1. Filed of the Invention
The present invention relates to an optical transmitter.
2. Related Prior Art
Various prior arts have disclosed an optical transmitter with a semiconductor laser diode digitally controlled in its optical outputs. For example, PCT Publication, WO98/013958, has disclosed an optical transmitter with a central processing unit (CPU), connected to a driver for the laser diode through a digital-to-analog converter D/A-C, which supplies a analog value converted from a digital value set by the CPU. The driver supplies a driving current, which corresponds to the analog value provided from the D/A-C, to the LD. When receiving a shutting down signal for stopping the optical output from the LD, the CPU sets a digital value to the D/A-C so as to become the driving current of the LD to be zero to stop the optical output therefrom. Further, when the shutting down signal is negated, the CPU changes the digital value to be set in the D/A-C to increase the optical output from the LD.
On the other hand, the multi-source agreement for the small form factor pluggable (SFP) transceiver rules the shutting down time t_off, from asserting the shutting down signal to the practical ceasing of the optical output from the LD, to be as longer as 10 μs, and the recovering time t_on, from negating of the shutting down signal to the optical output of the LD with a preset magnitude, to be 1 ms maximum.
When the process corresponding to the asserting or negating of the shutting down signal is performed only by the interruption, is hard to satisfy the condition ruled in the above MSA, because when asserting the shutting down signal, it is necessary to take a comparable time from starting the interruption to setting a digital value in the D/A-C. Using a CPU with a clock frequency of 25 MHz and a D/A-C with a standard specification, it takes 5 μs from starting the interruption to setting a digital value in the D/A-C in addition to 10 μs from setting of the digital value to outputting an analog value corresponding to the digital value by the D/A-C. Moreover, for the negating of the shutting down signal, in addition to the time from starting the interruption to setting a digital value in the D/A-C, it takes several loops of the auto power control (APC) to obtain an optical output of the LD within a preset range.
Therefore, the present invention is to provide an optical transmitter that enables a prompt stopping and restarting of the optical output of the LD.
One aspect of the present invention relates to an optical transmitter that includes a laser diode, a monitoring circuit, a controller, a driver, and a switching means. These elements constitute a closed feedback loop for the automatic power control (APC) of an optical output of the laser diode. The monitoring circuit generates a monitored signal that corresponds to the optical output of the laser diode. The controller, by receiving this monitored signal, generates a control signal to maintain the optical output in a reset magnitude. The driver drives the laser diode. The switching means has one output and two inputs. The output is connected to the driver, while one of inputs is connected to the controller and the other of inputs is connected to a signal with a level to stop the optical output of the laser diode. The switching means, by asserting a shutting down signal provided from an outside of the transmitter, connects the signal to stop the optical output to the driver, while the controller generates an initial signal of the control signal during the switching means cuts the closed feedback loop off.
Since the present transmitter switches the control signal, in response to the shutting down signal, to the signal to stop the optical output of the laser diode, the optical output is promptly ceased, and to the control signal generated by the controller from the signal to stop the optical output when the shutting down flag is negated, the optical output of the laser diode is promptly to set a preset magnitude. Moreover, since the control signal may set the driving current of the laser diode, not the reference of the APC loop, the APC loop does not show any overshoot or undershoot in the optical output to shorten the recovering time from the negation of the shutting down signal to a time when the optical output becomes within a preset range.
As long as the shutting down signal is asserted, the controller continues to provide an initial condition for the closed feedback loop to the one of the input of the switching means. Subsequently, when the shutting down signal is negated, the switching means provides this initial condition to the driver to recover the closed feedback loop. The initial condition reflects the magnitude of the driving current for the laser diode, which eliminates the loop iteration to obtain the optical output within the preset range and promptly stabilizes the optical output compared with a conventional transmitter, in which the initial condition of the closed loop is reset to zero.
The initial condition may depend on a temperature of the transmitter. The controller may install a memory to store the initial condition in connection with the temperature. When the shutting down signal is asserted and the closed loop is cut off, the controller may sense the temperature of the transmitter and may read the initial condition from the memory corresponding to the sensed temperature. Accordingly, even when the temperature changes while the optical output is ceased, the controller may provide the initial condition reflecting the current temperature of the transmitter to the driver, which prevents the laser diode from outputting in an excess magnitude and from breaking down.
Next, preferred embodiments of the present invention will be described as referring to accompanying drawings. In the drawings, same numerals or symbols will refer to the same elements without overlapping explanations.
The optical transmitter 10 includes a laser diode (hereinafter denoted as LD) 12, a driver 14 for driving the LD, a photodiode (PD) 16 for monitoring the optical output of the LD 12, a reference resistor 18, an analog-to-digital converter (A/D-C) 20, a controller 22, a memory 23, a digital-to-analog converter (D/A-C) 24 and a switch 26. The LD 12 and the PD 16 are biased in forward and in reverse, respectively, by supplying with a power supply Vcc. The A/D-C 20, the controller 22, and the D/A-C 24 constitute a signal processing unit, while the PD 16 and the reference resistor 18 constitute a monitoring circuit.
The LD 12 generates an optical output by receiving a driving current from the driver 14. There are two kinds of driving current; one is the bias current while the other is the modulation current. The modulation current is modulated by a data input to the driver 14 from the outside of the transmitter 10. The magnitude of the bias and modulation currents may be determined by the signal input to the control terminal of the driver 14. This control terminal of the driver 14 is connected to the switch 26.
The PD 16, by receiving a portion of the optical output from the LD 12 generates a photo current depending on the magnitude of optical output from the LD. The anode of the PD 16 connects to the reference resistor 18 to generate an analog voltage proportional to the photo current. The A/D-C 20 converts this voltage signal into a digital value Vp to send to the controller 22. The digital value Vp corresponds to the optical output from the LD 12.
The controller 22 controls the operation of the transmitter 10. That is, the controller 22 carries out an automatic power control (APC) to maintain the optical output of the LD 12 in a preset magnitude. The APC is a closed feedback loop process, namely, it is configured to compare the monitored optical output Vp with a preset value, and to adjust the bias and modulation currents such that the monitored optical output Vp becomes identical with the preset value.
The D/A-C 24 includes a register accessible from the controller 22. The digital signal to determine the bias and modulation currents is to be stored within this register. The D/A-C 24 converts this digital signal into a corresponding analog form to transmit it to the switch 26.
The switch 26 has one output terminals C and two input terminals, A and B. The terminal A connects the output of the D/A-C 24, while the terminal B is grounded. The terminal C connects to the control terminal of the driver 14. The switch 26, depending on the TX_DISABLE, connects the terminal C to one of the terminal A or the terminal B. That is, when the shutting down signal is negated, the terminal C is connected to the terminal A. Consequently, the driver 14 receives in its control terminal the analog signal from the D/A-C 24 to provide the bias and modulation currents depending on this analog signal to the LD 12. On the other hand, when the shutting down signal is asserted, the switch 26 connects the terminal C to the terminal B to ground the control terminal of the driver 14 and, consequently, the ground potential is supplied to the control terminal of the driver 14 as the analog control signal. When the control terminal of the driver 14 is grounded, the driver 14 sets the bias and modulation currents zero to switch the LD 12 off. As a result, the optical output from the LD 12 is shut down.
The optical transmitter 10 further includes a temperature sensor 28 and another A/D-C 30. The temperature sensor 28 monitors an inner temperature of the optical transmitter 10 and outputs an analog signal indicating the temperature thereof. The A/D-C 30 converts this analog signal into a digital value VT to output the controller 22. This digital value VT denotes the inner temperature of the transmitter.
The controller 22 provides a memory 23 that stores a look-up-table (LUT) in which various parameters of the LD 12 are held in connection with temperatures of the LD 12. The LUT is accessed to adjust the control signal set to the D/A-C 24 in accordance with temperatures, which is explained in detail later.
When the APC loop flag is enabled, the controller executes the APC loop, namely, the controller 22 acquires the present optical output via the A/D-C 20, at step S204, compares this optical output with a reference value to obtain a digital value to set the bias and modulation currents, as step S206, and sends this digital value to the D/A-C 24, at step S208. Subsequently with a preset waiting at step S210, the controller executes the step S202 again. As long as the shutting down signal is negated, the controller iterates the sequence of steps from S204 to S210 to maintain the optical output in the preset power.
The characteristic of the LD 12, in particular the relation between the optical output power against the current to be supplied thereto, strongly depends on the temperature. Generally, when the LD is driven so as to maintain the optical output power thereof constant, the larger current is necessary in high temperatures as compared to cases in low temperatures. For example, when the shutting down signal is asserted in the high temperature, the temperature falls as the control signal set in the D/A-C 24 is held, and the shutting down signal is negated in the low temperature, a large driving current based on the control signal set in the D/A-C 24 may flow in the LD 12, which may break down the LD 12. Therefore, it is preferable that the initial driving current when the APC loop is re-started by the negation of the shutting down signal is a value depending of the then temperature of the LD 12 not the value at the assertion of the shutting down signal.
Therefore, the present invention sets the digital value provided to the D/A-C 24 such that, by sensing the inner temperature of the transmitter 10 during the assertion of the shutting down signal, the bias and modulation currents corresponding to the inner temperature will be supplied to the LD 12 when the shutting down signal is negated. That is, the controller 22 sets the control signal provided to the D/A-C 24 to be one of a digital value within the LUT stored in the memory 23. The period necessary for the controller 22 to set the control signal in the D/A-C 24 is denoted as tp in
Specifically describing the aforementioned algorithm, when the controller 22 confirms the disablement of the APC loop flag at step S210 in
Next, the present invention will be compared with conventional transmitters.
In this conventional transmitter, the optical output is stopped or restarted only by the APC loop flag.
As shown in
Moreover, as shown in
Moreover, the present transmitter adjusts the output of the D/A-C 24 during the optical output is stopped, accordingly, the LD 12 may be protected from the over emission or breakdown at the recovery of the optical output.
Although the present invention has been fully described in conjunction with the preferred embodiment thereof with reference to the accompanying drawings, it is to be understood that various changes and modifications may be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.
Number | Date | Country | Kind |
---|---|---|---|
P.2005-000896 | Jan 2005 | JP | national |