in a complex manner, and oscillation state of the DFB laser is thus greatly varied over time.
In the case where operation of the DFB laser becomes unstable, quality of an optical signal waveform modulated by the EA modulator and transmission characteristics deteriorate. As described above, the optical feedback intensity increases depending on the optical output intensity of the SOA-integrated EADFB laser, and thus, the transmission characteristics greatly deteriorate especially at the time of high-output operation of the SOA-integrated EADFB laser.
Due to such circumstances, an arrayed multi-wavelength light source that is used in a multi-wavelength optical transmitter for WDM has a problem that, because the state of optical feedback is different depending on the wavelength, and characteristics of the element are also changed, it is difficult to generate light of a plurality of different wavelengths at uniform optical output intensity.
The present invention has been made in view of such problems, and is aimed at providing an optical transmitter having high optical feedback resistance even at the time of high-output operation and capable of suppressing deterioration of optical waveform quality and transmission characteristics, and at achieving uniform optical output intensity in relation to an arrayed multi-wavelength light source of a multi-wavelength optical transmitter.
To solve the problems described above, an aspect of the present invention introduces a distributed Bragg reflector (DBR) laser, instead of the DFB laser of the SOA-integrated EADFB laser. The DBR laser includes an active region where optical gain is obtained by current injection, and two Bragg reflectors (DBR) that are disposed on opposite ends, on an optical axis, of the active region and that serve as reflection mirrors. The DBR laser does not include a diffraction grating in the active region. As in the case of the SOA-integrated EADFB laser, output light from a DBR laser light source is modulated by an EA modulator, amplified by an SOA, and is then emitted from an emission end face. However, optical feedback is reflected by a DBR region on an emission side, and the optical feedback reaching the active region of the DBR laser is reduced, and thus, influence of the optical feedback on the active region of the DBR laser is reduced. Accordingly, with an SOA-integrated EADBR laser according to the aspect of the present invention, an optical transmitter where regions are monolithically integrated along an optical axis, in the order of the DBR, the active region, the DBR, the EA modulator, and the SOA, is obtained, and high optical feedback resistance is achieved.
The present invention has the following configurations.
(Configuration 1)
An optical transmitter, including:
(Configuration 2)
The optical transmitter according to Configuration 1, wherein a passive optical waveguide for guiding the modulated light from the EA modulator is provided between the EA modulator and the SOA.
(Configuration 3)
The optical transmitter according to Configuration 2, wherein an electrode is formed on the passive optical waveguide, the electrode being for monitoring the modulated light guided in the passive optical waveguide.
(Configuration 4)
The optical transmitter according to any one of Configurations 1 to 3, wherein current is injected into the active region of the DBR laser and the SOA by a same control terminal.
(Configuration 5)
The optical transmitter according to any one of Configurations 1 to 4, wherein electrodes are formed on the two DBR regions, and the electrodes are grounded.
(Configuration 6)
multi-wavelength optical transmitter including:
(Configuration 7)
A multi-wavelength optical transmitter including:
(Configuration 8)
The optical transmitter according to any one of Configurations 1 to 5, wherein diffraction grating periods of the two DBR regions included in the DBR laser are different from each other.
(Configuration 9)
The optical transmitter according to Configuration 8, wherein
(Configuration 10)
The optical transmitter according to Configuration 9, wherein,
As described above, the present invention may provide an optical transmitter having high optical feedback resistance even at a time of high-output operation, and capable of suppressing deterioration of optical waveform quality and transmission characteristics.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, an oscillation principle of a DBR laser used in the present invention will be described. The DBR laser includes DBR regions on opposite ends of an active region, where a diffraction grating is formed on each DBR region. With the DBR laser, unlike a DFB laser, a diffraction grating is not formed in the active region. The DBR region selectively reflects only a specific wavelength corresponding to a period of the diffraction grating. Accordingly, an optical resonator is formed by the DBR regions on opposite ends of the active region to provide positive feedback of light, and oscillation only at a specific wavelength may be achieved.
The DBR laser has a structure where an active region having an optical amplification effect based on stimulated emission is sandwiched between two front and rear DBR regions on an optical axis. Accordingly, reflected optical feedback returning into an element from an emission end face passes through the DBR region before reaching the active region. The reflected optical feedback originates from oscillation light from the DBR laser, and thus, has a wavelength that inevitably coincides with a reflection band of the DBR. Accordingly, the optical feedback is reflected according to reflectance of the DBR, and thus, intensity of optical feedback reaching the active region may be reduced.
On the other hand, with the DFB laser used in the conventional SOA-integrated EADFB laser, the diffraction grating is formed in the active region. Also in the case of the DFB laser, the optical feedback is reflected by the diffraction grating, but the optical feedback is propagated while being amplified as it enters the laser, and laser characteristics are greatly affected. For the reasons stated above, the DBR laser has higher optical feedback resistance than the DFB laser, and is able to suppress deterioration of optical waveform quality and transmission characteristics.
The DBR laser 44 includes an active region 440, and DBR regions 441, 442 on left and right ends of the active region 440, the DBR regions 441, 442 including diffraction gratings 471, 472. A length of the active region 440 is 300 μm, a length of the DBR region 442 (on a right-end emission side, on the EA modulator 42 side) is 200 μm, and a length of the DBR region 441 (on a left-end reflection side) is 400 μm.
Furthermore, the EA modulator 42 having a length of 150 μm, the passive waveguide 49 having a length of 50 μm, and the SOA 43 having a length of 100 μm are integrated on the right-end emission side of the DBR laser 44 to form a monolithically integrated element.
(Fabrication Process of Element of Present Invention)
Here, an element fabrication process for the SOA-integrated EADBR laser 400 of the optical transmitter of Embodiment 1 will be described. In element fabrication, an initial substrate where a lower separated confinement heterostructure (SCH) layer, an active layer of a multi-quantum well layer (MQW1), and an upper SCH layer are sequentially grown on the n-InP substrate 401 is used. The multi-quantum well layer (MQW1) has an optical gain in an oscillation wavelength of 1.3 μm band. The n-InP substrate 401 functions also as a cladding layer.
First, parts that are to be the active region 440 of the DBR laser 44 and the SOA region 43 are kept, and rest of the active layer (MQW1) is selectively etched, and a multi-quantum well layer (MQW2) for the EA modulator 42 is formed by butt-joint regrowth. Subsequently, selective etching and butt-joint regrowth are performed again while keeping parts that are to be the active region 440 of the DBR laser, the EA modulator region 42, and the SOA region 43, and a core layer of the passive waveguide 49 and other optical waveguides is thereby formed.
Next, the diffraction gratings 471, 472 that operate at the oscillation wavelength of 1.3 μm band are formed on parts, of the core layer of optical waveguides that is formed, that are to be the DBR regions 441, 442. Then, the p-InP cladding layer 402 is formed on an entire surface of the element by regrowth. A thickness of the p-InP cladding layer 402 is designed such that a light field does not overlap an electrode region, and is 2.0 μm in Embodiment 1.
Next, a mesa structure is formed by etching, and a semi-insulating InP layer (not shown) where Fe is doped on both sides of the mesa is formed by buried regrowth. Next, p-side electrodes 445, 421, 431 are formed on an upper surface of the semiconductor substrate. Then, the n-InP substrate 401 is polished to about 150 μm, an electrode (not shown) is formed on a back surface of the substrate, and steps on an upper part of a semiconductor wafer are completed. Additionally, anti-reflection coatings (AR) are applied on both left and right end faces of the substrate.
Regarding a vertical direction of the resonator, a waveguide structure of the present embodiment has a laminated structure including a core layer including the active layers (MQW1, 2) of multi-quantum well and the upper and lower SCH layers (a total layer thickness of 200 nm), and the InP cladding layers 401, 402 sandwiching the core layer from above and below. Regarding a horizontal direction, the waveguide structure of the present embodiment has a buried heterostructure where InP layers are formed on both sides of the mesa. Moreover, a stripe width is 1.5 μm, and operation is performed at a single wavelength due to the diffraction gratings formed in the DBR regions.
Furthermore, regarding the part of the SOA 43, the core layer structure formed in the initial growth substrate is kept as it is, and the part has a same layer structure (MQW1) as that of the active region 440 of the DBR laser 44. Moreover, the DBR regions 441, 442 and the passive waveguide region 49 have the same core layer formed in the butt-joint growth, and the only difference in the layer structures of these regions are whether the diffraction gratings 471, 472 are present or not. Accordingly, even with the structure where a plurality of regions are integrated, the number of times of regrowth may be suppressed, and fabrication at a low cost is enabled.
By providing the passive waveguide 49 between the EA modulator 42 and the SOA 43, insulation between the SOA where forward bias is applied and the EA where reverse bias is applied may be increased. In a case where the passive waveguide 49 is not provided, separation resistance between upper electrodes of the EA modulator 42 and the SOA 43 is 1 kΩ or less. In contrast, when the passive waveguide 49 having a length of 50 μm is inserted, separation resistance is increased to about 50 kΩ, and electrical crosstalk between the regions may be reduced.
(Evaluation of Modulation Characteristics of Element of Present Invention)
Modulation characteristics at 25 Gbit/s was evaluated using an element fabricated according to the present invention. Evaluation was also performed under same conditions for the conventional SOA-integrated EADFB laser fabricated on the same substrate, and the effects of the present invention were examined. As a modulation signal, an NRZ pseudo-random signal (PRBS) at 231−1 stage cycle was used, and a bias voltage to the EA modulator was 1.5 V, and an amplitude voltage was 2.0 V. Furthermore, a chip temperature was set to 45 degrees C. First, optical output characteristics at the time of modulation were compared, and approximately same optical output intensity was obtained with the optical intensity when a fiber was coupled being 6.0 dBm for the SOA-integrated EADBR laser and 6.1 dBm for the SOA-integrated EADFB laser. Here, currents at 90 mA and 30 mA were injected to the laser unit and the SOA unit of both elements.
As in the case of an SOA-integrated EADBR laser 600 of Modification 1 of Embodiment 1 of the present invention shown in
Furthermore, as in the case of an SOA-integrated EADBR laser 700 of Modification 2 of Embodiment 1 of the present invention shown in
Furthermore, as in the case of an SOA-integrated EADBR laser 800 of Modification 3 of Embodiment 1 of the present invention shown in
With such an arrayed multi-wavelength light source, optical output of the SOA-integrated EADBR laser of the wavelength XO, which is the shortest wavelength, is reduced due to light being absorbed even when the EA modulator is in an ON state. Accordingly, as shown in
For the same purpose, in Modification 1 of Embodiment 2 of the present invention shown in
In Modification 2 of Embodiment 2 of the present invention shown in
To further increase reflected optical feedback resistance of the SOA-integrated EADBR laser described above, reflectance of the DBR region (front DBR) present between the active region of the DBR laser and the EA modulator has to be increased. The optical feedback resistance may be increased by increasing the reflectance of the front DBR and reducing intensity of the optical feedback entering the active region from an incident end face.
However, if DBR reflectance of the DBR laser is simply increased, there is a concern that single mode characteristics of the DBR laser deteriorate, causing oscillation likely to occur in a multi-mode. Generally, to increase the reflectance of the DBR, there are a method of increasing a refractive index coupling coefficient κ of the diffraction grating, and a method of increasing a DBR region length. The refractive index coupling coefficient of the diffraction grating is one parameter indicating an influence of coupling of a traveling wave inside the diffraction grating and a backward wave generated by reflection. Generally, the coupling coefficient is increased, the greater the diffraction grating depth and the greater the change in the refractive index. Moreover, generally, maximum reflectance and a reflection band of the DBR region are increased, the greater the refractive index coupling coefficient, and a reflection mirror having a wider band and higher reflectance may thereby be achieved.
Generally, the diffraction gratings of the front and rear DBR regions of the DBR laser are collectively fabricated in a same process. Accordingly, the refractive index coupling coefficient κ takes a same value for the front and rear DBRs. Here, as shown in a substrate cross-section diagram in
The DBR laser oscillates because the front and rear DBRs serve as reflection mirrors, and light reciprocating between the DBRs obtains a gain in the active region. Accordingly, when the oscillation mode of the DBR laser is examined, the DBR laser may be considered basically as a Fabry-Perot (FP) laser including regular reflection mirrors on opposite ends.
With the FP laser, of the light reciprocating between the mirrors on opposite ends, oscillation occurs only at a wavelength at which a reciprocating distance between the mirrors is an integral multiple of the wavelength. Accordingly, ripples (resonant peaks) are present at equal intervals in the oscillation spectrum of the FP laser. With the DBR laser, the DBR may be assumed to be a reflection mirror having a certain length of penetration L, and thus, also in the case of the DBR laser, as in the case of the FP laser, oscillation occurs only in a mode in which a reciprocating distance between the mirrors is an integral multiple of the wavelength, and oscillation modes are present at equal intervals in the spectrum.
Below the graphs in
The DBR laser is different from the FP laser in that the DBRs serving as reflection mirrors have wavelength selectivity. The wavelength selectivity of the DBR is shown in the upper graphs in
Accordingly, the oscillation mode of the DBR laser is determined by a condition that satisfies both a phase matching condition inside the FP resonator and the wavelength selectivity of the mirror loss of the DBRs. That is, the DBR laser oscillates from a mode with low DBR mirror loss, among modes that satisfy the phase matching condition for the FP resonator.
In the graphs in
In the case where, as shown in
Furthermore, in
In contrast, a case as shown in
However, a wavelength bandwidth of the mirror loss is also increased, and not only the mirror loss in the primary mode, but also the mirror loss in the secondary mode tends to be reduced. The mirror loss difference between the primary mode and the secondary mode in the case of
A cause of reduction in the mirror loss difference between the primary mode and the secondary mode in a case where a high refractive index coupling DBR is adopted will be described.
The front DBR has a shorter DBR length than the rear DBR and the front DBR is designed to have lower reflectance than the rear DBR to thereby relatively increase the optical output from the front than from the rear. Oscillation of the DBR laser is caused by confinement of light in the resonator by the front and rear DBRs, and thus, a total reflection spectrum expressed by a product of reflectance of the front DBR and the rear DBR has to be taken into account.
Mirror loss spectra of the DBR lasers shown in
Furthermore,
As described above, to obtain high optical feedback resistance, the maximum reflectance has to be increased in the total reflection spectrum, and moreover, to suppress multi-mode oscillation of the DBR laser at the same time, the reflection spectrum bandwidth is desirably narrow and steep.
However, it can be seen from
As a result, in the case where the DBR reflectance is increased to achieve high optical feedback resistance for the DBR laser even at the time of high-output operation, the reflection spectrum bandwidth is inevitably increased, and there is a problem that the possibility of multi-mode operation is increased, and thus, there is a limit to increasing the optical feedback resistance of the SOA-integrated EADBR laser.
Structure and operation of an optical transmitter according to Embodiment 3 for solving such a problem are described with reference to
With the two DBR lasers in
As a result, as shown in
Furthermore, the Bragg wavelength of the rear DBR (about 1550.75 nm) is adjusted to be within a bandwidth of a stopband of the front DBR (bandwidth indicated by a double-headed arrow in the spectrum indicated by a solid line, about 1548.5 nm to 1551.5 nm).
The total reflection spectra of the comparative example and Embodiment 3, shown in
Compared with the case of the comparative example shown in
Especially when the Bragg wavelength difference is increased in
As is clear from
As can be understood from
Trial production of the SOA-integrated EADBR laser was performed in view of the above.
The SOA-integrated EADBR laser 1900 of Embodiment 3 includes the active region 440 having a length of 300 μm, and the DBR laser 44 including the two DBR regions 442, 441 having lengths of 150 μm (front) and 300 μm (rear). The DBR in the DBR region 442 present between the active region 440 and the EA modulator 42 and having a shorter length is the front (first) DBR, and the DBR in the DBR region 441 present on a reflection end face side on a left end and having a longer length is the rear (second) DBR.
Here, in the case where the reflectance of the front and rear DBRs is increased to increase the optical feedback resistance, as in the case of the present invention, light is more strongly confined in the resonator by the front and rear DBRs, and optical output from the front DBR is reduced. By adjusting the front and rear DBR region lengths, and adjusting an optical output ratio between the front and rear, reduction in the optical output from the front may be suppressed. Furthermore, it is also possible to maintain high-output characteristics by increasing the active region length to suppress reduction in the optical output from the front. As described with reference to
Furthermore, as in Embodiment 1 (
In Embodiment 3, the diffraction grating period of the front DBR 442 is 240.000 nm, and the diffraction grating period of the rear DBR 441 is 240.183 nm, and the difference between the Bragg wavelengths of the front and rear DBRs is designed to be about 1.2 nm. The bandwidth of the total reflection spectrum of the two front and rear DBRs may thereby be narrowed, and single mode stability may be increased. Moreover, the refractive index coupling coefficient is 80 cm−1 for the front and rear DBRS.
A fabrication process of the SOA-integrated EADBR laser 1900 of Embodiment 3 is the same as the process described in Embodiment 1. However, at the time of forming diffraction grating structures of the DBRs after butt-joint growth of the respective regions, DBR patterns with periods that are different between front and rear diffraction gratings, as described above, are formed.
Generally, a diffraction grating of a DBR laser is formed by etching a semiconductor layer, and diffraction gratings of front and rear DBRs are collectively formed in the same process, and thus, depths of the front and rear diffraction gratings cannot be adjusted separately. Accordingly, the refractive index coupling coefficient κ takes the same value for the front and rear DBRs.
On the other hand, the diffraction grating period may be formed to be of any period by pattern drawing of the diffraction grating, and thus, diffraction grating periods that are different between the front and rear DBRs may easily be introduced. Also with the element fabricated for trial in Embodiment 3, two DBRs with different diffraction grating periods may be fabricated simply by changing a drawing pattern, and fabrication steps and cost do not have to be changed at all.
Moreover, as Comparative Example 1 for checking the effect of the present embodiment, an SOA-integrated EADBR laser where the front and rear DBRs have the same diffraction grating period was fabricated on the same substrate. Each region length, the refractive index coupling coefficient and the like are the same as those of the device according to Embodiment 3.
Oscillation spectra were checked for the two SOA-integrated EADBR lasers fabricated in the above manner. Drive currents of 80 mA, 40 mA were injected in the active regions of the DBR lasers and the SOA regions, respectively.
With the element according to Embodiment 3, where a Bragg wavelength difference is present between the front and rear DBRs, stable single-mode operation was achieved, and an SMSR was confirmed to be 45 dB in the primary mode and the secondary mode. On the other hand, with the element of Comparative Example 1 where the diffraction grating periods are the same for the front and rear DBRs, oscillation in the multi-mode was confirmed, and application as a light source for optical fiber transmission was difficult. As a result, it is confirmed that, in the case where diffraction gratings with the same period are used in the front and rear DBRs, stable operation in the single mode is difficult unless a relatively small refractive index coupling coefficient is used.
Moreover, to further confirm superiority of Embodiment 3, an SOA-integrated EADBR laser that uses a general refractive index coupling coefficient of 40 cm−1 and that uses DBRs with the same diffraction grating period for the front and rear DBRs was fabricated as Comparative Example 2, and comparison of transmission characteristics was performed using the same.
Also with the element of Comparative Example 2 where x is 40 cm−1, the front and rear DBR lengths, the active region length, the EA modulator length, and the SOA length are same as those of the element of Embodiment 3. Comparison of optical output intensity was conducted, with a DBR laser drive current being 120 mA and an SOA drive current being 80 mA for both devices.
It was then confirmed that, in the case of the element of Comparative Example 2 where κ is 40 cm−1, the optical output intensity was 13.5 dBm, but in the case of the element of Embodiment 3 where there is a Bragg wavelength difference and κ is 80 cm−1, the optical output intensity was 12 dBm. The output of the element according to Embodiment 3 is slightly smaller due to reduction in the optical output from the front caused by an increase in diffraction grating reflectance.
Modulation characteristics at 10 Gbit/s was evaluated under such operation conditions. When a mask test was conducted for an eye pattern at 10 Gbit/s, the element of Comparative Example 2 where κ is 40 cm−1 did not pass the mask test. On the other hand, in the case of the element of Embodiment 3 with a Bragg wavelength difference and where x is 80 cm−1, a clear eye opening was confirmed, and the mask test was confirmed to be passed with a mask margin of 10%. That is, at the time of high-output operation exceeding 10 dBm, the optical feedback is greatly increased, and operation tends to be unstable also with a DBR laser having higher optical feedback resistance than a DFB laser. However, the optical feedback resistance may be further increased by increasing κ of the DBR laser.
Lastly, evaluation of optical fiber transmission characteristics at 10 Gbit/s was conducted. As a modulation signal, an NRZ pseudo-random signal (PRBS) at 231−1 stage cycle was used, and a bias voltage to the EA modulator was 1.5 V, and an amplitude voltage was 2.0 V. When evaluation of a bit error rate for transmission over 40 km was conducted, the element of Comparative Example 2 where κ is 40 cm−1 could not achieve error-free operation. On the other hand, with the element of Embodiment 3 where κ is 80 cm−1 and there is a Bragg wavelength difference between the front and rear DBRs, error-free operation up to bit error rate 10−12 was confirmed, and sufficient characteristics as a light source for optical fiber transmission were obtained.
As described above, the present invention is capable of providing an optical transmitter having high optical feedback resistance even at the time of high-output operation and capable of suppressing deterioration of optical waveform quality and transmission characteristics, and of providing an optical transmitter with which uniform optical output intensity may be achieved in relation to an arrayed multi-wavelength light source.
Number | Date | Country | Kind |
---|---|---|---|
2018-107696 | Jun 2018 | JP | national |
2018-212353 | Nov 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/020458 | 5/23/2019 | WO | 00 |