Optical vibration detection system and method

Information

  • Patent Grant
  • 11781971
  • Patent Number
    11,781,971
  • Date Filed
    Wednesday, July 28, 2021
    2 years ago
  • Date Issued
    Tuesday, October 10, 2023
    8 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Ratcliffe; Luke D
    Agents
    • Goodhue, Coleman & Owens, P.C.
Abstract
A system includes at least one earpiece wherein each earpiece comprises an earpiece housing, a light source operatively connected to each earpiece housing and configured to transmit substantially coherent light toward an outer surface of a user's body, a light receiver operatively connected to the earpiece housing proximate to the light source and configured to receive reflected light from the outer surface of the user's body, and one or more processors disposed within the earpiece housing and operatively connected to the light source and light receiver, wherein one or more processors is configured to determine bone vibration measurements from the reflected light. A method of determining bone vibrations includes providing at least one earpiece, transmitting substantially coherent light toward an outer surface of a user's body using the earpiece, receiving reflected light from the outer surface of the user's body using the earpiece, and determining bone vibration measurements using the earpiece.
Description
FIELD OF THE INVENTION

The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to earpieces.


BACKGROUND

Detecting bone vibration can be an important function for wearable devices such as earpieces. Indeed, for some applications, detecting bone vibration can be a critical feature. Yet in some implementations, bone vibrations may affect the functioning of the wearable device such as causing signal distortion or possibly mechanical malfunctions thereby reducing the effectiveness of the earpiece. What is needed are new and innovative ways to measure bone vibrations in wearable devices such as wireless earpieces.


SUMMARY

Therefore, it is a primary object, feature, or advantage of the present invention to improve over the state of the art.


It is a further object, feature, or advantage of the present invention to detect and measure bone vibrations using an earpiece.


It is a still further object, feature, or advantage of the present invention to minimize the effects of mechanical disturbances on an earpiece related to bone vibrations.


Another object, feature, or advantage is to reduce the chances of a signal transmission or reception failure due to earpiece vibrations.


Yet another object, feature, or advantage is to minimize the need to attenuate signals.


In one implementation, a system includes at least one earpiece, wherein each earpiece includes an earpiece housing, a light source operatively connected to the earpiece housing and configured to transmit light toward an outer surface of a user's body, wherein the light source is substantially coherent, a light receiver operatively connected to the earpiece housing proximate to the light source configured to receive reflected light from the light transmitted to the outer surface of the user's body, and at least one processor disposed within the earpiece housing and operatively connected to the light source and the light receiver, wherein the at least one processor is configured to determine bone vibration measurements from the reflected light.


One or more of the following features may be included. One or more earpieces may comprise a set of earpieces. The light source may transmit the light intermittently toward the outer surface of the user's body. The light source may be transmitted toward multiple points on the outer surface of the user's body. The light receiver may be further configured to receive the reflected light from multiple points on an outer surface of the user's body. The light source and light receiver may comprise a laser Doppler vibrometer. The bone vibration measurements may comprise either the velocity or the displacement patterns of one or more bone vibrations.


In another implementation, a method of determining bone vibrations includes providing at least one earpiece, transmitting, via a light source, light toward an outer surface of a user's body, wherein the light is substantially coherent, receiving, via a light receiver, reflected light from the light transmitted to the outer surface of the user's body, and determining, via at least one processor, bone vibration measurements from the reflected light.


One or more of the following features may be included. One or more earpieces may comprise a set of earpieces. The light source may transmit the light intermittently toward the outer surface of the user's body. The light source may be transmitted toward multiple points on the outer surface of the user's body. The light receiver may be further configured to receive the reflected light from multiple points on an outer surface of the user's body. The light source and light receiver may comprise a laser Doppler vibrometer. The bone vibration measurements may comprise either the velocity or the displace pattern of one or more bone vibrations. One or more processors may modify a signal based on the bone vibration measurements. The signal may be an audio signal. One or more output devices may transmit a signal configured to neutralize the bone vibrations. One or more output device may also transmit the bone vibration measurements to an external electronic device.


One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and claims that follow. No single embodiment need provide each and every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by an object, feature, or advantage stated herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram regarding one embodiment of an earpiece.



FIG. 2 illustrates a side view of a right earpiece.



FIG. 3 illustrates the light source and the light receiver.



FIG. 4 is a block diagram of one example of the earpiece.



FIG. 5 is a flowchart of an implementation of a method of determining bone vibrations.



FIG. 6 is another flow chart of an implementation of a method of determining bone vibrations.





DETAILED DESCRIPTION


FIG. 1 illustrates a block diagram of a system 10 comprising at least one earpiece 12 wherein each earpiece 12 comprises an earpiece housing 14, a light source 16 operatively connected to the earpiece housing, a light receiver 18 operatively connected to the earpiece housing 14, and one or more processors 20 operatively connected to the light source 16 and light receiver 18. One or more earpieces may comprise a set of earpieces with a left earpiece and a right earpiece. The light source 16 operatively connected to the earpiece housing 14 is configured to transmit light toward an outer surface of a user's body such as a surface within the external auditory canal. The light used may be of any frequency or amplitude and need not be discernable to a human eye, but preferably should be substantially coherent. Also, any electromagnetic wave that at least partially reflects off of the outer surface of the user's body may be substituted for light so long as the electromagnetic waves used are substantially coherent. In addition, a laser may be used as the light source as well. A light receiver 18 operatively connected to the earpiece housing 14 proximate to the light source 16 is configured to receive reflected light from the outer surface of the user's body. The reflected light received by the light receiver 18 may be received continuously or discretely, and the light receiver 18 may also receive other electromagnetic waves if necessary. For example, the light receiver 18 may receive both light from the light source 16, wherein the light from the light source is used as a reference, and reflected light from the outer surface of the user's body to be combined with the light 22 via interference. An intelligent control system which may include one or more processors 20 then determines whether any bone vibrations are present using the reflected light data from the light receiver 18 and if so determines data related to the bone vibrations. One or more processors 20 may receive the reflected light data from the light receiver continuously or discretely, and need not consider every piece of data. One or more processors 20 may use the bone vibration determinations to correct other signals that the earpiece 12 may be receiving or even to correct discrepancies related to the transmission of sound to a user's tympanic membranes the earpiece may be providing.



FIG. 2 shows a right earpiece 12B inserted into a user's ear having a light source 16 and a light receiver 18. The right earpiece 12B may be configured to fit comfortably within a user's ear canal 48 so as to both minimize the amount of external sound reaching the user's ear canal 48 and to facilitate the transmission of sounds to a user's tympanic membrane 50. Ideally, the outer surface of the user's body 26 will be the inside of a user's external auditory canal 48, but the light 22 may be directed at any open surface on the user's body. Positioning the light source 16 and the light receiver 18 inside the user's external auditory canal 48 has three distinct advantages. One, the inside of the user's ear canal 48 contains little if no external light, allowing easier and more accurate measurements by the light receiver 18. Two, the inside of the user's ear canal 48 allows easy access to areas close to a user's skull to measure bone vibrations. Three, the distances between the light source 16 and the outer surface of a user's body 26 in the user's ear canal 48 are approximately the same for each prospective user, allowing for substantially accurate bone vibration calculations.



FIG. 3 illustrates the light source 16 and light receiver 18 and surfaces of an ear. A light source 16 transmits light 22 toward an outer surface of the user's body 26. The light 22 transmitted by the light source 16 should be substantially coherent. Also, the light source 16 should preferably not be directed toward a point where the vibrations move perpendicularly to the light source 16, or vibration calculations may not be obtainable. A light receiver 18 receives reflected light 24 from the outer surface of the user's body 26, which is combined with light 22 from the light source 16 to create interference. The interference information is transmitted to one or more processors 20 inside the earpiece 12B, which determines bone vibration data from the interference readings. The bone vibration data may include velocity, displacement, or anything else that may be beneficial to the ideal functioning of the earpiece 12B.



FIG. 4 is a block diagram of an earpiece 12 having an earpiece housing 14, a light source 16 operatively connected to the earpiece housing 14, a light receiver 18 proximate to the light source 16 and disposed within or otherwise operatively connected to the earpiece housing 14, at least one LED 28 operatively connected to the earpiece housing 14, one or more microphones 32 operatively connected to the earpiece housing 14, one or more output devices 34 operatively connected to the earpiece housing 14, at least one sensor 36 operatively connected to the earpiece housing 14. The at least one sensor may include one or more physiological sensors 38 such as heart rate sensors, pulse oximeters, temperature sensors, or other types of physiological sensors. The at least one sensor may also include one or more inertial sensors 42, 44. A gesture control interface 46 with at least one emitter 52 and at least one detector 54 is operatively connected to the earpiece housing 14. The gesture control interface may use optical transmitters or receivers, capacitive field sensing or other methodologies. A transceiver 56 is disposed within the earpiece 12, a radio transceiver 58 is disposed within the earpiece 12, and a battery 30 disposed within the earpiece 12. A processor 20 is disposed within the earpiece 12 and operatively connected to various of the aforementioned components. The earpiece 12 may be composed of metal, plastic, a combination of the two, or any other material suitable for human use and may be configured to be waterproof.


A light source 16 may be operatively connected to the earpiece housing 14 and may be configured to transmit light of any frequency or wavelength as long as the light is substantially coherent. For this reason, the light source 16 is ideally a laser, though any light source 16 capable of creating substantially coherent light may be used. Also, an acousto-optic modulator (a.k.a. a Bragg cell) may be incorporated into the light source 16 to determine the direction of any bone vibrations. The light source may transmit the light continuously or in pulses and may transmit the light at different locations on the outer surface of the user's body.


A light receiver 18 is proximate to the light source 16 and operatively connected to the earpiece housing 14. The light receiver 18 may receive, in addition to reflected light from the outer surface of the user's body, light from the light source to use as a reference in determining the frequency of the reflected light used to determine bone vibration information. The proximity of the light receiver 18 to the light source 16 need not be a certain length, though ideally the light receiver is very close to the light source 16 due to the proximity of the outer surface of the user's body to the light source 16. Also, a laser Doppler vibrometer may be used in place of the light source 16 and the light receiver 18 to ascertain bone vibrations. In a laser Doppler vibration setup, a laser is used as the light source, which is split into a reference beam and a measurement beam by a beamsplitter, wherein the reference beam is beamed through an acousto-optic modulator in order to create a frequency shift in which to ascertain a direction of the bone vibrations. The measurement beam is then beamed at the target location, which is directly reflected back in the direction of the measurement beam and then split by a beamsplitter toward a detector, where it merges with the reference beam to create interference. The detector determines the velocity from the frequency shift and interference patterns of the combined measurement and reference beam, which may be used to determine the displacement lengths of any bone vibrations that may be present.


The LEDs 28 operatively connected to the earpiece housing 14 may be configured to emit light in order to convey information to a user concerning the earpiece 12. The LEDs 28 may be located in any area on the earpiece 12 suitable for viewing by the user or a third party and may consist of as few as one diode which may be provided in combination with a light guide. In addition, the LEDs 28 may be discernable by a human eye or an electronic device and need not have a minimum luminescence.


One or more microphones 32 may be operatively connected to the earpiece housing 14 and may be configured to receive sounds from one or more sources, including the user, a third party, a machine, an animal, another earpiece, another electronic device, or even nature itself. The sounds received by one or more microphones 32 may include a word, combination of words, a sound, combinations of sounds, or any combination of the aforementioned. The sounds may be of any frequency and need not be audible to the user and may be used to reconfigure one or more components of the earpiece 12. For example, the user or third party may modify a default value used to calculate a bone vibration via a voice command, such as the distance between the light source and the outer surface of the user's body, or one or more microphones may pick up on sounds emanating from the user which may be used to correct measurement errors by the light receiver 18.


One or more output devices 34 operatively connected to the earpiece housing 14 may be configured to transmit sounds received from one or more microphones 32, the transceiver 56, or the radio transceiver 58 or even a data storage device 60. One or more output devices 34 may transmit information related to the operations of the earpiece 12 or information queried by the user or a third party to outside sources. For example, an output device 34 may transmit a signal related to bone vibration data to an external electronic device. The bone vibration data may be used by a medical professional for diagnostic purposes, a user for technical or personal purposes, or a third party for scientific, technical, or other purposes. In addition, an output device 34 may transmit an audio signal configured to neutralize any bone vibrations the earpiece 12 encounters.


One or more microphones 32 may be operatively connected to the earpiece housing 14 and may be configured to obtain additional bone vibration data that the light source 16 or the light receiver 18 may not be configured for. For example, the microphones may include an air microphone and a bone microphone which may be used to detect bone vibrations via pressure disturbances in the user's ear canal. The one or more inertial sensors 42 and 44 may be used to determine motion data related to the user's head and neck regions to be used to modify one or more readings of the light detector 18 or even to ascertain one or more variables of the bone vibration determination.


The gesture control interface 46 operatively connected to the earpiece housing 14 is configured to allow a user additional control over the earpiece 12. The gesture control interface 46 includes at least one emitter 52 and at least one detector 54 to detect gestures from either the user, a third party, an instrument, or a combination of the aforementioned and transmit one or more signals related to one or more gestures to one or more processors 20. The gestures that may be used with the gesture control interface 46 to control the earpiece 12 include, without limitation, touching, tapping, swiping, use of an instrument, or any combination of the aforementioned gestures. Touching gestures used to control the earpiece 12 may be of any duration and may include the touching of areas that are not part of the gesture control interface 46. Tapping gestures used to control the earpiece 12 may include any number of taps and need not be brief. Swiping gestures used to control the earpiece 12 may include a single swipe, a swipe that changes direction at least once, a swipe with a time delay, a plurality of swipes, or any combination of the aforementioned. An instrument used to control the earpiece 12 may be electronic, biochemical or mechanical, and may interface with the gesture control interface 46 either physically or electromagnetically.


One or more processors 20 is operatively connected to each component within the earpiece 12 and may be configured, in addition to transmitting and receiving signals from either the light source 16 or the light receiver 18, signals from one or more microphones 32, one or more sensors 36, the transceiver 56, or the radio transceiver 58. One or more processors may also be configured to use any information received from one or more microphones 32, one or more sensors 36, the transceiver 56, or the radio transceiver 58 in addition to information from the light receiver 18 to assist in the determination of any bone vibration data that may be relevant. One or more processors 20 may be reconfigured by the user or a third party through the use of one or more microphones 32, the gestural control interface 46, or by an electronic signal received from the transceiver 56 or the radio transceiver 58. Reconfigurations may include what bone vibration measurements to determine, the distance between the light source 16 and the outer surface of the user's body to use, or how often to measure a user's bone vibrations.


The transceiver 56 disposed within the earpiece 12 may be configured to receive signals from and to transmit signals to a second earpiece of the user if the user is using more than one earpiece. The transceiver 56 may receive or transmit more than one signal simultaneously. The transceiver 56 may be of any number of types including a near field magnetic induction (NFMI) transceiver.


The radio transceiver 58 disposed within the earpiece 12 may be configured to receive signals from external electronic devices and to transmit those signals to one or more processors 20. The external electronic devices the radio transceiver 58 may be configured to receive signals from include Bluetooth devices, mobile devices, desktops, laptops, tablets, modems, routers, communications towers, cameras, watches, third-party earpieces, earpieces, or other electronic devices capable of transmitting or receiving wireless signals. The radio transceiver 58 may receive or transmit more than one signal simultaneously.


One or more speakers 39 may also be present and may be operatively connected to the one or more processors 20 for transducing audio.


The battery 30 should provide enough power to operate an earpiece 12 for a reasonable duration of time. The battery 30 may be of any type suitable for powering an earpiece 12. However, the battery 30 need not be present in an earpiece 12. Alternative battery-less power sources, such as thermal harvesters that produce energy from differences between the user's or a third party's skin or internal body temperature and the ambient air, solar apparatuses which generate energy from the photovoltaic effect, or sensors configured to receive energy from radio waves (all of which are operatively connected to one or more earpieces 12) may be used to power the earpiece 12 in lieu of a battery 30.



FIG. 5 illustrates one implementation of a method for determining bone vibrations with an earpiece 100. In step 102, at least one earpiece is provided. The earpiece may be provided to the user or a third party. In step 104, the light source transmits light toward an outer surface of the user's body. The transmission may be performed continuously or discretely, and the transmission need not target the same spot on the outer surface of the user's body. Also, any electromagnetic wave that is both substantially coherent and at least partially reflects off of the outer surface of the user's body may be substituted for light. A laser may be substituted for the light source as well. In step 106, a light receiver receives reflected light from the outer surface of the user's body. The reception may be continuous or discrete, and the light receiver may also be configured to receive reflected light from different points on the outer surface. In step 108, one or more processors use the reflected light data to determine whether any bone vibrations are present and if so determine any relevant data associated with the bone vibrations. For example, the bone vibrations may be indicative of speech by a user and thus relevant data may include an audio signal of the user. One or more processors may receive the reflected light data from the light receiver continuously or discretely, and need not consider every piece of data. One or more processors may use the bone vibration determinations to correct for any other signals that the earpiece may be receiving or even to correct for any transmission of sound to a user's tympanic membranes the earpiece may be providing. Thus, audio signals associated with bone vibrations may be received and interpreted. It is to be understood that a number of different techniques may be applied to identify and separate the different bone vibrations may be used. For example, filtering for may be used to identify or isolate bone vibrations associated with audio.



FIG. 6 illustrates another implementation of the method for determining bone vibrations with an earpiece 200. The first four steps of the method are largely identical to the method shown in FIG. 5, but some additional steps are added. In step 210, one or more processors modifies a signal either transmitted or received by the earpiece. The signal may be an audio signal from the user, an electromagnetic signal (for example an AM or FM radio wave), or even a gesture received by the gesture control interface. In step 212, regardless of whether step 210 has been carried out, an output device may transmit an audio signal configured to neutralize any bone vibrations present within the user. The transmission of the audio signal is ideally continuous, but may be discrete or intermittent as well. In step 214, regardless of whether steps 210 or 212 have been carried out, the output device transmits the bone vibration measurements to an external electronic device. The transmission of the bone vibration measurements may be used for purposes of medical diagnosis, medical treatment, or analysis, wherein the analysis may be scientifically or technically related to the user or the earpiece.


Therefore, various apparatus, methods, and systems have been shown and described. Although specific embodiments are shown, the present invention contemplates numerous variations, additions, options, and alternatives including different types of light sources, different types of light receivers, and other variations.

Claims
  • 1. A method of determining bone vibrations comprising: providing an earpiece having at least one processor and an output speaker;receiving an audio signal at the earpiece;transmitting, via a light source of the earpiece, light toward an outer surface of a user's body, wherein the light is substantially coherent;receiving, via a light receiver of the earpiece, reflected light from the light transmitted to the outer surface of the user's body;determining, via the at least one processor of the earpiece, bone vibration measurements from the reflected light; andcorrecting the audio signal based on the bone vibration measurements to reduce effects associated with the bone vibrations on the audio;after correcting the audio signal, outputting the audio signal from the output speaker.
  • 2. The method of claim 1 wherein the light source transmits the light intermittently toward the outer surface of the user's body.
  • 3. The method of claim 2 wherein the light source transmits the light toward multiple points on the outer surface of the user's body.
  • 4. The method of claim 3 wherein the light receiver is further configured to receive the reflected light from multiple points on the outer surface of the user's body.
  • 5. The method of claim 1 wherein the light source and the light receiver comprise a laser Doppler vibrometer.
  • 6. The method of claim 1 wherein the bone vibration measurements comprise the velocity of at least one bone vibration.
  • 7. The method of claim 6 wherein the bone vibration measurements comprise the displacement pattern of the at least one bone vibration.
  • 8. The method of claim 1 wherein the correcting the audio provides for neutralizing effects of the bone vibrations.
  • 9. The method of claim 1 further comprising transmitting the bone vibration measurements to an external electronic device.
  • 10. A system comprising: at least one earpiece, wherein each earpiece comprises an earpiece housing;a light source operatively connected to the earpiece housing and configured to transmit light toward an outer surface of a user's body;a light receiver operatively connected to the earpiece housing proximate to the light source configured to receive reflected light from the light transmitted to the outer surface of the user's body; andat least one processor disposed within the earpiece housing and operatively connected to the light source and the light receiver, wherein the at least one processor is configured to determine bone vibration measurements from the reflected light and to modify an audio signal to neutralize the bone vibration measurements;a transceiver disposed within the earpiece housing and operatively connected to the at least one earpiece;an output speaker operatively connected to the at least one processor for outputting the audio signal.
  • 11. The system of claim 10 wherein the at least one earpiece comprises a set of earpieces.
  • 12. The system of claim 10 wherein the light source transmits the light intermittently toward the outer surface of the user's body.
  • 13. The system of claim 12 wherein the light source transmits the light toward multiple points on the outer surface of the user's body.
  • 14. The system of claim 13 wherein the light receiver is further configured to receive the reflected light from multiple points on the outer surface of the user's body.
  • 15. The system of claim 10 wherein the light source and the light receiver comprise a laser Doppler vibrometer.
  • 16. The system of claim 10 wherein the bone vibration measurements comprise the velocity of at least one bone vibration.
  • 17. The system of claim 16 wherein the bone vibration measurements further comprise the displacement pattern of the at least bone vibration.
PRIORITY STATEMENT

This application is a continuation of U.S. Non-provisional patent application Ser. No. 15/637,826, filed on Jun. 29, 2017, which claims priority to U.S. Provisional Patent Application 62/359,023, filed on Jul. 6, 2016, and both entitled Optical Vibration Detection System and Method, hereby incorporated by reference in their entirety.

US Referenced Citations (211)
Number Name Date Kind
2325590 Carlisle et al. Aug 1943 A
2430229 Kelsey Nov 1947 A
3047089 Zwislocki Jul 1962 A
D208784 Sanzone Oct 1967 S
3586794 Michaelis Jun 1971 A
3934100 Harada Jan 1976 A
3983336 Malek et al. Sep 1976 A
4069400 Johanson et al. Jan 1978 A
4150262 Ono Apr 1979 A
4334315 Ono et al. Jun 1982 A
D266271 Johanson et al. Sep 1982 S
4375016 Harada Feb 1983 A
4516428 Konomi May 1985 A
4588867 Konomi May 1986 A
4617429 Bellafiore Oct 1986 A
4654883 Iwata Mar 1987 A
4682180 Gans Jul 1987 A
4791673 Schreiber Dec 1988 A
4852177 Ambrose Jul 1989 A
4865044 Wallace et al. Sep 1989 A
4984277 Bisgaard et al. Jan 1991 A
5008943 Arndt et al. Apr 1991 A
5185802 Stanton Feb 1993 A
5191602 Regen et al. Mar 1993 A
5201007 Ward et al. Apr 1993 A
5201008 Arndt et al. Apr 1993 A
D340286 Seo Oct 1993 S
5280524 Norris Jan 1994 A
5295193 Ono Mar 1994 A
5298692 Ikeda et al. Mar 1994 A
5343532 Shugart Aug 1994 A
5347584 Narisawa Sep 1994 A
5363444 Norris Nov 1994 A
D367113 Weeks Feb 1996 S
5497339 Bernard Mar 1996 A
5606621 Reiter et al. Feb 1997 A
5613222 Guenther Mar 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5721783 Anderson Feb 1998 A
5748743 Weeks May 1998 A
5749072 Mazurkiewicz et al. May 1998 A
5771438 Palermo et al. Jun 1998 A
D397796 Yabe et al. Sep 1998 S
5802167 Hong Sep 1998 A
D410008 Almqvist May 1999 S
5929774 Charlton Jul 1999 A
5933506 Aoki et al. Aug 1999 A
5949896 Nageno et al. Sep 1999 A
5987146 Pluvinage et al. Nov 1999 A
6021207 Puthuff et al. Feb 2000 A
6054989 Robertson et al. Apr 2000 A
6081724 Wilson Jun 2000 A
6094492 Boesen Jul 2000 A
6111569 Brusky et al. Aug 2000 A
6112103 Puthuff Aug 2000 A
6157727 Rueda Dec 2000 A
6167039 Karlsson et al. Dec 2000 A
6181801 Puthuff et al. Jan 2001 B1
6208372 Barraclough Mar 2001 B1
6230029 Yegiazaryan et al. May 2001 B1
6275789 Moser et al. Aug 2001 B1
6339754 Flanagan et al. Jan 2002 B1
D455835 Anderson et al. Apr 2002 S
6408081 Boesen Jun 2002 B1
6424820 Burdick et al. Jul 2002 B1
D464039 Boesen Oct 2002 S
6470893 Boesen Oct 2002 B1
D468299 Boesen Jan 2003 S
D468300 Boesen Jan 2003 S
6542721 Boesen Apr 2003 B2
6560468 Boesen May 2003 B1
6654721 Handelman Nov 2003 B2
6664713 Boesen Dec 2003 B2
6690807 Meyer Feb 2004 B1
6694180 Boesen Feb 2004 B1
6718043 Boesen Apr 2004 B1
6738485 Boesen May 2004 B1
6748095 Goss Jun 2004 B1
6754358 Boesen et al. Jun 2004 B1
6784873 Boesen et al. Aug 2004 B1
6823195 Boesen Nov 2004 B1
6852084 Boesen Feb 2005 B1
6879698 Boesen Apr 2005 B2
6892082 Boesen May 2005 B2
6920229 Boesen Jul 2005 B2
6952483 Boesen et al. Oct 2005 B2
6987986 Boesen Jan 2006 B2
7010137 Leedom et al. Mar 2006 B1
7113611 Leedom et al. Sep 2006 B2
D532520 Kampmeier et al. Nov 2006 S
7136282 Rebeske Nov 2006 B1
7203331 Boesen Apr 2007 B2
7209569 Boesen Apr 2007 B2
7215790 Boesen et al. May 2007 B2
D549222 Huang Aug 2007 S
D554756 Sjursen et al. Nov 2007 S
7403629 Aceti et al. Jul 2008 B1
D579006 Kim et al. Oct 2008 S
7463902 Boesen Dec 2008 B2
7508411 Boesen Mar 2009 B2
D601134 Elabidi et al. Sep 2009 S
7825626 Kozisek Nov 2010 B2
7965855 Ham Jun 2011 B1
7979035 Griffin et al. Jul 2011 B2
7983628 Boesen Jul 2011 B2
D647491 Chen et al. Oct 2011 S
8095188 Shi Jan 2012 B2
8108143 Tester Jan 2012 B1
8140357 Boesen Mar 2012 B1
D666581 Perez Sep 2012 S
8300864 Müllenborn et al. Oct 2012 B2
8406448 Lin et al. Mar 2013 B2
8436780 Schantz et al. May 2013 B2
D687021 Yuen Jul 2013 S
8719877 VonDoenhoff et al. May 2014 B2
8774434 Zhao et al. Jul 2014 B2
8831266 Huang Sep 2014 B1
8891800 Shaffer Nov 2014 B1
8994498 Agrafioti et al. Mar 2015 B2
D728107 Martin et al. Apr 2015 S
9013145 Castillo et al. Apr 2015 B2
9037125 Kadous May 2015 B1
D733103 Jeong et al. Jun 2015 S
9081944 Camacho et al. Jul 2015 B2
9510159 Cuddihy et al. Nov 2016 B1
D773439 Walker Dec 2016 S
D775158 Dong et al. Dec 2016 S
D777710 Palmborg et al. Jan 2017 S
D788079 Son et al. May 2017 S
20010005197 Mishra et al. Jun 2001 A1
20010027121 Boesen Oct 2001 A1
20010043707 Leedom Nov 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020002413 Tokue Jan 2002 A1
20020007510 Mann Jan 2002 A1
20020010590 Lee Jan 2002 A1
20020030637 Mann Mar 2002 A1
20020046035 Kitahara et al. Apr 2002 A1
20020057810 Boesen May 2002 A1
20020076073 Taenzer et al. Jun 2002 A1
20020118852 Boesen Aug 2002 A1
20030002705 Boesen Jan 2003 A1
20030065504 Kraemer et al. Apr 2003 A1
20030100331 Dress et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030115068 Boesen Jun 2003 A1
20030125096 Boesen Jul 2003 A1
20030218064 Conner et al. Nov 2003 A1
20040070564 Dawson et al. Apr 2004 A1
20040160511 Boesen Aug 2004 A1
20050017842 Dematteo Jan 2005 A1
20050043056 Boesen Feb 2005 A1
20050125320 Boesen Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050165663 Razumov Jul 2005 A1
20050196009 Boesen Sep 2005 A1
20050251455 Boesen Nov 2005 A1
20050266876 Boesen Dec 2005 A1
20060029246 Boesen Feb 2006 A1
20060074671 Farmaner et al. Apr 2006 A1
20060074808 Boesen Apr 2006 A1
20060166715 Engelen et al. Jul 2006 A1
20060166716 Seshadri et al. Jul 2006 A1
20060220915 Bauer Oct 2006 A1
20060258412 Liu Nov 2006 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090622 Kim et al. Apr 2008 A1
20080146890 LeBoeuf Jun 2008 A1
20080254780 Kuhl et al. Oct 2008 A1
20080255430 Alexandersson et al. Oct 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090017881 Madrigal Jan 2009 A1
20090073070 Rofougaran Mar 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105548 Bart Apr 2009 A1
20090191920 Regen et al. Jul 2009 A1
20090245559 Boltyenkov et al. Oct 2009 A1
20090296968 Wu et al. Dec 2009 A1
20100033313 Keady et al. Feb 2010 A1
20100061562 Segev Mar 2010 A1
20100203831 Muth Aug 2010 A1
20100210212 Sato Aug 2010 A1
20100320961 Castillo et al. Dec 2010 A1
20110286615 Olodort et al. Nov 2011 A1
20120057740 Rosal Mar 2012 A1
20120215519 Park Aug 2012 A1
20130316642 Newham Nov 2013 A1
20130346168 Zhou et al. Dec 2013 A1
20140079257 Ruwe et al. Mar 2014 A1
20140106677 Altman Apr 2014 A1
20140122116 Smythe May 2014 A1
20140163771 Demeniuk Jun 2014 A1
20140185828 Helbling Jul 2014 A1
20140222462 Shakil et al. Aug 2014 A1
20140235169 Parkinson et al. Aug 2014 A1
20140270227 Swanson Sep 2014 A1
20140270271 Dehe et al. Sep 2014 A1
20140348367 Vavrus et al. Nov 2014 A1
20150028996 Agrafioti et al. Jan 2015 A1
20150110587 Hori Apr 2015 A1
20150148989 Cooper et al. May 2015 A1
20150245127 Shaffer Aug 2015 A1
20160033280 Moore et al. Feb 2016 A1
20160072558 Hirsch et al. Mar 2016 A1
20160073189 Linden et al. Mar 2016 A1
20160125892 Bowen et al. May 2016 A1
20160360350 Watson et al. Dec 2016 A1
20170078780 Qian et al. Mar 2017 A1
20170111726 Martin et al. Apr 2017 A1
20170155992 Perianu et al. Jun 2017 A1
Foreign Referenced Citations (20)
Number Date Country
204244472 Apr 2015 CN
104683519 Jun 2015 CN
104837094 Aug 2015 CN
1469659 Oct 2004 EP
1017252 May 2006 EP
2903186 Aug 2015 EP
2074817 Nov 1981 GB
2508226 May 2014 GB
06292195 Oct 1998 JP
2008103925 Aug 2008 WO
2007034371 Nov 2008 WO
2011001433 Jan 2011 WO
2012071127 May 2012 WO
2013134956 Sep 2013 WO
2014046602 Mar 2014 WO
2014043179 Jul 2014 WO
2015061633 Apr 2015 WO
2015110577 Jul 2015 WO
2015110587 Jul 2015 WO
2016032990 Mar 2016 WO
Non-Patent Literature Citations (44)
Entry
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223.
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014) pp. 1-14.
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013), pp. 1-7.
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014).
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016).
BRAGI Is on Facebook (2014), pp. 1-51.
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014), pp. 1-8.
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015), pp. 1-18.
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014), pp. 1-8.
BRAGI Update—Let's Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014), pp. 1-18.
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014), pp. 1-15.
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014), pp. 1-16.
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014), pp. 1-17.
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014), pp. 1-16.
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014), pp. 1-15.
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014), pp. 1-9.
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014), pp. 1-14.
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015), pp. 1-18.
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015), pp. 1-19.
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014), pp. 1-21.
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015), pp. 1-21.
BRAGI Update—Alpha 5 and Back to China, Backer Day, On Track(May 16, 2015), pp. 1-15.
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015), pp. 1-16.
BRAGI Update—Certifications, Production, Ramping Up (Nov. 13, 2015), pp. 1-15.
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015), pp. 1-20.
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015), pp. 1-20.
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 2, 2015), pp. 1-14.
BRAGI Update—Getting Close(Aug. 6, 2015), pp. 1-20.
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015), pp. 1-17.
BRAGI Update—On Track, On Track and Gems Overview (Jun. 24, 2015), pp. 1-19.
BRAGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015), pp. 1-17.
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015), pp. 1-15.
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016), pp. 1-2.
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017), pp. 1-8.
Hyundai Motor America, “Hyundai Motor Company Introduces a Health + Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017), pp. 1-3.
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014), pp. 1-7.
Nigel Whitfield: “Fake tape detectors, from the stands' footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dina_iot/ (Sep. 24, 2014).
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000.
Stretchgoal—It's Your Dash (Feb. 14, 2014), pp. 1-14.
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014), pp. 1-9.
Stretchgoal—Windows Phone Support (Feb. 17, 2014), pp. 1-17.
The Dash + The Charging Case & The BRAGI News (Feb. 21, 14), pp. 1-12.
The Dash—A Word From Our Software, Mechanical and Acoustics Team + An Update (Mar. 11, 2014), pp. 1-7.
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014), pp. 1-11.
Related Publications (1)
Number Date Country
20210356388 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62359023 Jul 2016 US
Continuations (1)
Number Date Country
Parent 15637826 Jun 2017 US
Child 17387309 US