The present invention relates generally to dry packaging of optical waveguides. More specifically, the invention relates to an optical tube assembly that includes at least one dry insert for protecting at least one optical waveguide.
Fiber optic cables include optical waveguides such as optical fibers that transmit optical signals, for example, voice, video, and/or data information. One type of fiber optic cable configuration includes an optical waveguide disposed within a tube, thereby forming a tube assembly. Generally speaking, the tube protects the optical waveguide; however, the optical waveguide must be further protected within the tube. For instance, the optical waveguide should have some relative movement between the optical waveguide and the tube to accommodate bending. On the other hand, the optical waveguide should be adequately coupled with the tube, thereby inhibiting the optical waveguide from being displaced within the tube when, for example, pulling forces are applied to install the cable. Additionally, the tube assembly should inhibit the migration of water therein. Moreover, the tube assembly should be able to operate over a range of temperatures without undue optical performance degradation.
Conventional optical tube assemblies meet these requirements by filling the tube with a thixotropic material such as grease. Thixotropic materials generally allow for adequate movement between the optical waveguide and the tube, cushioning, and coupling of the optical waveguide. Additionally, thixotropic materials are effective for blocking the migration of water within the tube. However, the thixotropic material must be cleaned from the optical waveguide before connectorization of the same. Cleaning the thixotropic material from the optical waveguide is a messy and time-consuming process. Moreover, the viscosity of thixotropic materials is generally temperature dependent. Due to changing viscosity, the thixotropic materials can drip from an end of the tube at relatively high temperatures and the thixotropic materials may cause optical attenuation at relatively low temperatures.
Cable designs have attempted to eliminate thixotropic materials from the tube, but the designs are generally inadequate because they do not meet all of the requirements and/or are expensive to manufacture. One example that eliminates the thixotropic material from the tube is U.S. Pat. No. 4,909,592, which discloses a tube having water-swellable tapes and/or yarns disposed therein. This design requires a large number of water-swellable components within the tube to adequately couple optical fibers to the tube. The use of large numbers of water-swellable components is not economical because it increases the cost of the cable. Another example that eliminates the thixotropic material is U.S. Pat. No. 6,278,826, which discloses a foam having a moisture content greater than zero that is loaded with superabsorbent polymers. The moisture content of the foam is described as improving the flame-retardant characteristics of the foam. Likewise, the foam of this design is relatively expensive and increases the cost of the cable.
The present invention is directed to an optical tube assembly including a tube having an interior surface, at least one optical waveguide disposed within the tube, and at least one dry insert. The dry insert being disposed within the tube and generally surrounding the at least one optical waveguide. The dry insert is compressed at least about 10 percent for adequately coupling the at least one optical waveguide to the interior surface of the tube. Moreover, optical cables according to the present invention can include one, or more, optical tube assemblies as described herein.
The present invention is also directed to an optical tube assembly including a tube having an interior surface, at least one optical waveguide, and at least one dry insert. The at least one dry insert having at least two laminated layers that generally surround the at least one optical waveguide, thereby forming a core that is disposed within the tube. The at least one dry insert is capable of adequately coupling the at least one optical waveguide to the interior surface of the tube while cushioning the at least one optical waveguide, thereby maintaining an optical attenuation below about 0.3 dB/km at a reference wavelength of 1550 nm.
The present invention is further directed to an optical tube assembly including a tube having an interior surface, at least one optical waveguide, and at least one dry insert. The at least one dry insert and the at least one optical waveguide forming a core disposed within the tube, wherein the at least one optical waveguide has a normalized pull-out force between about 0.5 N/m and about 5.0 N/m.
Additionally, the present invention is directed to a method of manufacturing an optical tube assembly including the steps of paying off at least one optical waveguide. Placing a dry insert adjacent to the at least one waveguide, thereby forming a core. Extruding a tube around the core so that the core has a normalized pullout force between about 0.5 N/m and about 5.0 N/m.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings showing preferred embodiments of the invention. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that the disclosure will fully convey the scope of the invention to those skilled in the art. The drawings are not necessarily drawn to scale but are configured to clearly illustrate the invention.
Illustrated in
As depicted, optical waveguide 12 is an optical fiber that forms a portion of an optical fiber ribbon. In this case, the optical waveguides are a plurality of single-mode optical fibers in a ribbon format that form a portion of a ribbon stack. The ribbon stack can include helical or S-Z stranding. Additionally, other types or configurations of optical waveguides can be used. For example, optical waveguide 12 can be multi-mode, pure-mode, erbium doped, polarization-maintaining fiber, other suitable types of light waveguides, and/or combinations thereof. Moreover, optical waveguide 12 can be loose or in bundles. Each optical waveguide 12 may include a silica-based core that is operative to transmit light and is surrounded by a silica-based cladding having a lower index of refraction than the core. Additionally, one or more coatings can be applied to optical waveguide 12. For example, a soft primary coating surrounds the cladding, and a relatively rigid secondary coating surrounds the primary coating. Optical waveguide 12 can also include an identifying means such as ink or other suitable indicia for identification. Suitable optical fibers are commercially available from Corning Incorporated of Corning, N.Y.
Compression of dry insert 14 is actually a localized maximum compression of dry insert 14. In the case of
In other embodiments, first layer 14a is uncompressed, but begins to compress if optical waveguide movement is initiated. Other variations include attaching or bonding a portion of dry insert 14 to tube 18. For example, adhesives, glues, elastomers, and/or polymers 14c are disposed on a portion of the surface of dry insert 14 that contacts tube 18 for attaching dry insert 14 to tube 18. Additionally, it is possible to helically wrap dry insert 14 about optical waveguide 12, instead of being longitudinally disposed. In still further embodiments, two or more dry inserts can be formed about optical waveguide 12 such as two halves.
Bars 34, 36, and 38 represent tube assemblies according to the present invention. Specifically, bar 34 depicts a ribbon pullout force of a 144-fiber stack from a tube assembly 10 having dry insert 14 with an uncompressed height h of about 1.5 mm with about a zero percent compression of dry insert 14. In this embodiment, bar 34 depicts a ribbon pullout force of about 1.0 N/m, which is a surprising improvement over the conventional dry tube. Bars 36 and 38 represent configurations where dry insert 14 is compressed within tube assembly 10 by a percentage from its original height to an average compressed height. More specifically, bar 36 represents a ribbon pullout force of a similar tube assembly as bar 34, expect that in this embodiment dry insert 14 is compressed about thirty percent. In this embodiment, bar 36 depicts a ribbon pullout force of about 2.7 N/m. Bar 38 represents a ribbon pullout force of a 144-fiber ribbon stack from a tube assembly with dry insert 14 having an uncompressed height h of about 3 mm, which is compressed by about thirty percent within the tube. In this embodiment, bar 38 depicts a ribbon pullout force of about 0.5 N/m. Thus, according to the concepts of the present invention the compression of dry insert 14 is preferably in the range of about 10% to about 90%; however, other suitable ranges of compression may provide the desired performance. Nonetheless, the compression of dry insert 14 should not be so great as to cause undue optical attenuation in any of the optical waveguides. Preferably, the ribbon pullout force is in the range of about 0.5 N/m and about 5.0 N/m, more preferably, in the range of about 1 N/m to about 4 N/m.
In this case, the ribbon coupling test simulates an underground cable installation in a duct by applying 600 pounds of tension on a 250 m length of cable by placing pulling sheaves on the respective sheathes of the cable ends. However, other suitable loads, lengths, and/or installation configurations can be used for characterizing ribbon coupling in other simulations. Then, the force on the optical waveguide(s) along its length is measured from the end of cable. The force on the optical waveguide(s) is measured using a Brillouin Optical Time-Domain Reflectometer (BOTDR). Determining a best-fit slope of the curve normalizes the ribbon coupling force.
As a baseline for comparison, curve 60 depicts a normalized ribbon coupling force of about 1.75 N/m for a cable having a ribbon stack of 120-fibers in conventional grease filled cable (FIG. 11). Curve 62 depicts a ribbon pullout force for a cable having a conventional dry tube design having a water-swellable tape around a ribbon stack of 144-fibers (FIG. 12), which are loosely disposed in a tube. Specifically, curve 62 depicts a normalized ribbon coupling force of about 0.15 N/m for the 144-fiber ribbon stack. Thus, the conventional dry tube design (
Curves 64, 66, and 68 represent cables according to the present invention. Specifically, curve 64 depicts a ribbon coupling force of a cable having a 144-fiber stack with a tube assembly 10 having dry insert 14 with an uncompressed height h of about 1.5 mm with about a zero percent compression of dry insert 14. In this embodiment, curve 64 depicts a ribbon coupling force of about 0.80 N/m, which is an improvement over the conventional dry cable of FIG. 12. Curves 66 and 68 represent cable configurations where dry insert 14 is compressed within tube assembly 10 by a percentage from its original height to an average compressed height. More specifically, curve 66 represents a ribbon coupling force of a similar cable as curve 64, expect that in this embodiment dry insert 14 is compressed about thirty percent. In this embodiment, curve 66 depicts a ribbon coupling force of about 2.80 N/m. Curve 68 represents a ribbon coupling force of a cable having a 144-fiber ribbon stack from a cable having a tube assembly with dry insert 14 having an uncompressed height h of about 3 mm, which is compressed by about thirty percent within the tube. In this embodiment, curve 68 depicts a ribbon coupling force of about 0.75 N/m. Thus, according to the concepts of the present invention the ribbon coupling force is preferably in the range of about 0.5 N/m to about 5.0 N/m, more preferably, in the range of about 1 N/m to about 4 N/m. However, other suitable ranges of ribbon coupling force may provide the desired performance.
Additionally, the concepts of the present invention can be employed with other configurations of the dry insert. As depicted in
Many modifications and other embodiments of the present invention, within the scope of the appended claims, will become apparent to a skilled artisan. For example, optical waveguides can be formed in a variety of ribbon stacks or configurations such as a stepped profile of the ribbon stack. Cables according to the present invention can also include more than one optical tube assembly stranded helically or in S-Z configurations. Additionally, dry inserts of the present invention can be laminated together as shown or applied as individual components. Therefore, it is to be understood that the invention is not limited to the specific embodiments disclosed herein and that modifications and other embodiments may be made within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. The invention has been described with reference to silica-based optical waveguides, but the inventive concepts of the present invention are applicable to other suitable optical waveguides and/or cable configurations. For instance, dry inserts of the present invention are suitable for use in tubeless cables with a sheath therearound.
Number | Name | Date | Kind |
---|---|---|---|
4705571 | Lange et al. | Nov 1987 | A |
4707569 | Yoshimura et al. | Nov 1987 | A |
4725628 | Garvey et al. | Feb 1988 | A |
4725629 | Garvey et al. | Feb 1988 | A |
4815813 | Arroyo et al. | Mar 1989 | A |
4818060 | Arroyo | Apr 1989 | A |
4909592 | Arroyo et al. | Mar 1990 | A |
4913517 | Arroyo et al. | Apr 1990 | A |
5016952 | Arroyo et al. | May 1991 | A |
5109456 | Sano et al. | Apr 1992 | A |
5133034 | Arroyo et al. | Jul 1992 | A |
5224190 | Chu et al. | Jun 1993 | A |
5243675 | Kathiresan et al. | Sep 1993 | A |
5422973 | Ferguson et al. | Jun 1995 | A |
5509097 | Tondi-Resta et al. | Apr 1996 | A |
5621841 | Field | Apr 1997 | A |
5621842 | Keller | Apr 1997 | A |
5698615 | Polle | Dec 1997 | A |
5763067 | Bruggemann et al. | Jun 1998 | A |
5838863 | Fujiura et al. | Nov 1998 | A |
6087000 | Girgis et al. | Jul 2000 | A |
6091871 | Elisson et al. | Jul 2000 | A |
6122424 | Bringuier | Sep 2000 | A |
6178278 | Keller et al. | Jan 2001 | B1 |
6226431 | Brown et al. | May 2001 | B1 |
6229944 | Yokokawa et al. | May 2001 | B1 |
6278826 | Sheu | Aug 2001 | B1 |
6377738 | Anderson et al. | Apr 2002 | B1 |
6389204 | Hurley | May 2002 | B1 |
6504979 | Norris et al. | Jan 2003 | B1 |
20020009272 | Parris | Jan 2002 | A1 |
20030044137 | Lopez | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
3444500 | Nov 1985 | DE |
10129772 | Jan 2003 | DE |
0309827 | Apr 1989 | EP |
0577233 | Jan 1994 | EP |
1065545 | Jan 2001 | EP |
1170614 | Jan 2002 | EP |
1302796 | Apr 2003 | EP |
2159291 | Nov 1985 | GB |
2189071 | Oct 1987 | GB |
61-023104 | Jan 1986 | JP |
9-152535 | Jun 1997 | JP |
11-271581 | Oct 1999 | JP |
11-337783 | Dec 1999 | JP |
2001-343565 | Dec 2001 | JP |
2001-343566 | Dec 2001 | JP |
2002-236241 | Aug 2002 | JP |
02099491 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040120662 A1 | Jun 2004 | US |