1) Field of the Invention
The present invention relates to an optical transmitter employed in an optical communications system.
2) Description of the Related Art
In a conventional optical communications system, intensity modulation is commonly carried out by a simple on-off keying method. An intensity modulator enhances not only the transmission speed of each wavelength but also the capacity of transmission by increasing the number of multiplexed wavelengths. As a result, in commercial systems the transmission speed per wavelength has increased to 10 Gbit/s and the number of wavelengths that can multiplexed (hereinafter, “multiplexed wavelengths”) has increased to the tune of a few dozens.
In conventional on-off keying, it is necessary that the interval between two wavelengths be set greater than 2.5 times the bit rate, in order to avoid spectral overlap of two adjoining optical wavelength signals. Consequently, the frequency usage efficiency that is defined by the ratio of the wavelength interval and the signal frequency is limited to 0.4.
As a result, the conventional methods of increasing the transmission speed and the number of multiplexed wavelengths to increase the transmission capacity have their demerits. The transmission capacity cannot be improved unless the band of the transmission channel and the optical amplifier are dramatically broadened.
As a means of solving these problems, study results that relate to improvements in the bandwidth and the frequency usage efficiency of the optical fiber used in the optical transmission channel have been reported. Particularly, improved frequency usage efficiency can enhance the transmission capacity of the existing transmission channel and is cost-effective.
As a result, for instance, a frequency usage efficiency to the tune of 0.8 bit/s/Hz can be achieved by wavelength-multiplexing an optical signal of 42.7 Gbit/s at an interval of 50 GHz, as shown in
In the conventional optical amplifier, non-return-to-zero on-off keying format that has a relatively narrow bandwidth is used as a modulation format. Consequently, the signal reception sensitivity is low when compared with that of a return-to-zero (RZ) on-off keying format used in a long-distance communications system.
Although the return-to-zero on-off keying format has the advantage of high signal reception sensitivity, due to the high bandwidth of each optical signal, even after their side band is truncated, the bandwidth can still be up to twice that of the non-return-to-zero on-off keying format.
It is an object of the present invention to solve at least the problems in the conventional technology.
The optical transmitter according to one aspect of the present invention includes an optical modulation processing unit that has a signal carrier-suppressed pulse modulating unit that performs signal carrier-suppressed pulse modulation on a light source signal to thereby create a carrier-suppressed-return-to-zero signal; a phase modulating unit that performs phase modulation on a data signal based on the carrier-suppressed-return-to-zero signal to thereby convert the data signal into a phase-modulated signal; and an optical filtering unit that filters out redundant frequency components included in the phase-modulated signal.
The optical transmitter according to one aspect of the present invention includes an optical modulation processing unit that has a phase modulating unit that performs phase modulation on a data signal to thereby convert the data signal into a phase-modulated signal; a signal carrier-suppressed pulse modulating unit that performs signal carrier-suppressed pulse modulation on the phase-modulated signal to thereby convert the phase-modulated signal into a phase modulated carrier-suppressed-return-to-zero signal; and an optical filtering unit that filters out redundant frequency components included in the phase modulated carrier-suppressed-return-to-zero signal.
The other objects, features and advantages of the present invention are specifically set forth in or will become apparent from the following detailed descriptions of the invention when read in conjunction with the accompanying drawings.
Exemplary embodiments of a optical transmitter according to the present invention are explained below in detail with reference to the accompanying drawings. It should be noted that these embodiments are not intended to limit the present invention.
An optical phase modulator 3 performs, based on the CS-RZ signal, phase modulation on a data signal (signal frequency fb) output from a data signal source 6. An optical filter 4 performs waveform creation on the phase-modulated data signal and creates an optical output signal.
An optical wave combiner 7 wavelength-multiplexes a plurality of such optical output signals output from each of the plural optical modulation processing sections 10 and outputs the wavelength-multiplexed signal to a transmission channel.
The operation of the optical transmitter according to the first embodiment and having the structure described above is explained next.
The function of all the optical modulation processing units 10 is the same. Hence, in the following description, the functioning of only one optical modulation processing unit 10 is described.
The laser light source 1 generates a light source signal of a carrier frequency fc.
The MZI optical modulator 2 may, for instance, be made of lithium niobate and may carry out a signal carrier-suppressed pulse modulation process by the method disclosed in, for instance, “320 Gbit/s (8×40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format”, Yutaka, Miyamaoto, et al., in postdeadline papers of Optical Amplifiers and Their Applications Topical Meeting, Jun. 11, 1999.
The clock signal source 5 generates and outputs, as shown in
The MZI optical modulator 2 modulates the light source signal fc by considering the clock signal as the applied voltage. After modulation the optical output signal appears as a CS-RZ signal that has an alternating phase, viz., 0, π, 0, π, . . . and so on.
To be specific, the clock signal (with a frequency of fb/2), at peak voltages a to d is modulated to a CS-RZ signal (see
The optical frequency spectrum (see
The optical phase modulator 3 inputs the data signal (with a signal frequency of fb) output from the data signal source 6 and performs optical phase modulation on the CS-RZ signal and converts it into a light source signal. As a result, the data signals 0 and 1 are converted to optical modulated signals with an optical phase of 0 and π, respectively.
The two frequency spectrums contain'the same information signal components in the frequency bands below fc−fb/2 and above fc+fb/2, thereby loading the optical modulated signal with redundant frequency components.
The optical filter 4 removes the redundant frequency components from the optical modulated signal.
Plurality of optical output signals output from plural optical modulation processing sections 10 are multiplexed in the optical wave combiner 7 and output to the transmission channel.
In contrast,
According to the first embodiment, the data signal is modulated according to the CS-RZ signal created by the MZI optical modulator. The frequency bandwidth of the modulated signal is narrowed in order to facilitate wavelength multiplexing. Consequently, the frequency usage efficiency is enhanced without compromising on the signal reception sensitivity.
In the first embodiment, an optical phase modulator is used for carrying out phase modulation of the data signal. However, a lithium niobate MZI optical modulator may also be used for phase modulating the data signal.
Further, arrayed waveguide grating (AWG) may be used as the optical filter 4.
In the first embodiment, the CS-RZ signal output from the MZI optical modulator 2 is passed into the optical phase modulator 3 to phase modulate the data signal. However, the structure need not be limited to this and can be made such that after phase modulation of the data signal according to the light source signal from a laser light source, the modulated data signal is carrier-suppressed-pulse-modulated by the MZI optical modulator and passed through the optical filter to create a waveform.
In the first embodiment, the optical phase modulator 3 phase modulates the data signal according to the CS-RZ signal. In a second embodiment of the present invention, the optical transmitter includes a differential coder that performs differential coding to the data signal. The optical phase modulator 3 performs phase modulation on the differential-coded data signal according to the CS-RZ signal.
Since all other aspects of the second embodiment are identical to the first embodiment, only the features that are different in the second embodiment, namely, the differential-coding in the optical transmitter and demodulation in the optical receiver are explained next.
The operation of the second embodiment is explained with reference to
In each of plurality of optical modulation processing sections 10, a data signal output from a data signal source 6 undergoes differential-coding by a differential coder 11. The differential-coded data signal enters an optical phase modulator 3 and is phase modulated according to a separately generated CS-RZ signal. The optical modulated signal passes through an optical filter that suppresses the redundant frequency components, and is subsequently multiplexed by an optical wave combiner 7, and transmitted to a transmission channel.
The optical receiver according to the second embodiment may, for instance, have the configuration disclosed in ‘Optical Receiver Module for bit synchronous strong modulation DPSK-DD transmission system using PLC platform (Yamada et al., The Institute of Electronics, Information and Communication Engineers, Electronic Society Meeting papers, C-3-111, P237, 2000)’ and performs delayed demodulation on the optical signal received from the optical transmitter.
The operation of the optical receiver according to the second embodiment is explained next with reference to
The optical interferometer 13 distributes the optical receiver signal 12 between two arms. In one arm, a time delay of 1 bit is added to the optical receiver signal 12. For instance, if the signal frequency of the optical receiver signal 12 is 10 Gbit/s, a delay of 100 picoseconds (= 1/10 Gbit) is added to the signal before it is output.
Meanwhile no delay is added to the optical receiver signal 12 in the other arm and the distributed component of the optical receiver signal 12 is directly output.
The optical interferometer 13 then combines the distributed components of the optical receiver signal 12 output from the two arms A and B and makes them undergo optical interference. As a result, when the phase of both distributed components are the same (0-0, π-π), demodulated pulse is output from port A, and when the phases of the two distributed components are reversed (0-π, 0-π), demodulated pulse is output from port B in
The differential optical/electrical converter 14 converts the demodulated pulse output from port A and port B into electrical signals using an optical diode, calculates the difference between the two electrical signals, and outputs as a demodulated signal.
According to the second embodiment, as in the first embodiment, in the optical communications system, the frequency usage efficiency of the multiplexed optical signals can be enhanced. The optical transmitter performs differential-coding on the data to be transmitted and the optical receiver performs delayed demodulation on the optical reception signal. Consequently, the structure of the optical receiver can be simplified to a great extent.
According to the present invention, in the optical transmitter, a data signal is modulated according to a CS-RZ signal generated by signal carrier-suppressed pulse modulation process. The modulated data signal then passes through an optical filter where the bandwidth of the signal is confined. By the above processes, the effect of enhanced frequency usage efficiency of the multiplexed signal is achieved with minimal compromising on the signal reception sensitivity.
Moreover, a data signal is phase modulated and made to undergo signal carrier-suppressed pulse modulation and subsequently passed through an optical filter to confine its bandwidth. By the above processes, the effect of enhanced frequency usage efficiency of the multiplexed signal is achieved with minimal compromising on the signal reception sensitivity.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2002-298727 | Oct 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5228043 | Naito et al. | Jul 1993 | A |
5305134 | Tsushima et al. | Apr 1994 | A |
6072615 | Mamyshev | Jun 2000 | A |
6459519 | Sasai et al. | Oct 2002 | B1 |
6650846 | Ito | Nov 2003 | B1 |
20020021464 | Way | Feb 2002 | A1 |
20020131134 | Hait | Sep 2002 | A1 |
20030219259 | Martensson et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0 977 382 | Feb 2000 | EP |
1 298 819 | Apr 2003 | EP |
9-236781 | Sep 1997 | JP |
2001-308792 | Nov 2001 | JP |
2002-164850 | Jun 2002 | JP |
2002-281095 | Sep 2002 | JP |
2004-104385 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20040071474 A1 | Apr 2004 | US |