1. Field of the Invention
The present invention relates to an apparatus for penetrating and for observing penetration of body tissue. More particularly, the present invention relates to a trocar assembly having an endoscope or laparoscope inserted therethrough to provide visual observation during penetration of the peritoneum or other body tissue.
2. Description of the Related Art
Endoscopic surgical procedures, that is, surgical procedures performed through tubular sleeves or cannulas, have been utilized for many years. Initially, endoscopic surgical procedures were primarily diagnostic in nature. More recently as endoscopic technology has advanced, surgeons are performing increasingly complex and innovative endoscopic surgical procedures. In endoscopic procedures, surgery is performed in any hollow viscus of the body through a small incision or through narrow endoscopic tubes (cannulas) inserted through small entrance wounds in the skin. In laparoscopic procedures surgery is performed in the interior of the abdomen.
Laparoscopic procedures generally utilize instrumentation that is internally sealed to inhibit gases from entering or exiting the body through the laparoscopic or endoscopic incision. This is particularly true in surgical procedures in which the surgical region is insufflated. Moreover, laparoscopic and endoscopic procedures often require the surgeon to act on organs, tissues and vessels far removed from the incision, thereby requiring that any instruments to be used in such procedures be of sufficient size and length to permit remote operation. Typically, after the surgical region is insufflated, trocars are used to puncture the body cavity and include a cannula which remains in place for use during endoscopic procedures. Generally, trocars used during such procedures include a stylet having a sharp tip for penetrating the body cavity positioned coaxially within protective tubes to protect a patient or surgeon from inadvertent contact with the tip. An example of a known trocar is described in commonly assigned, U.S. Pat. No. 4,601,710 to Moll. Most currently used trocars rely on protective tubes or relative retraction of the tip to prevent inadvertent contact with tissue.
The present invention provides a trocar assembly for observing the penetration of the peritoneum or other body portions. The trocar assembly of the present invention provides an improved window structure for passing optical images to an imaging system inserted into or formed within the trocar assembly, which provides a clear and bright image of the body tissue being penetrated. The assembly also includes a light pipe for passing illumination light to body tissue. In addition, the present invention provides an improved cutting tip for penetration of body tissue.
The present invention relates to a trocar which includes a cannula assembly, an obturator assembly and an image passing system. The cannula assembly includes a cannula housing and a cannula sleeve extending from said cannula housing. The obturator assembly includes an obturator sleeve having a proximal end, a distal end and a longitudinal bore therebetween which are configured for coaxial alignment with the cannula assembly.
An image passing member is positioned at the distal end of the obturator sleeve and is provided to permit passage of optical images into the longitudinal bore of the sleeve and permit passage of illumination light to body tissue. A tissue penetrating member, such as a blade, is positioned adjacent the distal end of the obturator sleeve and distal to the image passing member and is preferably movable between non-deployed and deployed positions. The tissue penetrating member is configured to facilitate observation of body tissue simultaneous with penetration of body tissue.
In the preferred embodiment, the image passing member is an optical with substantially flat surfaces for receiving optical images. Alternatively, the optical window includes at least one conical surface for receiving the optical images
Image transferring means, such as an endoscope, is preferably removably positioned within the longitudinal bore of the obturator sleeve and is provided to transmit illumination light through the image passing member to the surgical site and to transmit optical images from the image passing member to a proximal end of the obturator housing for subsequent viewing by the surgeon.
The tissue penetrating blade is operatively associated with an actuating member positioned with the obturator housing. Preferably, the actuating member is configured to move the blade to a deployed position and to automatically move the blade to a non-deployed position after the blade has been deployed.
In the preferred embodiment, the actuating member includes a blade drive member slidably positioned within the obturator housing and operatively connected to the blade, and a trigger member which is pivotally connected to the obturator housing. An automatic release member is operatively associated with the trigger member and the blade drive member so that when the blade is moved to the deployed position, the release member actuates to facilitate movement of the blade to the non-deployed position.
The preferred embodiments of the invention are described hereinbelow with reference to the drawings wherein:
The apparatus of the present invention is provided to penetrate body tissue, e.g., the abdominal wall, and to provide a simultaneous forward directional view of the body tissue being penetrated. In the preferred embodiment, the apparatus includes a trocar assembly 10 having an obturator assembly 12 and a cannula assembly 14, and an endoscope 16 which is positioned within the obturator assembly to provide observation of the body tissue being penetrated. The term obturator assembly as used herein refers to the tissue penetrating assembly of the trocar assembly.
Referring to
Referring to
In another embodiment, the image passing member is an image directing member. In this configuration, optical images which impinge the distal end 28a of image directing member 28 are directed into longitudinal bore 24 of obturator sleeve 20. The image directing member may be a lense, an optical prism, an optical mirror, or like image directing medium and is preferably configured to allow close to 360° forward angle of view. In the preferred embodiment, image directing member 29 is a prism which includes a set of four substantially flat surfaces 28b, 28c, 28d and 28e, as shown in
The image passing member also allows for passage of illumination light from the obturator sleeve 20 to body tissue. As shown in
The image passing member is shown having a convex outer surface, however, other configurations can be utilized.
Referring again to
Actuating assembly 36 includes blade pusher arms 38 and 40, blade drive member 42, drive spring 44 and trigger 46. Blade 34 can be formed as an integral piece with blade drive member 42 and/or blade arms 38, 40. Alternately blade 34 can be connected such as by welding, to the distal end of blade pusher arms 38 and 40 which extend along the longitudinal axis of obturator sleeve 20 within slots 39 and 41 in obturator sleeve 20, shown in
Trigger 46 is pivotally secured to obturator housing 18 via pin 47, as shown, so that camming surface 48 of trigger 46 engages the proximal end portion 42a of blade drive member 42. Thus, actuation of trigger 46, i.e. movement in the direction of the arrow in
The movement of blade 34 between non-deployed and deployed positions can be seen by comparing
In an alternative embodiment shown in
Trigger 46 is pivotally secured to obturator housing 18 via pin 47 and lever 80 is pivotally secured to distally. Lever spring 84 is secured to trigger 46 at one end 84a and is positioned around pin 47, as shown. The biasing arm 84b of lever spring 84 engages crossbar 86 of lever 80 and is provided to pivot lever 80 clockwise a predetermined angular distance, such as 12°. Lever bushing 88 is secured to the upper portion of blade drive member 42, as shown, and is provided to angle lever 80. When trigger 46 is in the armed position, i.e., trigger 46 is ready for actuation, lever 80 is biased upward by lever spring 84 so that the upper portion of lever 80 engages lever bushing 88, as shown in
Referring to
Referring now to
Referring again to
To maintain a gas tight seal within the cannula housing, a sealing member or system may be positioned therewithin which is adapted to receive the obturator assembly 12 of the present invention as well as other endoscopic surgical instruments. One example of a suitable sealing system utilizes a duckbill sealing member. A more detailed description of an exemplary cannula assembly and sealing system is found in U.S. Pat. No. 5,180,373 issued Jan. 19, 1993, which is incorporated herein by reference.
Referring to
In operation, endoscope 16 is inserted into the trocar assembly 10, i.e. into longitudinal bore 24 of obturator sleeve 20, as shown in
During penetration of the body tissue the surgeon either observes such penetration through eyepiece 68, or in instances where a video system is utilized the surgeon simply observes the penetration of the body tissue via any known video monitor.
Once the surgeon penetrates the body tissue as observed through endoscope 16, the surgeon releases trigger 46 to permit blade 34 to return to the non-deployed position and discontinues application of pressure to hand grip 21. According to the above-described alternative embodiment for the trigger arrangement, once the trigger 46 is fully actuated, blade 34 automatically returns to the non-deployed position and release of trigger 46 re-arms the automatic release member.
In operation, the surgeon may also more selectively deploy the blade 34 during penetration. That is, the surgeon my insert the trocar assembly and bluntly penetrate the body tissue until reaching thicker tissue, such as muscle. At this point, the blade can be deployed to penetrate (cut through) this thick tissue, then retracted to provide blunt penetration until thick tissue is again encountered where once again the blade can be deployed.
After penetration into the body cavity, both the endoscope 16 and the obturator assembly 12 are removed from the cannula assembly 14, leaving the cannula assembly 14 in the body for insertion of desired instrumentation therethrough.
In an alternate embodiment, the obturator assembly 12 and endoscope 16 or optical components thereof can be a single unit inserted into cannula assembly 14. For example, the obturator assembly can be manufactured with illumination optics and/or imaging optics positioned therein so that the obturator assembly itself can function to penetrate tissue as well as to light the surgical site and transmit images to the video monitor. In this version, the obturator would not have a longitudinal bore and it would be sealed.
Additionally, in an alternate embodiment of the penetrating blade member, the blade member can be fixedly attached to the obturator assembly so that it remains in an exposed position. The blade or cutting member can also alternatively be movable in directions other than longitudinally as described above, such as transverse to the longitudinal axis, or the blade can vibrate.
It will be understood that various modifications can be made to the embodiments of the present invention herein disclosed without departing from the spirit and scope thereof. For example, various diameters for the cannula assembly, the obturator assembly, as well as various modifications may be made in the configuration of the parts. Therefore, the above description should not be construed as limiting the invention but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision other modifications within the scope and spirit of the present invention as defined by the claims appended hereto.
The present application is a continuation of U.S. patent application Ser. No. 10/744,877, filed on Dec. 23, 2003, which is a continuation of U.S. patent application Ser. No. 10/116,796, filed on Apr. 5, 2002, now U.S. Pat. No. 6,685,630, which is a continuation of U.S. patent application Ser. No. 09/494,101, filed on Jan. 28, 2000, now abandoned, which is a continuation of U.S. patent application Ser. No. 08/869,880, filed on Jun. 5, 1997, now abandoned, which is a continuation of U.S. patent application Ser. No. 08/710,282, filed on Sep. 13, 1996, now abandoned, which is a continuation of U.S. patent application Ser. No. 08/407,929, filed on Mar. 21, 1995, now U.S. Pat. No. 5,569,160, which is a continuation of U.S. patent application Ser. No. 08/132,403, filed on Oct. 6, 1993, now U.S. Pat. No. 5,467,762, which is a continuation-in-part of U.S. patent application Ser. No. 08/120,489, filed on Sep. 13, 1993, now U.S. Pat. No. 5,441,041. The disclosures of which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1380447 | Wescott | Jun 1921 | A |
1727495 | Wappler | Sep 1929 | A |
2699770 | Fourestier et al. | Jan 1955 | A |
2764148 | Sheldon | Sep 1956 | A |
2764149 | Sheldon | Sep 1956 | A |
2877368 | Sheldon | Mar 1959 | A |
3021834 | Sheldon | Feb 1962 | A |
3417745 | Sheldon | Dec 1968 | A |
3437747 | Sheldon | Apr 1969 | A |
3499107 | Sheldon | Mar 1970 | A |
3538916 | Wiles | Nov 1970 | A |
3556085 | Takahashi | Jan 1971 | A |
3762416 | Moss et al. | Oct 1973 | A |
3809095 | Cimber | May 1974 | A |
3915169 | McGuire | Oct 1975 | A |
3961621 | Northeved | Jun 1976 | A |
4137920 | Bonnet | Feb 1979 | A |
4210146 | Banko | Jul 1980 | A |
4220155 | Kimberling et al. | Sep 1980 | A |
4254762 | Yoon | Mar 1981 | A |
4256119 | Gauthier | Mar 1981 | A |
4269192 | Matsuo | May 1981 | A |
4345589 | Hiltebrandt | Aug 1982 | A |
4411653 | Razi | Oct 1983 | A |
4461305 | Cibley | Jul 1984 | A |
4516575 | Gerhard et al. | May 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4539976 | Sharpe | Sep 1985 | A |
4559041 | Razi | Dec 1985 | A |
4566438 | Liese et al. | Jan 1986 | A |
4570632 | Woods | Feb 1986 | A |
4653475 | Seike et al. | Mar 1987 | A |
4667684 | Leigh | May 1987 | A |
4723545 | Nixon | Feb 1988 | A |
4733671 | Mehl | Mar 1988 | A |
4790312 | Capuano, Sr. et al. | Dec 1988 | A |
4865029 | Pankratov et al. | Sep 1989 | A |
4904246 | Atkinson | Feb 1990 | A |
4957112 | Yokoi et al. | Sep 1990 | A |
4962770 | Agee et al. | Oct 1990 | A |
4976269 | Mehl | Dec 1990 | A |
4991600 | Taylor | Feb 1991 | A |
5066288 | Deniega et al. | Nov 1991 | A |
5089000 | Agee et al. | Feb 1992 | A |
5092872 | Segalowitz | Mar 1992 | A |
5104382 | Brinkerhoff et al. | Apr 1992 | A |
5116353 | Green | May 1992 | A |
5146921 | Terwilliger et al. | Sep 1992 | A |
5152754 | Plyley et al. | Oct 1992 | A |
5158552 | Borgia et al. | Oct 1992 | A |
5159920 | Condon et al. | Nov 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5183053 | Yeh et al. | Feb 1993 | A |
5186178 | Yeh et al. | Feb 1993 | A |
5250068 | Ideguchi et al. | Oct 1993 | A |
5271380 | Reik et al. | Dec 1993 | A |
5275583 | Crainich | Jan 1994 | A |
5290276 | Sewell, Jr. | Mar 1994 | A |
5304190 | Reckelhoff et al. | Apr 1994 | A |
5314417 | Stephens et al. | May 1994 | A |
5334150 | Kaali | Aug 1994 | A |
5354302 | Ko | Oct 1994 | A |
5372588 | Farley et al. | Dec 1994 | A |
5385572 | Nobles et al. | Jan 1995 | A |
5406940 | Melzer et al. | Apr 1995 | A |
5431151 | Riek et al. | Jul 1995 | A |
5467762 | Sauer et al. | Nov 1995 | A |
5485947 | Olson et al. | Jan 1996 | A |
Number | Date | Country |
---|---|---|
1616104 | Apr 1971 | DE |
2538758 | Mar 1977 | DE |
2800607 | Oct 1978 | DE |
2922239 | Mar 1982 | DE |
9112976 | Dec 1991 | DE |
4133073 | Apr 1992 | DE |
4035146 | May 1992 | DE |
135364 | Mar 1985 | EP |
0433581 | Jun 1991 | EP |
0484725 | May 1992 | EP |
0604197 | Jun 1994 | EP |
719538 | Dec 1954 | GB |
1215383 | Dec 1970 | GB |
2048686 | Dec 1980 | GB |
537677 | Dec 1976 | SU |
942730 | Jul 1982 | SU |
WO9214514 | Sep 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20050261717 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10744877 | Dec 2003 | US |
Child | 11054598 | US | |
Parent | 10116796 | Apr 2002 | US |
Child | 10744877 | US | |
Parent | 09494101 | Jan 2000 | US |
Child | 10116796 | US | |
Parent | 08869880 | Jun 1997 | US |
Child | 09494101 | US | |
Parent | 08710282 | Sep 1996 | US |
Child | 08869880 | US | |
Parent | 08407929 | Mar 1995 | US |
Child | 08710282 | US | |
Parent | 08132403 | Oct 1993 | US |
Child | 08407929 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08120489 | Sep 1993 | US |
Child | 08132403 | US |