This disclosure relates generally optical communications and planar photonic integrated circuits. More particularly, this disclosure pertains to techniques, methods, apparatus, structures and materials pertaining to the termination of unused waveguide ports in planar photonic integrated circuits with doped waveguides.
Contemporary optical communications and other photonic systems make extensive use of photonic integrated circuits. Accordingly, techniques, methods, apparatus and structures that improve operational characteristic of such photonic circuits would represent a welcome addition to the art.
An advance in the art is made according to an aspect of the present disclosure directed to techniques, methods, apparatus, structures and materials that enhance the operational characteristics of planar photonic integrated circuits by terminating unused waveguide ports with doped waveguides.
Advantageously compared to other waveguide termination techniques known in the art, doped waveguide termination of unused ports according to the present disclosure significantly reduces stray light and reflections in the photonic circuits.
A more complete understanding of the present disclosure may be realized by reference to the accompanying drawings in which:
The following merely illustrates the principles of the disclosure. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its spirit and scope. More particularly, while numerous specific details are set forth, it is understood that embodiments of the disclosure may be practiced without these specific details and in other instances, well-known circuits, structures and techniques have not be shown in order not to obscure the understanding of this disclosure.
Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently-known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Thus, for example, it will be appreciated by those skilled in the art that the diagrams herein represent conceptual views of illustrative structures embodying the principles of the invention.
In addition, it will be appreciated by those skilled in art that any flow charts, flow diagrams, state transition diagrams, pseudocode, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.
In the claims hereof any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements which performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function. The invention as defined by such claims resides in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. Applicant thus regards any means which can provide those functionalities as equivalent as those shown herein. Finally, and unless otherwise explicitly specified herein, the drawings are not drawn to scale.
Thus, for example, it will be appreciated by those skilled in the art that the diagrams herein represent conceptual views of illustrative structures embodying the principles of the disclosure.
By way of some additional background, we begin my noting that it is known for the operation of microwave circuits, unused microwave ports may be terminated thereby avoiding undesirable back reflections. Generally—and according to the present disclosure—a similar concept is now applied to photonic circuits.
Compounding the problem however, is the fact that in addition to any optical reflections, stray light in photonic circuits is also problematic. More particularly, unlike free space configurations in which stray-light diffracts away rapidly, stray light often remains in photonic integrated circuits because vertical stacks of materials provide optical confinement.
As those skilled in the art will appreciate when different functional photonic elements are closely integrated together into one or more photonic integrated circuits—and different optical power levels are involved—high optical isolation is required and stray light should be minimized throughout the circuits.
For example, an integrated circuit including a transmitter and a receiver might have a laser input approaching 15 dBm, and a receiver part to measure another signal with a power level of −35 dBm (for example, an optical power monitor with 5% tap of the received signal). In this example, an optical isolation of more than 50 dB is thus required.
Unfortunately, many optical components generate reflections and/or stray light. With reference now to
According to an aspect of the present disclosure, such infirmity may advantageously be avoided if a 2×2 optical combiner replaces the 2×1 optical combiner and the unused port of the 2×2 combiner is properly terminated according to the present disclosure.
There exist several techniques for terminating unused waveguide ports. However these techniques principally reduce optical reflections. Accordingly, most of the undesired light is still converted to stray light, which is problematic for photonic integrated circuits.
For example, one technique uses relatively long waveguides to terminate the unused ports. As light propagates along the waveguides, it gradually diminishes due to the propagation loss of the waveguides. However, in many cases the propagation loss is predominately optical scattering loss, which converts the optical signal mostly to stray light. Another technique uses a waveguide inverse taper with reducing waveguide width. Here the optical mode gradually loses confinement and light is diffracted into the claddings surrounding the waveguide, again becoming stray light. Yet another technique routes the unused ports to the edges of the photonic chip and the undesired light is sent off the chip. However, such routing might become difficult in many circuits having a high level of integration and therefore a large number of “internal” circuits.
According to an aspect of the present disclosure, intentionally doped waveguides are used to terminate any unused waveguide ports in a photonic integrated circuit—or other photonic structure—such that undesired light is absorbed by the free carrier absorption without causing additional reflections or stray light, as was the case with prior art existing techniques. In a preferred embodiment, any undesired light is completely absorbed by the free carrier absorption and additional reflections and stray light is eliminated. In certain embodiments, unused ports are added to a photonic structure and then terminated according to the present disclosure such that reflections and stray light are reduced or eliminated, and the structure's overall performance is enhanced.
As used herein, an unused waveguide port in a photonic integrated circuit is one that is either unused, or open-ended, and the doped waveguides that form the terminators are intentionally doped.
These concepts of the present disclosure are illustrated schematically in
Advantageously, because the suppression mechanism according to the present disclosure is based on absorption rather than scattering, no significant stray light will be generated. Also, unless the doping level in the absorber region is extremely high, the difference in refractive indices between the undoped region and the doped region is small enough to avoid significant optical reflection at the interface.
We may now provide a further example of a device and/or structure according to the present disclosure. Here we give an example as based on a silicon photonic integrated circuit. In doped silicon, the changes in the refractive index and the absorption coefficient can be written as
Δn=−8.8×10−22ΔN−8.5×10−18(ΔP)0.8,
Δα=8.5×10−18ΔN+6.0×10−18ΔP.
respectively, where N and P are the concentrations of free electrons and holes, in cm−3. For example, if an n-doped region with an electron concentration of 1E19 is used as the waveguide terminator, assuming a confinement factor of close to 1, the absorption coefficient is 85 cm−1 or about 370 dB/cm. So an absorber with 1.5 mm length is sufficient to produce an attenuation of more than 55 dB. The change in the refractive index is about −8.8E-3, which corresponds to a reflection level of only −58 dB, negligible for most applications. For an even higher doping level of 1E20, the absorption coefficient becomes 3700 dB/cm (an absorber length of merely 150 micrometers produces an attenuation of more than 55 dB), and the reflection level increases to −38 dB, which might still be acceptable for many applications.
At this point, those skilled in the art will readily appreciate that while the methods, techniques and structures according to the present disclosure have been described with respect to particular implementations and/or embodiments, those skilled in the art will recognize that the disclosure is not so limited. For example, the termination waveguide may be partially doped and partially undoped, or doped to different types or levels in different segments. Additional transition pieces such as waveguide width tapers or transitions between waveguides of different thickness/etch depths may be added between the unused waveguide port and the doped waveguide absorber. The doped waveguide can be routed in a straight pattern, or in spiral patterns to reduce its footprint. The end of the doped waveguide absorber can be either an abrupt end or a gradual taper, without affecting the device performance. Accordingly, the scope of the disclosure should only be limited by the claims appended hereto.
This Application is a continuation claiming the benefit under 35 U.S.C. § 120 of U.S. patent application Ser. No. 14/103,666, filed on Dec. 11, 2013, entitled “OPTICAL WAVEGUIDE TERMINATORS WITH DOPED WAVEGUIDES,” which is hereby incorporated herein by reference in its entirety. U.S. patent application Ser. No. 14/103,666 claims the benefit of U.S. Provisional Patent Application Ser. No. 61/735,710 filed Dec. 11, 2012 which is incorporated by reference in its entirety as if set forth at length herein.
Number | Name | Date | Kind |
---|---|---|---|
4087159 | Ulrich | May 1978 | A |
4592043 | Williams | May 1986 | A |
4637025 | Snitzer | Jan 1987 | A |
5106193 | Fesler | Apr 1992 | A |
5108183 | Fling | Apr 1992 | A |
5177562 | Wysocki | Jan 1993 | A |
5263103 | Kosinski | Nov 1993 | A |
5268973 | Jenevein | Dec 1993 | A |
5453836 | Kim | Sep 1995 | A |
5497265 | Fontana | Mar 1996 | A |
5619610 | King | Apr 1997 | A |
5784505 | Schunk | Jul 1998 | A |
5867258 | Frederick | Feb 1999 | A |
5920666 | Digonnet | Jul 1999 | A |
6144788 | Ang | Nov 2000 | A |
6192712 | Saito | Feb 2001 | B1 |
6542671 | Ma | Apr 2003 | B1 |
8805130 | Lipson | Aug 2014 | B2 |
20010046353 | Seki | Nov 2001 | A1 |
20020150331 | Tomlinson | Oct 2002 | A1 |
20030032286 | Deliwala | Feb 2003 | A1 |
20030055342 | Toida | Mar 2003 | A1 |
20030063848 | Burns | Apr 2003 | A1 |
20030068131 | Gunn, III | Apr 2003 | A1 |
20030142943 | Yegnanarayanan | Jul 2003 | A1 |
20030156605 | Richardson | Aug 2003 | A1 |
20040013339 | Arakawa | Jan 2004 | A1 |
20040086213 | Ramachandran | May 2004 | A1 |
20040223768 | Shastri | Nov 2004 | A1 |
20040258341 | Paolucci | Dec 2004 | A1 |
20060171426 | Starodoumov | Aug 2006 | A1 |
20100073762 | Onaka | Mar 2010 | A1 |
20110122895 | Savage-Leuchs | May 2011 | A1 |
20110292951 | Qiu | Dec 2011 | A1 |
20110306956 | Islam | Dec 2011 | A1 |
20120033688 | Liaw | Feb 2012 | A1 |
20130014577 | Tam | Jan 2013 | A1 |
20130064491 | Fujikata | Mar 2013 | A1 |
20130182620 | Chaffee | Jul 2013 | A1 |
20140050234 | Ter-Mikirtychev | Feb 2014 | A1 |
20140105544 | Ushida | Apr 2014 | A1 |
20150016767 | Akiyama | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170139305 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61735710 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14103666 | Dec 2013 | US |
Child | 15386879 | US |