The present invention relates generally to optical based monitoring systems and, more particularly, to optical based monitoring systems for monitoring a high temperature, wide angle area of interest such as an annular combustion chamber.
Gas turbine engines are known to include a compressor section, a combustor section, and a turbine section. Many components that form the turbine section, such as the stationary vanes, rotating blades and surrounding ring segments, are directly exposed to hot combustion gasses that can exceed 1500 C and travel at rotational velocities approaching the speed of sound.
In some gas turbine engines, the combustion section is a 360° plenum, more commonly referred to as an annular combustor. Annular combustors typically have ceramic tiles arranged on the inner wall of the annular combustor to insulate the combustor cylinder from the hot, combusted gas.
However, these ceramic tiles have been known to detach from the inner wall and can enter the flow stream, become lodged in the first row vanes, resulting in local flow blockage. This flow blockage may result in significant damage to turbine components downstream of the first row vanes.
In the past, inspection for damage to turbine components has been performed by partially disassembling the gas turbine engine and performing visual inspections on individual components. Alternatively, in-situ visual inspections may be performed without engine disassembly by using a borescope inserted into a gas turbine engine, but such procedures are labor intensive, time consuming, costly, and require that the gas turbine engine be shut down.
It is known to inspect for turbine component damage while the gas turbine is operating. Also, several methods and apparatus for detecting and locating defects in turbine components while the turbine engine is in operation have been proposed, including acoustic, optical and infrared. However, each of these methods and apparatus has appreciable disadvantages.
Accordingly, there continues to be a need for improved methods and apparatus having a wide angle field of view for the non-destructive detection of damage to turbine components.
The present invention provides an optical viewing system for the non-destructive monitoring of a high temperature area of interest with a confined space access, comprising an IR imaging device; an optical probe, having a shaft, a wide angle IR objective lens, and a relay optics unit; a cooling system adapted to cool the wide angle IR objective lens; and a processor that converts a detected image to a digital signal and display the digital signal on a visual monitor.
The present invention also provides an optical probe for monitoring an annular combustion chamber within the turbine, comprising: a shaft having a first end and a second end; a wide angle IR objective lens arranged towards the first end of the shaft; and a cooling hole arranged toward the first end of the shaft and adjacent to the wide angle IR objective lens to provide cooling air to the wide angle IR objective lens.
Furthermore, the present invention provides a method for monitoring an annular combustion chamber in an operating turbine generator, comprising attaching an appropriate wide angle IR lens to a probe tip of an optical probe; installing the optical probe in the annular combustion chamber; operating the turbine; focusing a lens in the optical probe; capturing an image with an IR camera; and processing the captured image.
The above-mentioned and other concepts of the present invention will now be described with reference to the drawings of the exemplary and preferred embodiments of the present invention. The illustrated embodiments are intended to illustrate, but not to limit the invention. The drawings contain the following figures, in which like numbers refer to like parts throughout the description and drawings and wherein:
The invention described herein employs several basic concepts. For example, one concept relates a wide angle viewing system that is cooled by active cooling for use in a high temperature environment. Another concept relates a device and a method for monitoring ceramic tile integrity on the inner wall of an annular combustion chamber. Another concept relates to the monitoring of an area of interest where wide-angle viewing of a high temperature region through a confined access space is needed.
It is advantageous to define the term “area of interest” before describing the invention. “Area of interest” refers to any region where viewing or monitoring is desired. For example, the interface between the row 1 vane and the combustion chamber in an annular combustor in a gas turbine would be an area of interest.
The present invention is disclosed in context of use of a wide-angle infrared (IR) optical viewing system within a gas turbine engine for monitoring thermal insulating tile fixity on the combustion chamber inner wall within an annular combustion chamber. The principles of the present invention, however, are not limited to use within gas turbine engines or to monitor thermal insulating tiles in an annular combustion chamber. Other applications include any environment requiring monitoring by viewing a wide area such as in steam turbines, electric generators, air or gas compressors, auxiliary power plants, and the like. Additionally, other types of high temperature conditions that can be monitored in the context of use within a combustion turbine with the present invention include cracked or broken components as well as combustion flame characteristics. One skilled in the art may find additional applications for the apparatus, processes, systems, components, configurations, methods and applications disclosed herein. For example, the claimed invention has application in the field of geology monitoring pockets exposed to high temperatures in the earth's subsurface. Further, the claimed invention also has application in the field of fire rescue where monitoring by viewing a confined space in a burning, or recently burned structure is necessary. Thus, the illustration and description of the present invention in context of an exemplary gas turbine engine for monitoring stability and fixity of ceramic thermal insulation tiles on the inner wall of an annular combustion chamber is merely one possible application of the present invention. However, the present invention has particular applicability for use as a viewing system for monitoring the condition of turbine components.
Referring to
Still referring to
Further illustrated in
Referring to
One or more cooling ports 40 are advantageously arranged on the shaft 32 at a location that allows cooling air to enter the shaft 32. The cooling air functions to keep the optical elements 36, 34 properly cooled. Cooling air can be supplied as bleed air extracted from a compressor section or may be supplied from any suitable location where cooling air can be obtained.
Still referring to
A wide angle IR objective lens 36 is located toward an end of the shaft 32 opposite the end that the IR camera 26 is located. The wide angle lens 36 allows a wide area of interest 17 to be viewed. The wide angle lens 36 is advantageously designed with a wide field of vision 18 or wide viewing angle 18. Typically, a wide field of vision 18 or wide viewing angle 18 is preferably larger than 30 degrees. However, the field of vision 18 may be less than 30 degrees. The viewing capabilities of the lens 36 are partially effected by the field of vision 18. For example, a lens 36 having a field of vision 18 greater than 150 degrees will not have the imaging capabilities of a lens 36 having a field of vision 18 less than 90 degrees. With a larger field of vision 18 is a tradeoff in perspective, detail, and resolution.
As illustrated, the field of vision 18 is depicted as an angle. In three dimensional space, the field of vision 18 can be thought of as generally conical in shape with the apex of the cone at the lens 36. The wide angle lens 36 is preferable hemispherical in shape. A hemispherical lens 36 provides a wide field of vision 18 and is commercially readily available. However, there is no requirement that the lens 36 be hemispherical and there may be acceptable alternate geometries such as an ellipsoid, a hyperboloid, and the like. As illustrated, the lens 36 is approximately 17 millimeters in diameter. While the illustrated embodiment of the lens 36 diameter is approximately 17 millimeters, one skilled in the art will recognize that the diameter of the lens 36 will in part depend on the amount of available energy emitted by the area of interest 17. Furthermore, there are other considerations that may be used in determining lens 36 size such as the size of the entry port for the optical probe shaft 32 and cooling flow availability.
The lens 36 may be interchangeable with the optical probe 28. That is, depending on the application, it may be beneficial to use a lens 36 having a more narrow field of vision 18. For example, if the area of interest 17 to be monitored can be acceptably monitored with a lens having a more narrow (e.g., less than 180 degrees) field of vision 18, then there is no limitation preventing use of the lens 36. As discussed below, there are advantages to using a lens 36 having a field of vision 18 no greater than required for the particular context of use.
In the preferred embodiment, the IR objective lens 36 is a germanium lens 36. A germanium lens 36 is transmissive in the wavelength range of 0.9 μM to 12 μm. Other materials are suitable, such as barium fluoride, zinc selinide, and the like. However, as would be known by one skilled in the art, the IR objective lens 36 can be produced from any acceptable material. The material may also be coated 46 (see
The lens 36 must be properly cooled. If the lens 36 becomes heated to the level that it 36 begins to become emissive, the area of interest 17 will be unobservable.
A cooling scheme 42 for the IR objective lens 36 is illustrated in
As illustrated, the lens 36 is cooled by film cooling. As known by those skilled in the art, film cooling is a proven method of cooling components. That is, a thin film of air is developed between the combustion gas and the lens 36 effectively insulating the lens 36 from the gas. The thickness and flow rate of the film is controlled by the cooling hole 42 geometry. The cooling flow may be in the turbulent flow regime or laminar flow regime. The insulating effect of the film cooling may provide a temperature difference of as much as 150 C. ° between the combustion gas and the lens 36.
An alternate cooling scheme is illustrated in
Returning to
Referring back to
The illustrated optical probe 28 is inserted through a port in the combustor cylinder wall 22 and traversed through the port into the combustion chamber 30. The optical probe 28 can be arranged in many other locations to achieve the function of wide angle viewing as will be understood by those skilled in the art. The field of vision 18 into the plane can be increased by increasing the number of optical viewing systems 10 used. For example, by spacing an appropriate number of optical viewing systems 10 around the circumference of the annular combustion chamber 30, the entire combustion chamber 30 may be viewed.
The optical probe 28 is advantageously secured to the combustor cylinder wall 22 by an optional flange 38. In the context of use in a gas turbine, the cylinder wall 22 is a convenient location to secure the optical probe 28 to view the area of interest 17. The flange 38 also provides a seal between the combustion chamber 30 conditions external to the combustor cylinder wall 22. One skilled in the art will recognize that there are other options available to secure the optical probe 28 in an operating position. For example, the optical probe 28 may be welded in place, adhesively fixed in place, screwed in place with a threaded shaft 32, magnetically fixed in place, secured using thumb screws, combinations thereof, and the like. Furthermore, the optical probe 28 may be adjustably mounted such that the probe 28 can be extended to possibly increase the field of view 18, or retracted to decrease the field of view 17 or adjust the lens 36 cooling if necessary.
In operation, as illustrated, when the viewing system 10 is initiated, the IR camera 26 detects the image captured through the wide angle lens 36. The image is converted to a digital signal and transmitted to the processing system 48.
The viewing system 48 advantageously interprets and processes the transmitted image. The processed image is preferably output in a form that can be suitably visually displayed. For example, a visual output, such as a computer monitor advantageously allows the data to be displayed in a real time fashion because of the capabilities of modern central processing units. Alternatively, the data could be stored separately and used with a suitable program or database and analyzed at a later date. Lastly, the output could be used and compared to other output to determine trends in the systems being monitored.
While the preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Also, one or more aspects or features of one or more embodiments or examples of the present invention may be used or combined with one or more other embodiments or examples of the present invention. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.